Chapter 1

OPTION PRICING WITH EXCEL

Peter Honoré

Nykredit Markets

Nykredit Bank A/S

Kalvebod Brygge 1-8

DK-1780 Copenhagen V, Denmark

pth@nykredit.dk

Rolf Poulsen

Department of Statistics and Operations Research
University of Copenhagen

Universitetsparken 5

DK-2100 Copenhagen @, Denmark

rolf@math.ku.dk

Abstract We use spreadsheets to illustrate the concepts and techniques of arbitrage-free option

pricing.

Keywords: Excel, no arbitrage, option pricing, binomial model, Black-Scholes model, partial

differential equation, finite difference method, hedging.

1. Introduction

We show how to use spreadsheets for financial modelling, or more specifically:
How to do option pricing with Excel and Visual Basic for Applications.

Most authors of papers in this volume demonstrate the use of their favorite pro-
gram (carefully chosen from a long list of peers) in a field where it is less commonly
used. This paper differs on two accounts. First, spreadsheets are already widely used
in both the teaching of finance and in the finance industry — and have been for

some time. There’s a saying in the finance community that “a closed-form solution

2

is something you can program in Excel”.! Second, “spreadsheet” nowadays (early
2002) largely means “Microsoft Excel” — and has done for some time. So there is no
refined pro/con analysis of this vs. that spreadsheet. But UNIX/LINUX users? with
the StarOffice package installed should not abandon the paper at this point. The
spreadsheet in that package, StarCalc, and its programming environment, StarBasic,
can do most things that Excel can. At least we successfully exported all programs
used in this paper to StarCalc.

You need an “all-purpose”’-program. One that has a battery of mathematical
functions, is able to solve linear and not-too-difficult non-linear equations, has fa-
cilities for statistical analysis of data, can produce nice graphs, is endowed with a
decent random number generator, offers the possibility of programming, especially a
loop-structure, and so on. Hundreds of software packages posses such features, but
none is more widespread than the spreadsheet Excel that comes with the Microsoft
Office package, and thus is on most PCs. Spreadsheets are typically quite accessible
and offer a “hands-on”-feeling; you change something and can see directly what
happens. But Excel also offers programming features that allow us to deal with
more complex models and analyze more sophisticated questions. This is through
the Visual Basic for Applications (VBA) language/environment that — unknown
to many, probably — comes with every Excel installation.

The rest of the paper goes as follows. In Section 2.1 we briefly review the principles
of pricing by no arbitrage in binomial models, and show how this can be illustrated
and implemented in Excel. Once we are confident with this, we do not need to see
the whole model each and every time; we demonstrate how Excel’s programming
environment can be used to give us just what we want. This allows us to investigate
the binomial model. We look at limiting behaviour, and in Section 2.2 that leads
us to consider the Black-Scholes model, which is a continuous-time model. After a
discussion of parameter estimation issues, we turn again to option pricing, where
there are two numerical methods for pricing; Monte-Carlo simulation and solution of
partial differential equations (PDEs), which — when it can be used — is typically
the faster method. We show how to implement a finite difference PDE solution
method. Simulation important too, and in Section 2.3 we use it to study a topic
that has recently received some attention: The effects of less-than-perfect hedging,
especially the effects from discrete hedging and from model misspecification. In
the concluding Section 3 we have a short discussion of what we see as some of the

advantages and disadvantages of spreadsheets in general and Excel in particular.

Option Pricing with Ezcel 3

2. Financial Calculations: Models, Problems, &
Solutions

2.1 The binomial model

The binomial model is the workhorse when it comes to illustrating the principles of
“pricing by no arbitrage”.? It was first presented in Cox, Ross and Rubinstein (1979)
and the fundamental theorems of asset pricing were first formulated in Harrison and
Kreps (1979). They are now text-book material; Hull (2000) is a classic in the field,
and Pliska (1997) also gives a nice but more abstract treatment.

The building block is the one-period model with two future states of nature. It

looks like this:
R
Uus

Time 0 Time 1

This model initially contains two assets that can be both bought and sold in any
quantity by investors without transaction costs. Specifically, you can sell something
you do not have (known as “taking a short position”) if you just honor your future
obligations to the buyer. The first asset is a stock with an initial price of S(0) = s.
The future price of the stock is uncertain, stochastic; it can either (with probability
p) go up to us, or it can go down to ds, where u and d are positive real numbers
that are known at time (0. The other asset is a risk-free one; a bank account where
an investment of $1 grows to $R no matter what. We assume that v > R > d.
Otherwise (if u and d are both greater than R) investors can borrow money, buy

the stock and obtain a risk-free profit after one period. (And if v and d are both

4

smaller than R, they can do the exact opposite.) This would be “a free lunch”, or an
arbitrage opportunity. So what we are assuming is that the model is arbitrage-free.

Now suppose that we introduce into the economy a European call option on the
stock with exercise, or strike, price K and maturity after one period. This is a
contract that gives the owner the right but not the obligation to buy the stock
at time 1for the price K. So at time 1 the value of this call is (where 1 means
max(z,0))

o) = { (us — K)" := ¢, in the up-state

(ds — K)T := ¢4 in the down-state.

What should the initial price of this call option be? A simple portfolio argument
gives the answer: Using only the stock and the bank account we can form a portfolio
at time 0 that gives the same pay-off as the call at time 1 regardless of which state
occurs. Let (a,b) denote, respectively, the number of stocks and units of the bank
account held at time 0 (so in this one-period model b is just how many $ you have
deposited or borrowed in the bank). If the pay-off at time 1 is to match that of the

call we must have
a(us) + bR=c¢, and a(ds)+ bR = cy.

These two equations have the solution

Cy — C4 1 ucg — de,

stu—d)’ R (u—d)

a=
The number of stocks to invest in is often suggestively written as a = ﬁ—g and is
called the delta-hedge ratio, and we say that the portfolio hedges the call option.
The cost of forming the portfolio (a,b) at time 0 is a.S(0) 4+ b. This is also the only
possible initial price, say C(0), of the introduced call option. Any other price would
create an arbitrage opportunity: If the price were lower, we could buy the call and
sell the replicating portfolio (a,b), receive cash now as a consequence and have no
future obligations except to exercise the call if necessary. If the price were higher,

the exact opposite could be done. So, C(0) = aS(0) + b, which after some simple

co= (=) 5 (Fa) 7

Now let ¢ = fT_(‘ii, and note that the assumption of no arbitrage means that ¢ €]0, 1],

algebra means:

S0 ¢ can be interpreted as a probability and we can write the call price as

C(0) =q—“+(1—Q)% = B9 [%} :

Option Pricing with Ezcel 5

i.e. as an expected value using ¢ as probability (indicated by the Q-superscript) of
the discounted time-1 value of the call. Note that the probability p plays no role
in the expression for C(0). Intuitively, this is because we take today’s stock price
as given and price the call-option relative to this. It is quite plausible that there is
some relation between p, u, d and the price of the stock today, but we do not need
it in the argument.

A stochastic process with the property that today’s value is the expectation of
tomorrow’s value is called a martingale, and what we have shown in this example
is that absence of arbitrage implies the existence of a set of probabilities such that
the discounted call option price is a martingale when these probabilities are used.
And it is not just for the call option that today’s price is the Q-expected discounted
value of the future price. It is also true for the bank account (trivially) and for the
stock (just take K = 0). So absence of arbitrage implies the existence of martingale
probabilities ¢ and 1 — ¢, or in probabilistic terms an equivalent martingale measure
(EMM) Q. The converse is also true, and these two things combined is (a simple
version of) what is known as the 1st fundamental theorem of asset pricing: “No
arbitrage & 3 EMM @”. Supposing that martingale probabilities exists, we may
also verify by linear algebra that they are unique exactly in the case where any
stochastic pay-off (not just that of the call option) may be replicated. This is
called completeness and we have the 2nd fundamental theorem of asset pricing:
“An arbitrage-free model is complete if and only if the EMM (@ is unique.”

There is a serious objection to this example: The perfect replication argument
— especially the explicit expressions for probabilities, prices and hedge-ratios — is
really the interesting bit and that breaks down if there are more than 2 future states
of the world. With just 3 possible outcomes the model is incomplete: A replicating
portfolio must solve 3 equations in 2 unknowns, which is typically impossible. And
using a 2-point distribution as a model of stock prices a month, or a year, or ...
from now is not very realistic. It would seem that to impose completeness we need
to assume that there are as many different assets as there are future states of the
world. But there is a different and much more realistic way to remedy things. By
piecing together a (large) number of simple one-period models and — and this is
the ingenious insight — allowing for dynamic re-adjustments of portfolios, we can
make models where we still only need the stock and bank account in the replicating
portfolio. Let us look at this in a spreadsheet. The advantage is that you can both
see the model and use the program to perform calculations. This is done in Figure

1.1 where we first encounter Excel. The upper panel shows a 2-period binomial

A B [] E F =

1 Input Calculated sizes
2 Spot 100 DCelta 0.25
3 alpha 0.1 u 1.105171
4 sigma 0.15 d 0951229
5 H 0.05 Rd 1.012678
B Strike 105 q 0398522
7T 0.5
g n 2
9
10 Stock Call Option
11 100.00 110.52 122.14 2.71 b.62 17.14
12 9512 105.13 0.05 013
13 S0.48 .00
14
15 =0 i=1 i=n i=0 i=1 i=n

A B E 3] E F G
1 Input Calculated sizes
2 Spot 100 Delta =B7/B8
3 lalpha 0.1 u =EXP(E3F2+E4"SORTF2))
4 sigma 0.15 d =EXP(BI*F2-B4*SQRT{F2))
5 |Rr 0.05 Rd =EXP(B5*F2)
6 Strike 105 q =(F5-F4)/(F3-F4)
7T 0.5
8 n 2
9
10 Stock Call Option
11 =$B%2 =A11*5F$3 =B1176F$3 =(F1175F §6+F127(1-$F SE)VEFES =(G11*EF36-+G127(1-§F $6) /S5 =MAX(C11-5B86 01
12 =A11"5F54 =B1175F 4 =(G12"FF§5-+G13*(1-BF $E)WEFFS =MAX(C12-5B%E O
13 =B12"5F§4 =MAX(C13-5B%6,0)
12 =0 =1 =n =0 =1 =n

Figure 1.1. A 2-period model in Excel. The upper panel shows the numbers as you see them in
a worksheet, while the lower shows how the formulas are typed into Excel. (To display formulas
instead of numbers click on Tools — Options — View and check the Formulas-box.) Formulas are
created by first typing “=""and then some functions and references to cells. Note that “$”’s indicate
absolute references, otherwise these are relative. So: When the formula in cell B12, “=A11*F4”,
is copied to cell C12 it becomes “=B11*F4”, and when it is copied to C13 we get “=B12*F4”.

model for the stock price. Today’s price is 100 and at time 1 it can be either 110.52
or 95.12. Another “coin is tossed” at time 1 and the stock takes another move up
or down (from its time-1 level). We have chosen a very specific parametrization of

the up- and down-moves, namely

u = exp(aAt + oV At), d=exp(alAt— oV AtL),

Option Pricing with Excel 7

where a and o (called the volatility) are constants. Assuming that p = 1/2, then
with 4 = a + 02/2, we have
S(it+A)—-S(t
E} ((S()t) ()> = pAt+o(At) and

Var? (S(t + 22)_ S(t)> = %At +o(At),

where Ef and Varf denote, respectively, mean and variance conditional on the
time-¢ information, and something is “o(At)” if it goes to 0 faster than At as At
goes to 0. So o2 has natural interpretation as variance (per unit of time) of the
stock’s rate of return and p determines the mean return. The model also has the
huge advantage that the stock price development can be described by a recombining
tree or a lattice; an “up-down” sequence of moves leads to the same stock price as a
“down-up”-move. And now for the catch: If after one period we are in the “up”-state
(cell B11), then there are only 2 possible future states and we can use our previous
replication argument to conclude that a time-2 call option is worth 6.82 at time 1 if
the stock goes up. Similarly, it is worth 0.05 if the stock goes down. Taking a step
further back to time 0, we now know exactly which to possible time-1 values the call
option can take. And the 1-period replication works again (and the arbitrage-free
time-0 call option price is 2.71). Clearly, this backward recursive argument also
works in 3-,4-, or n-period models, and prices can be found by working backwards
through the lattice.

The underlying mathematics is that the fundamental theorems of asset pricing
still hold, i.e. in arbitrage-free models we have that arbitrage-free prices at time ¢,

w(t), are given by

T
m(t) = EtQ (discounted pay-off) = EtQ (;g,l) ,

and if the equivalent martingale measure @) is unique then the model is complete, i.e.
anything can be replicated. (This does not in any way hinge on the recombination.)

By piecing together many small models we can get a more realistic model for the
distribution of the future stock price. However, looking at a, say, 100-period lattice
in a spreadsheet is cumbersome and impractical. Excel has an environment, Visual
Basic for Applications (VBA), for programming macros and user-defined functions.
To get to the VBA editor click on Tools — Macro — Visual Basic Editor in
the Excel menu-bar (or press A1t-F11). The commands are written in a so-called
module (click on Insert — Module in the VBA menu-bar). The VBA editor also

helps you debug the code, and you can then call it from the worksheet like any

8

other function. There is an acceptable online help for VBA, but for the serious
programmer a book such as Green, Bullen, and Martins (2000) is a must.

The backward recursive pricing method is easy to program and we show explicit
VBA-code for the calculation of the price of a European call option in a binomial
model. Note that we do not have to represent the stock price grid as a (n+1) x (n+1)-

matrix, but only as a (n + 1)-vector, so we gain an order memory-requirement-wise.

Option Explicit
Option Base 0
Function bineurocall(S As Double, sigma As Double, alpha As Double, _
r As Double, Strike As Double, T As Double, _
N As Integer) As Double
Dim u As Double, d As Double, q As Double, Rd As Double, dt As Double
Dim vec() As Double

dt
Rd

T/ N
Exp(r * dt)

The up and down specifications
u = Exp(alpha* dt + sigma * (dt ~ 0.5))
d = Exp(alpha* dt - sigma * (dt ~ 0.5))

Validate that u < Rd < d

If (Rd > u) Or (Rd < d) Then
Call MsgBox("Invalid input data", vbCritical)
Exit Function

End If

> Calculate the riskneutral probability.
q=Rd-4d) / (u-4d

ReDim vec(0 To N) As Double
Dim i As Integer, j As Integer
> Initialise the final pay off.
For j = 0 To N
vec(j) = Application.Max(S * (u ~ j) * (d ~ (N - j)) - Strike, 0)
Next j

> Roll backward
For i = (N - 1) To 0 Step -1
For j =0 To i
vec(j) = (vec(j + 1) * q + vec(j) * (1 - q)) / Rd
Next j

Next i
bineurocall = vec(0)

End Function

The function can be called from Excel with valid arguments, e.g.

“=bineurocall(100,0.15,0.07,0.05,105,0.5,50)” (this returns the value 3.204098)

or with references to values in specific cells. When you change the value in an input

Option Pricing with Ezcel 9

Quantity Symbol Numerical value
Initial stock price S(0) 100
Volatility o 0.15
Interest rate r 0.05
Strike/exercise price K 105
Option maturity T 0.5

Table 1.1. Default parameters. With the symmetry in the model there’s no loss of generality in
using 100 as initial stock price. Time is measured in years and the interest rate is continuously
compounded, i.e. if you put $1 in the bank, you get $1*exp(0.05) = $1.051271 back in a year. These
parameters all have the same meaning in both discrete and continuous models. The P-expected
rate of return, u, (and hence o) plays no role for option pricing when portfolios that can be adjusted

sufficiently frequently (and cheaply).

cell, then the bineurocall-function is automatically recalculated. At least that is
the default setting; it may be changed by Tools — Options — Calculation.

As we said, there are good reasons for looking at models where the number of
periods, n, is high (and step sizes are small). What happens in the extreme case, i.e.
when n — 00? For the specific parametrization it is easy to investigate numerically,
and in Figure 1.2 the result can be seen. It appears that the call-price converges.
This is true, in fact it can be proved that the model converges (in an certain sense)
to the Black-Scholes model where the stock price is lognormally distributed. This
model we look at next section. But that’s not all. More surprisingly, we see that the
limiting value does not depend on p, the P-expected rate of return on the stock. One
way to understand this is to note that when we change to the probability measure @)
(which we have to do for pricing) then all expected rates of return are converted to r.
Hence “any p is automatically turned into r”. A closer inspection of the argument
will show that some higher order terms are missing, but these do disappear in
the “At — 0”-limit. (Probabilists will see this as being intimately connected to
Girsanov’s theorem.) We also note that the convergence is quite oscillatory,which
is a potential source for problems, for instance if we want to extrapolate. There are
different ways to improve on this, see Klassen (2001).

Thus wiser, we can improve and extend the code. First, we cut out the u-
dependence, since it does not matter anyway for small time-steps. We simply use
exp(+ov/At) as up/down moves. In the literature this is known as the Cox-Ross-
Rubinstein-choice. We can also handle other pay-offs (e.g. (K—S(T))™, i.e. the put

option), American type features (i.e. the possibility of early exercise) or to return the

10

_ —— Alpha=0.01
Call Option. Alpha=0.03

45 - Alpha=0.05
43 - - - -Alpha=0.07
e Alpha=0.09
i Alpha=0.11

37N,

& 35 1N

33 —_»_\ s W \r",;__‘_j?* S
34 4 "~'\Uf R i —
29—
27
25 , | |

1 G 11 16

In{n)

Figure 1.2. 'The graph shows the convergence (as the number of periods, n, increases) of the call-
price in binomial model for different P-expected stock returns (as parametrized a) and otherwise

default parameters as given in Table 1.1.

delta-hedge ratio rather than the price. We can also incorporate dividend payments
from the stock, although this requires a bit more care, see Hull (2000)[Ch. 14] for
instance.* Below we have modified the VBA-code such that put options, possibly of
American type (American calls on non-dividend-paying stocks are never exercised
prematurely, so they are not that interesting) can be priced. The essential modifi-
cation is that at each node we compare what we get from exercising immediately
((S(t) — K)* for the call, (K — S(t))* for the put; this is called the intrinsic value)
to the value of holding on to the option. The holding value (aka the time value)
is found as discounted @-expectation of next period’s outcomes, and since we are
working backwards, we know these. The American option price at the node is then

the maximum of the time value and the intrinsic value.

> Function calculating option price based on a binomial model.
> Explanation to inputs:
> opt_type: call/put and _ european/american

’ where the default values are the first possibilities.

5

Function bin(S As Double, sigma As Double, r As Double, _
Strike As Double, T As Double, N As Integer, _
opt_type As String) As Double

Option Pricing with Ezcel

Dim u As Double, d As Double, q As Double, Rd As Double, dt As Double
Dim grid() As Double

dt
Rd

T/ N
Exp(r * dt)

The up and down specifications
u = Exp(sigma * (dt ~ 0.5))
d = Exp(- sigma * (dt "~ 0.5))

Validate that u < Rd < d

If (Rd > u) Or (Rd < d) Then
Call MsgBox("Invalid input data", vbCritical)
Exit Function

End If

> Calculate the riskmeutral probability.
q=((Rd-4d) / (u-4d

ReDim vec(0 To N) As Double
Dim i As Integer, j As Integer
> Initialise the final pay off.
For j =0 To N
vec(j) = pay_off(S * (u = j) * (d = (N - j)), Strike, opt_type)
Next j

> Roll backward
For i = (N - 1) To O Step -1
For j =0 To i
vec(j) = (vec(j + 1) * q + vec(j) * (1 - q)) / Rd
Next j

> The case with options of the american type
If UCase(opt_type) Like "*_AMERICAN*" Then
For j =0 To i
vec(j) = Application.Max(vec(j), _
pay_off(S * (u ~ j) * (4 ~ (i - j)), Strike, opt_type))
Next j
End If

Next i

> return the price.
bin = vec(0)

End Function

> Function for different pay offs.
> Default call option pay-off.
2
Private Function pay_off(S As Double, Strike As Double, opt As String) As Double
If UCase(opt) Like "PUT*" Then
pay_off = Application.Max(Strike - S, 0)
Else
> Default
pay_off = Application.Max(S - Strike, 0)
End If

End Function

12

2.2 The Black-Scholes model

We now turn to continuous-time financial models, a subject on which Bjork
(1998), Musiela and Rutkowski (1997) and Duffie (2001) are all recommendable
textbooks. The benchmark continuous-time model is the Black-Scholes model. Here

the stock price follows a Geometric Brownian motion,
dS(t) = uS(t)dt + o S(t)dw?’

where W7 is a Brownian motion under the “real world”-probability measure P, and
similarly to the discrete case u and o (the volatility) determine mean and variance

of the stock’s rate of return

EF (S(t + 22)_ S(t)) = pAt+o(At) and

St+At)—SEH)\
Var? (50) = 0®At +o(At).

The model also contains a bank-account with a deterministic interest rate, i.e. an

asset whose price develops as 3(t) = exp(rt) (often written as d3(t) = r3(t)dt).

A Digression on Statistics & Macros
Before turning to the financial theory in the Black-Scholes model, let us look at
parameter estimation from data. Suppose we have equidistant observations (At
apart) of stock prices at times ty,...,¢,. In our numerical example we have daily
observations (so At = 1/250)° of the Microsoft stock price between December 1996
and December 2000 (a little more than 1,000 observations). The time series is shown
in Figure 1.3.

To estimate, let us make the distributional results more precise than first or-
der approximation to mean and variance. It can be shown (with the key result of
stochastic calculus known as Ito’s formula or lemma) that log-returns are indepen-

dent and normally distributed. Specifically, if we put

ri=1 (Si:(t)l)) !

then the r;’s are independent and

r; ~ N((u — 0?/2)At,0?At) for all 4.

So we transform observed stock-prices to log-returns, put a = (u — 0?/2), look (at

least formally) at the likelihood function

(r; — aAt)
H 1oV 27rA <_ 202 At) ’

Option Pricing with Ezcel 13

Microsoft daily closing price

140 1

. T
m VR
iZ S

] T T T T T T T
29-Mov-96 17-Jun-97 3-Jan-98 22-Jul-88 7-Feb-239 2B-Ang-99 13-Mar-00 29-Sep-00

Figure 1.3. Microsoft’s stock prices between 1997 and 2000. (Source: Bloomberg.)

and choose as estimators the values of @ and ¢ that maximize this expression (or
its logarithm; this is theoretically equivalent and numerically convenient). This is
of course completely standard and we know that the estimators are given explicitly

by the formulas

. 1 ~ 1 ¢ ~ PP
a:mi;m, o= m;(n—aAt)z,anduzowko/?.

In other words we just have to calculate means and variances (and remember the
scaling factor At). Excel has build-in functions, AVERAGE and STDEV/STDEVP, for
this.b

One reason we have written down the full likelihood function is that it gives
us a chance to illustrate Excel’s optimization routine Solver. Furthermore, the
(numerical) maximum likelihood approach still works for parameter estimation in
models with more advanced stock price dynamics. Solver may not initially be
installed on your computer. Then you need to click Tools — Add-Ins, check the
box with Solver Add-in and click OK. To use Solver we set up a cell (B7 in the
sheet shown in Figure 1.4) with a formula that calculates our criterion function.

In this case this is the log-likelihood function, so the formula will have references

14

A B =

Estimation of the parameters:

Closed Form
mu 0.38968324 0.38968529
sigma 0.40678387 0.40678395
delta 0.004

Logl/n 2.24126541

b o~-lomeEe Wk =

How to uze:

10 | The data starts in cell Alh.

11 | The farmulaes in B17:C17 copied down to match the number of data.
12 Hun the macro Soheloglikelhood,

13
14 Data
15 Daily Px Log ChangesIn{density)
16 196054
17 19188 0.005503545 272705425
18 19.3358 -0.019609 2413287 362
19 191563 -0.00933148 2.b57033295
M 10 1705 I e] A ToEAT AT
A B C
1 Estimation of the
2 Closed Form
3 mu (0.389683236314218 =AVERAGE(B17:B1019)/B5+0.57C442
4 sigma 0.405783871102544 =STDEVP(B17:B1019V/SQRT(ES)
5 | delta =1/250
B
7 Loglin =AVERAGE(C17:C1019)
8
9 Howto use:
10 The data starts in cell
11 The formulaes in B17:
12 |Run the macro Solvel
13
14 Data
15 Daily Px Log Changes In(density)
16 19.6094
17 119.7188 =LMN{ATTIATE) =-0.8"LN(2"3. 141595654 2755%5)-(B17- (§B53-0. 57 5B 54 215 B55) 2/ (2 $EFEFE54"2)
18 19.3359 =LMEATEATT) =-0.5%LM(2%3.14159" 5B 5427 5B%55)-(B18-(B3-0. 5% 5B 54275 B S5 2/ (2 FEF5 5B 54°2)
19 19.1563 =LM{ATS/ATE) =-0.5%LM(2%3.14159* 5B 5427 5B%55)-(B19-(B3-0. 5* 5B 542" 5B S5 2/ (2 FEF5 5B 54°2)
20 19125 =LMN{AZ0/A19) =-0.5%LM(2%3.14159* 5B 5427 5B55)-(B20- (B3-0. 5* 5B 542" 5B S5 2/ (2 FE$5 5B 542)
21 19.1094 =LA /A20) =0 5"LN{2"3. 14159 F B2 5B 55)-(B21 - ($B53-0 575542 §BF5 2/ (2 BES " FEF42)
77 19N 4778 =1 MFADTEATITY =1 & KPR 141 ROFEREAIT R RS (RD7 R REN A GRS O G RGP AT GRS

Figure 1.4. Sheet for maximum likelihood estimation (on Microsoft stock prices) of parameters in
the Black-Scholes model. Note that the estimates found numerically with Solver are the same as

the closed-form ones.

Option Pricing with Ezcel 15

to both data and parameters (our initial parameter-guesses have be entered in two
separate cells, B3 and B4 in this case). For numerical stability it is advisable to
normalize the log-likelihood function by the number of observations, since it is then
safe to use the same absolute termination criterion in the optimization procedure
irrespective of whether you have 100 or 100,000 observations. To optimize, click
Tools — Solver, specify the formula cell as target cell, choose Max, tell Solver
that the maximization is to be done by changing the two cells with the parameter
guesses, and click OK. Figure 1.4 shows how this looks in Excel. We see that the
closed-form expressions and the numerical optimization give the same results (to an
accuracy of about 10~7), as of course they must if the procedures work properly.
We see that the Microsoft stock has had an annual expected growth rate of around
40%, and a volatility also around 40%. (Qualitatively, both these numbers are quite
high. And it is a coincidence that there are about equal.)

An important thing to know about Solver is that a recalculation does not auto-
matically take place when you change one or more cells in the spreadsheet. If we
decided that “a year is 255 business days”, we would (in principle) have to click
Tools — ... again to re-optimize. But there is a way to avoid such long series
of key-strokes/mouse-clicks: Macros. A macro is simply a recording of a series of
key-strokes. To record one, click Tools — Macro — Record New Macro, give the
macro a name and click 0K. Now do exactly as you did the first time you wanted to
optimize, and (immediately) after that click Tools — Macro — Stop Recording.
You now have the possibility to redo the optimization again and again with only
a few clicks: Tools — Macro — Macros, choose it macro from the list and run.
If you're really fond of the macro you can give a shortcut (CTRL-”something”),
“iconize” it and put it in the tool-bar or in a button on the sheet.

A quite smart thing is that the macro is generated as commands in VBA code. For
instance when we recorded the macro described above (and called it SolveLogLikelihood)
the following code was generated:

Sub SolveLogLikelihood()

Range ("B7") .Select

SolverOk SetCell:="B7", MaxMinVal:=1, ValueOf:="0", ByChange:="B3:B4"

SolverSolve
End Sub

Recorded macro-code easily becomes quite messy. For instance: Cell B7 with the
formula was highlighted before Solver was called; this generates the superfluous line
Range ("B7") .Select. And of course the code is un-annotated. So it’s advisable to
clean up your code immediately. Doing this, we arrived at the following (“call” just

indicates then a procedure is being called)

16

> Macro used to calculate the maximum likelihood estimates.
> Assumption:

> i) the log-likelihood function in cell B7.

bl

5

2

ii) the parameters in the range B3:B4.

To run this macro be on the relevant sheet.

Sub SolveLogLikelihood()
Call SolverOk(SetCell:="B7", MaxMinVal:=1, ByChange:="B3:B4")
Call SolverSolve

End Sub

Macros can change objects in the spreadsheet (e.g. overwrite cells) whereas a
user-defined function can only return a specific value (a number/vector). This is
something of a double-edged sword. Some things are (almost) impossible to do with
functions but easy with macros, while on the other hand when things go wrong with

macros, they can go horribly wrong.

But Back to the Option Pricing ...
After this digression on statistics, let us get back to the option pricing in the
Black-Scholes model. The fundamental theorems of asset pricing still hold (at least
with some extra technical requirements). Therefore “no arbitrage” means that the

arbitrage-free prices at time ¢, 7(t), are given by
w(t) = EtQ (discounted pay-off),

where @) is a probability measure such that the discounted stock price, S/g, is a
martingale. A result from stochastic calculus (Girsanov’s theorem) tells us that the

@-dynamics of S must be
dS(t) = rS(t)dt + o S(t)dW®,

where W@ is a Q-Brownian motion that is (in some sense) unique because the
model is complete. The representation of prices as expected values suggests using
simulation for calculating prices by appealing to the law of large numbers. This
works for many different types of contracts (though not for American-type options
without considerable sleight of hand, see Fu, Laprise, Madan, Su and Wu (2001))
and is conceptually pretty straightforward. We will not look at that now. In the next
section we tell you “how to” when it comes to simulation in Excel, but use it in a
more advanced context. Rather, we focus at a more cunning approach that involves
solving partial differential equations numerically. A much more thorough treatment
of this is given in Morton and Mayers (1994), and Wilmott (1998) shows how many,

many problems in finance can be attacked and solved with a PDE approach. In

Option Pricing with Excel 17

the Black-Scholes model it can be shown (the Feynman-Kac representation) that
a contract whose terminal pay-off depends only on the terminal stock price, say
through the function h, has a time-t price of the form =« (t) = F (¢, S(t)), where F is

a deterministic function that solves the PDE
1 5 9
Fy,+rzF, + g%0 F,, =rF fort <T, (1.1)

with the terminal condition F(T,z) = h(z). For the call option (h(z) = (z — K)™),
the PDE can be solved in closed form to give the Black-Scholes formula (Black and
Scholes (1973))

BSU(t) = St)®(zy) —e "TIKD(2_),

where 2 = (ln(%) + (r+ "72)(T - t)) /o/T —t and @ is the cumulative density
of the standard normal distribution. Below the Black-Scholes formula is shown in
VBA-code. The function can return put price or the delta-hedge ratio if the flag
out_type is set appropriately.

> Black Scholes formula.

> Put or Call price/delta.

> The default is the price of a call option.
)

Function BS(S As Double, sigma As Double, r As Double, Strike As Double, _
T As Double, Optional opt_type = "Call", _
Optional out_type = "Price") As Double
Dim d1 As Double, ndl As Double, nd2 As Double
dl = (Application.Ln(S / Strike) + (r + sigma ~ 2 * T) / 2) / (sigma * T ~ 0.5)
ndl = Application.NormDist(d1l, 0, 1, True)
nd2 = Application.NormDist(dl - sigma * T = 0.5, 0, 1, True)
If UCase(opt_type) Like "PUT*" Then
If UCase(out_type) Like "DELTA*" Then

BS =ndl - 1
Else
BS =S * (ndl - 1) - Strike * Exp(-r * T) * (nd2 - 1)
End If
Else
If UCase(out_type) Like "DELTA*" Then
BS = ndl
Else
BS = S * ndl - Strike * Exp(-r * T) * nd2
End If
End If

End Function

Finite Difference Methods
Often it is not possible to find closed-form solutions to the PDEs we encounter. So
we need to look for numerical solution techniques, which is what we do next. The

Black-Scholes call-price formula will be our test-case.

18

Consider a PDE of the slightly more general form (it’s known as a linear parabolic
PDE)

F, = LF, (1.2)

where L is a differential operator that maps a function f into the function £f, where
(Lf)(z) =rf(z)—alz)fs(z) — b2§w) fzz(z), where a(-) and b(-) are known functions
(and it is implicitly understood that £ on the right hand side (RHS) of (1.2) works

on the second argument of F'). The pricing problem is to determine the time 0 value

of a contingent claim with final maturity 7. The idea with finite difference is to
discretize (1.2) by dividing the (z,t) plane into a uniformly spaced mesh, or grid,

with N + 1 discrete points in the time dimension and M + 1 points in the z space:
z; = xo + Az and t; = jAL.

A probabilistic argument can be used for setting appropriate values for the lower
and upper values of z. Set zy and z; such that a certain confidence interval of the
state space in x is reached given an initial value for z. Let ff denote the value of a
function on the grid at node (z;,t;). We then approximate the differential operators
in (1.2) with difference operators on the grid. While F; is naturally approximated
by (fZ] R fZ])/At, there are several — non-equivalent, so it turns out — ways to
approximate the operator L£; one with ’a degree of freedom’ is to use the following

on the interior of the grid:

' o —f b2 (z;) Jo—off 4l
~ _ J _ N7i+l i—1 1) Ji+1 7 i—1

A =i) A -2+
2Azx 2 (Ax)? ’

+ 0 (7"]”17'+1 — a(x;)

where 0 is a parameter between 0 and 1. If § = 1 the resulting scheme is the so-
called explicit (trinomial) finite difference method, whereas we have the fully implicit
finite difference method for § = 0. The Crank-Nicolson scheme is a sort of average
of the first two schemes with # = 1/2. It is only when we use 6 € [0;1/2] that the
numerical solution converges without further restrictions on the relation between
time- and space-stepsizes. (We refrain from illustrating this in our examples.)

Let us consider the log-transformed Black-Scholes PDE, i.e. the PDE that the
function defined by g(x) := F(e®) solves. This means that a(z) = r — ¢2/2 and
b(z) = o, and explains in part why we use the transform: We want as many things
as possible to be constant. To solve the discretized system we get by plugging our

approximations into (1.2) — and thus get an approximation to F' and ultimately

Option Pricing with Ezcel 19

the time-0 contingent claim price — we have to solve a sequence of N systems of

linear equations of the form
Afi =d*t forj=N-—1,...,0, (1.3)

where A is an (M + 1) x (M + 1)-matrix, 7 = (fI, f/,..., f1,)7 and the (M + 1)-
vectors d’t! depend only on quantities with time-index j + 1 (or greater). The
matrix A is sparse; all its entries except those we mention below are 0. Calculations

that are more tedious than hard give us the non-zero entries of A and the RHSs.
We find

i1 = ——— | (r—0?/2)— 2| =a_
A5 5—1 AL ((’I‘ J/) A.’L‘) a-1,
1 o2
Q5 = E—I—(l—@) <T+W>:a0, and
1-6 a? .
Qi+l = AL (—(T—02/2)—A—x>za1 fore=1,...,M —1,

Note that the the a’s are the same for all time- and space-points as well as for all

option types. The “inner point” RHSs are given by

it = _ 0 gz C) g (L gy) g
: 27z Az)t T\ A (B2)2)) i
0 9 o?

+ m(“"‘“/?)*rx

and these do depend of the type of option considered. It is not immediately obvious

2
)ff:’ll ie.fori=1,..., M —1,

what we should do on the upper and lower boundaries. We suggest the following
explicit boundary conditions. For the call option on the upper boundary use the
approximation Fs & 1, which in the log-transformed world means: g¢,(Xn) =
Soexp(MAz), and Fss = 0. The reason for this is that if the stock price is high,
the (-)* does not matter very much and then F(s,t) = e "TNEQ((S(T)-K)*|S; =
5) = e "THNEQ(S(T) — K)|S; = 8) = s —e " T"HK. Similar arguments can be
used at the low boundary and for put options, and in compact notation we end up
with Fgg(“any bd.”) = 0 and

Fs(“upper bd.”) = 11, .0 = can}> and Fs(“lower bd.”) = =17 0. - o)

where 1(denotes the indicator function. It is possible to use so-called implied
boundary conditions (see Vetzal (1998)), where derivatives at the boundary are
estimated using only points on one side of the boundary . However, this can make

the solution procedure unstable if drift does not dominate volatility (i.e. |a/b| is

20

large) at the boundaries. For the Black-Scholes model the drift does not dominate.

The boundary elements of the equation systems for call and put options become

a1 = apmm-1=0,
1
ap0 = aM,M = i +r(1-0),
. 1 .
d%'H = (Kt — 7"0) g+1 + Lfopion = pur} (7 — 02 /2)Sy exp(xy), and
. 1)
dg\j[l = (E - ’)"0) jj\;l - 1{option = call} (’l" - 02/2)50 eXP(% + MA‘T)

Since A is tridiagonal each of the systems in (1.3) can be solved with a compu-
tational effort that grows only linearly in the size of A. Now we just have to roll
backward. Remember the final pay-off of the contingent claim is the initial con-
dition for fV. Just as with the binomial model we can work with American-type
features and other pay-off structures, as it is done in the following VBA-code. We
do not explicitly show the algorithm, SolveLinearSystem, for solving tridiagonal
linear systems, but refer the reader to Press, Teukolsky, Vetterling and Flannery
(1993), for instance. It is possible to use the build-in Excel functions MINVERSE and
MMULT for the matrix calculations. But this is much slower because the tridiagonal

structure is not exploited.

Option Explicit
Option Base 0
> Function calculating option price based on a Black-Scholes model.
’ Explanation to inputs:
> opt_type: call/put and _ european/american
> where the default values are the first possibilities.
>
Function FD(S As Double, sigma As Double, r As Double, _
K As Double, t As Double, N As Integer, M As Integer, _
opt_type As String, Optional theta = 0.5) As Double

Dim a() As Double, f() As Double, d() As Double, dx As Double, dt As Double

Dim i As Integer, j As Integer

> The increments in the grid.

dx = 6 * sigma * (t "0.5) / M: dt =t / N

> Set-up the a coefficients.

ReDim a(-M To M, -1 To 1)

Dim s2 As Double, s2f As Double, rs As Double

s2 = sigma "2: s2f =82 /dx: rs=r -s2/ 2

For i =1-MToM-1

a(i, -1) = ((1 - theta) / (2 * dx)) * (rs - s2f)

a(i, 0) =1/ dt + (1 - theta) * (r + (sigma / dx) ~2)

Option Pricing with Ezcel 21

Call Option Call Option

--01 306 B

--02 304 ----02
—03

305

30 —03

3m 04 300 —04

1 2 3 4 5 —05 1 2 3 1 5 —_05
In{N)=In{0.5M) BS In{N)=In{0.5M) BS

Figure 1.5. Convergence of finite difference solutions to call-price PDEs for different §-values and
with default parameters as given in Table 1.1. Note that we keep the number of time and space
steps proportional, as is optimal for methods that have the same convergence order in the two
directions. For the graph on the left we used the “raw” pay-off function as terminal condition,
while we smoothed the pay-off over the last time-step with the Black-Scholes formula to produce
the graph on the right. This makes quite a difference; the convergence in the smoothed case is
faster and “nicer” in the sense that it is monotone. Notice also the clearly superior accuracy of the
Crank-Nicolson method (f = 1/2) in the smoothed case.

a(i, 1) = ((1 - theta) / (2 * dx)) * (-rs - s2f)

Next i

a(-M, 0) = (1 / dt) + (1 - theta) * r
a(-M, 1) =0

a(M, -1) =0

a(M, 0) = (1 / dt) + (1 - theta) * r
> The initial pay-off:
ReDim f(-M To M)
For i = -M To M

f(i) = pay_off(S * Exp(i * dx), K, opt_type)
Next i
’ Option type used for the explicit boundaries:
Dim isPut As Boolean
isPut = (UCase(opt_type) Like "PUT*")
> Roll backward
ReDim d(-M To M)
For j =N -1 To 0 Step -1

> Calculate the d-vector.

For i =1 -MToM-1

d(i) = —(theta / (2 * dx)) * (rs - s2f) * £(i - 1) + (1 / dt - theta * (r + s2f / dx)) * f(i) _

+ (theta / (2 * dx)) * (rs + s2f) * f(i + 1)

22

Next i

d(-M) = ((1 / dt) - theta * r) * £(-M) + rs * S * Exp(-M * dx) * isPut
d(M) = ((1 / dt) - theta * r) * £f(M) - rs * S * Exp(M * dx) * (1 - isPut)
> Solve A’f =d

Call SolvelinearSystem(a, f, d)

> The case with options of the american type
If UCase(opt_type) Like "*_AMERICAN*" Then
For i = -M To M
f(i) = Application.Max(f(i), pay_off(S * Exp(i * dx), K, opt_type))
Next i

End If
Next j

> Return the price.

FD = £(0)

End Function

Finite difference methods can be much faster than simulation, but are numerically
more delicate. Small changes can make a big difference, as it is shown in Figure
1.5. Here we smoothed the (otherwise non-differentiable) terminal condition using
the Black-Scholes formula in the next to last step and then working backwards from
T — 2At. So it is then “For j = ¥-2 To 0 step -1” with terminal condition »z¢) = Bs(s =
Exp(i * dx), sigma, r, K, dt, opt_type, "price™)” at T' — At, and otherwise the same code. In
this case the small change works to our benefit, for instance because the smooth
convergence makes it possible to determine the order of convergence empirical and
to extrapolate. Another advantage of finite difference methods over simulation is
that the partial derivatives are directly available. These are important for hedging
purposes, as the next section will show.

The results of applying the PDE solver to American and European type put
options can be seen in Figure 1.6. No closed-form solution for the American put
option is known, but many approximations have been suggested. The numerical

PDE solution method provides a yardstick for these.

2.3 Less-than-perfect Hedging

What makes pricing by arbitrage work is the possibility of creating perfectly
replicating portfolios. This requires that you know the true model and its parameters
(except p) with certainty, and in the Black-Scholes world that you can adjust your
portfolio continuously. We now try to relax these assumptions, and in this way
investigate the robustness of the Black-Scholes framework. A theoretical analysis of

the topic is given in El Karoui, Jeanblanc-Picqué and Shreve (1998), but we look at

Option Pricing with Ezcel 23

Put Option European (LH)

— American (LH)

= = «[Difference (RH)

N
\\\\\ T 2.00
12 \\\ Plok Area
10 *

Px
o oo
3
/
4
»
x
/
= o
= =
Pre-exercise value

a0 95

Figure 1.6. Price difference between American and European type put options in the Black-Scholes
model. Except for the varying initial stock-price (on the x-axis) we use the default parameters from
Table 1.1.

it in a simulation study. So imagine now that we have sold a call option to someone.
From this we have received some funds, but taken on a (possible) future liability. We
want to delta-hedge to off-set this liability, but are subject to certain constraints.
First, suppose that the Black-Scholes model is indeed the true one, but we are
only able to adjust our portfolio discretely, say once every day or every week. Let’s
say that when we adjust, we make sure to keep the number of stocks prescribed
by the theory, namely A(t;) = ®(21(Sy;,t;)) and use the bank account to finance
or deposit the cash-flows from the stock strategy. How bad are we off then? The
VBA function below can be used to answer that question. The code simulates
NumOfHedgeInLifeTime points on the stock price path and creates a portfolio that
i) is adjusted at time t; in such a way that ®(z1(S;,?;)) units of the stock is held
(the Black-Scholes function shown earlier is used for that) and i) requires no net
cash in- or out-flow between time 0 and time 7' (money are borrowed or deposited
in the bank). For each path the terminal hedge error is recorded, the experiment
is repeated over many (NumOfReplications) paths and summary statistics of the

simulated hedge errors are returned.

Option Explicit
Option Base 0

Function hedge_call(S As Double, sigma As Double, r As Double, k As Double, T As Double, _
PDrift As Double, PSigma As Double, NumOfHedgeInLifeTime As Integer, _

24

NumOfReplications As Integer) As Variant
Dim BankAccount As Double, Stock As Double, NumOfStocks As Double, dt As Double
Dim CallValue As Double, i As Integer, j As Integer, pfValue() As Double
Dim Delta As Double, ChangeNumOfStocks As Double

> Initialize random—number generator. The seed is the Time.
Call Randomize

ReDim pfValue(l To NumOfReplications)

> Pre-calculating

dt = T / NumOfHedgeInLifeTime: CallValue = BS(S, sigma, r, k, T, "Call_European", "Price")

For i = 1 To NumOfReplications

> Initial values.

Stock = S: NumOfStocks = 0: BankAccount = CallValue

For j = 1 To NumOfHedgeInLifeTime
> The Delta hedge
Delta = BS(Stock, sigma, r, k, T - (j - 1) * dt, "Call_European", "Delta")
> Adjust the number of stocks, such the delta hedge is applied.
ChangeNumOfStocks = Delta - NumOfStocks
> The remaining into the bank account
BankAccount = BankAccount - ChangeNumOfStocks * Stock
NumQOfStocks = Delta
> Simulate the Stock value at time t + j*dt
Stock = Stock * Exp((PDrift - 0.5 * PSigma ~ 2) * dt + PSigma * normal(dt))
> Accrue the bank account for the time period dt.
BankAccount = BankAccount * Exp(r * dt)

Next j

> The net value of the pf
pfValue(i) = BankAccount + NumOfStocks * Stock - Application.Max(Stock - k, 0)
Next i

Dim res(1 To 2, 1 To 1) As Variant

res(1, 1) = Application.WorksheetFunction.Average (pfValue)
res(2, 1) = Application.WorksheetFunction.StDev(pfValue)
hedge_call = res

End Function

> Generate random numbers, based on the functionality in Excel.
Function normal(variance) As Double
normal = Application.WorksheetFunction.NormSInv(Rnd) * (variance " 0.5)

End Function

The output from this VBA-code is a range of size 2x1. To use the function in
a spreadsheet you have to mark a 2x1 range (by dragging with the left mouse-
button down), enter the formula as you would normally, and finishing by pressing
CTRL+SHIFT+ENTER (not just ENTER). When editing the formula later, it is also
important to remember to use CTRL+SHIFT+ENTER to finish; Excel simply will not
let you continue if you do not.

This experiment shows that hedging works, and that it does not matter much
what the expected rate of return on the stock, u or Pdrift, is as it can be seen

from the right hand graph in Figure 1.7. (If hedging takes place very infrequently,

Option Pricing with Ezcel 25

1 Hedge of Call Option
0ms 13525
—¥— Average (LH)

arg | =e=stoev (RH) A /

NN/
NN N

St.dev

Average
Do
—
L=
—

-0020 1505
0 1% 003 005 0065 007 008 008 O0CBS 003 0I5 01
Number of times the portfolio is rebalanced driftP

Figure 1.7. The graph on the left shows the standard deviation of the terminal hedging error for
different hedging frequencies when the drift of the stock, Psigma, is 0.07 (and the risk-free rate is
0.05). The graph on the right shows the average and standard deviation of the hedging error with
52 rebalancings, NoOfHedgeInLifeTime = 52, for different drifts of the stock.

then p may play a role in determining a “variance optimal” hedge, see Wilmott
(1998)[Ch. 20].) In the left hand graph in 1.7 we have used a log/log-scale to plot
the standard deviation of the hedging error (that is, the terminal value of our hedge
portfolio less the pay-off of the call option) against the number of rebalancings for
an expected stock return of 0.07 (when the risk-free rate is 0.05). The average
hedging error is very close to 0, and does not depend very much on the number of
rebalancings, so we haven’t plotted it. Not only do we see that the hedge becomes
more and more accurate, but the fact that the points make up a straight line with
slope -1/2 indicates that the standard deviation of hedging error is proportional to
1/+/(# times we rebalance). Indeed this is true, but in general it depends critically
on the smoothness of the pay-off function, see Gobet and Temam (2001). A variation
of this experiment is to say that we adjust our hedge portfolio not every day, but
only when our stock holdings are sufficiently far from the Black-Scholes delta-hedge
ratio. This leads so-called bandwidth hedging, see Wilmott (1998)[Ch. 21] and the
references therein.

Another interesting question is: What happens if we hedge with a wrong volatil-
ity? In Figure 1.8 we can see what happens. (For simplicity we have y = r.) For
each graph, we have done the hedging 1,000 times (with a weekly hedging frequency)
and for each path we plotted the realized pay-off of the call ((S(T') — K)*) against
the terminal value of hedge portfolio. The hedge portfolios are constructed using
volatilities (called Qsigma) of 0.1, 0.15, and 0.2, while the true volatility is 0.15. If
the hedge were perfect (i.e. if we use the true o and adjust our portfolio continu-

ously), then all these points should fall exactly on the pay-off function curve. They

26

Qsigma=0.10 Qsigma=0.15 Qsigma=0.20
Gl 0]

0 0 L

| 7 1 i

P

Figure 1.8. Terminal hedge portfolio values for different hedge volatilities. The true volatility is

0.15, so the middle graph corresponds to hedging with the correct volatility.

do not; we see how the points form different “clouds” around the pay-off function.
When the hedging volatility is correct, the cloud most closely resembles the pay-off
function, while the clouds spread out when we move away from the true volatility.
There is a vertical movement that reflects different initial investments in the hedge:
A high hedge volatility means that you invest more than the true Black-Scholes
call price, and thus points should be above the call pay-off on average. The clouds
also become more disperse, in fact if we look closely, we see that largest dispersion
occurs in the vicinity of the kink in the pay-off function (i.e. at the strike price).
The standard deviation of the hedge error is minimal around (although not exactly
at) the true volatility. But a centered second moment probably is not the most
informative measure of risk in this case. First, the distribution of the hedge error is
far from normal. Second a hedger’s main worry is shortfall risk. So to really analyze
what the optimal hedge (volatility) is, we would have specify a utility function for
the hedger, as well as his wealth and the total position he is trying to hedge, and

that leads to interesting (and truly non-linear) problems.

3. Conclusion

“Sheer volume” means that Excel cannot be ignored, and in economics/finance it
has applications beyond “simple accounting”. We showed how to use it for option
pricing calculations. There are many relevant and interesting topics that we did
not touch. We could have looked further into PDEs, investigated Black-Scholes-
like delta-hedging in the case where the stock price in not a Geometric Brownian

motion, or discussed “implied modelling” where option prices observed in the market

Option Pricing with Excel 27

are used to create models with stock price dynamics that reproduce these option
prices. This can all readily be done with Excel.

A further argument in favor of Excel is its strong interfacing opportunities (to
e.g. the database Access or Reuter/Bloomberg financial services). And it shouldn’t
be ignored that a number of “Excel-Finance“-books have recently appeared, Ben-
ninga (2000) and Jackson and Staunton (2001) for instance. Of course the Devil’s
advocate would say that you should learn finance from a book on finance, not from

a book on Excel (and vice versa).

Limitations of Spreadsheets
As high-level software, spreadsheets are generally slow for numerical computations.
Even the latest Excel versions may leave something to be desired when it comes
to accuracy of large-scale computations, see McCullough and Wilson (1999). The
computations in this paper can all be done in “real-time” on a fairly new (early
2002) PC, but they shouldn’t be much larger before we would recommend switching
to something like C++ for the “number crunching”, make an x1l or com object and
then use Excel on top as front end software, i.e. for graphical interfacing, such that
you can still see what is happening without a degree in computer science.

Excel comes “in your own language”. This creates peculiar compatibility prob-
lems that can be quite a nuisance. For instance matrices must be semicolon-
separated on the US-version, and colon-separated in the Danish version. Further,
there spelling differences for some standard functions (such as EKSP in Danish for
the exponential function) and Danish versions do not accept US-spelling. It must be
said that Microsoft have been very thorough in the translation, and sometimes that
makes quite difficult to find the Danish term: Translating RAND() (the generation of
a U(0, 1)-variable) to SLUMP () (an old Danish word used to describe “something we
do not quite know where is”) is very charming, but means that guessing the Danish

syntax requires some imagination.

Notes

1. We have not been able to precisely locate its origin and this may be the first time that it appears in
print.

2. Over the last half year we have seen several cases of computer-offers aimed at “ordinary users” where
StarOffice is the default office package. So things may be changing.

3. We prefer the term “pricing by no arbitrage” to “risk-neutral pricing”, since the latter could give the
impression that there is an assumption of risk-neutrality among investors. There isn’t.

4. First, if you are careless you get a non-recombining model, which is a computational nightmare.
Second, it is cumulative gains, i.e. stock price + dividends reinvested, that should be Q-martingales when

discounted to prevent arbitrage.

28

5. We use 1/250 because there are roughly 250 business days in a year. “Why business days?” is actually
a very good question. The short answer is: That gives the best results. An indication of what is meant
by this you can get from estimating the variance of Friday-to-Monday returns and comparing it to (for
instance) the Monday-to-Tuesday return variance. If physical time is the real clock, the former should be
about 3 times higher, but they are about the same. Intuitively, nothing is going on, when the stock markets
are closed.

6. STDEV divides by n — 1 rather than n (as STDEVP does), thus ensuring that we get an unbiased o2-

estimate. But if n is large this is of no practical importance.

References

Benninga, S. (2000), Financial Modeling, 2/e, MIT Press.

Bjork, T. (1998), Arbitrage Theory in Continuous Time, Oxford University Press.

Black, F. and Scholes, M. (1973), The Pricing of Options and Corporate Liabilities,
Journal of Political Economy, Vol. 81, pp 637-654.

Cox, J., Ross, S.and Rubinstein, M. (1979), Option Pricing: A Simplified Approach,
Journal of Financial Economics, Vol. 7, pp 229-263.

Duffie, D. (2001), Dynamic Asset Pricing Theory, 3/e, Princeton University Press.

El Karoui, N., Jeanblanc-Picqué, M. and Shreve, S. (1998), Robustness of the Black
and Scholes Formula, Mathematical Finance, Vol. 8, pp 93-126.

Fu, M. C., Laprise, S. B., Madan, D. B., Su, Y., and Wu, R. (2001), Pricing Amer-
ican options: a comparison of Monte Carlo simulation approaches, Journal of
Computational Finance, Vol. 4, pp 38-88.

Gobet, E. and Temam, E. (2001), Discrete time hedging errors for options with
irregular payoffs, Finance and Stochastics, Vol. 5, pp 357-367.

Green, J., Bullen, S. and Martins, F. (2000), Ezcel 2000 VBA Programmer’s Refer-
ence, Wrox Press.

Harrison, M. and Kreps, D. (1979), Martingales and Arbitrage in Multiperiod Se-
curities Markets, Journal of Economic Theory, Vol. 20, pp 381-408.

Hull, J. (2000), Options, Futures, and Other Derivative Securities, 4/e, Prentice-
Hall.

Jackson, M. and Staunton, M. (2001), Advanced modelling in finance using Ezxcel
and VBA, Wiley.

Klassen, T. R. (2001), Simple, fast and flexible pricing of Asian options, Journal of
Computational Finance, Vol. 4, pp 89-124.

McCullough, B. D. and Wilson, B. (1999), On the Accuracy of Statistical Procedures
in Microsoft Excel 97, Computational Finance Statistics and Data Analysis, Vol.
31, pp 27-37.

REFERENCES 29

Morton, K. W. and Mayers, D. F. (1994), Numerical Solution of Partial Differential
Equations, Cambridge University Press.

Musiela, M. and Rutkowski, M. (1997), Martingale Methods in Financial Modelling,
Springer-Verlag.

Pliska, S. (1997), Introduction to Mathematical Finance, Blackwell.

Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (1993), Numerical Recipes
in C, Cambridge University Press.

Vetzal, K. R. (1998) ’An Improved Finite Difference to Fitting the Initial Term
Structure’, Journal of Fized Income, March, pp 62-81.

Wilmott, P. (1998), Derivatives, Wiley.

