Chapter 9

Portfolio Theory

Matrix Algebra

First we need a few things about matrices. (A very useful reference for math-
ematical results in the large class imprecisely defined as “well-known”is Berck
& Sydsater (1992), “Economists’ Mathematical Handbook”, Springer.)

e When x € R® and V € R**" then

a%(xTVx) =(V+Vhx

e A matrix V € R™ " is said to be positive definite if z' Vz > 0 for all
z # 0. If V is positive definite then V™! exists and is also positive
definite.

e Multiplying (appropriately) partitioned matrices is just like multiplying
2 X 2-matrices.

e When X is an n-dimensional random variable with covariance matrix
> then
Cov(AX +B,CX + D) = AXCT,

where A, B, C, and D are deterministic matrices such that the multi-
plications involved are well-defined.

Basic Definitions & Justification of Mean-Variance Analysis

We will consider an agent who wants to invest in the financial markets. We
look at a simple model with only two time-points, 0 and 1. The agent has
an initial wealth of Wy to invest. We are not interested in how the agent
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determined this amount, it’s just there. There are n financial assets to choose
from and these have prices

Sigforie=1,...,nand t =0,1,

where S; ; is stochastic and not known until time 1. The rate of return on
asset ¢ is defined as
_ Sig = Sip

r; =
i Sz',O ;
and r = (ry,...,7,)" is the vector of rates of return. Note that 7 is stochastic.

At time 0 the agent chooses a portfolio, that is he buys a; units of asset
1 and since all in all W is invested we have

n
W(): E CLZ'SZ',().
=1

(If a; < 0 the agent is selling some of asset 4; in most of our analysis short-
selling will be allowed.)

Rather than working with the absolute number of assets held, it is more
convenient to work with relative portfolio weights. This means that for the
1th asset we measure the value of the investment in that asset relative to
total investment and call this w;, i.e.

@iSip _ aidip
m = .
dic10iSio W

We put w = (wi,...wy,)", and have that w'1 = 1. In fact, any vector
satisfying this condition identifies an investment strategy. Hence in the fol-
lowing a portfolio is a vector whose coordinate sum to 1. Note that in this
one period model a portfolio w is not a stochastic variable (in the sense of
being unknown at time 0).

The terminal wealth is

W, = Z a;Si1 = Z&i(sm — Sip) + Z%Sz‘,o
i=1 i=1 i=1

. Sz’,Oai Si,l - Si,O
= W, (1+i2:1: T )

= Wo(1+w'r), (9.1)

w; =

so if we know the relative portfolio weights and the realized rates of return,
we know terminal wealth. We also see that

EW,) = Wo(1+w'E(r))
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and
Var(W;) = WgCov(w'r,w'r) = Wiw' Var(r)w.

In this chapter we will look at how agents should choose w. We will
focus on how to choose w such that for a given expected rate of return, the
variance on the rate of return is minimized. This is called mean-variance
analysis. Intuitively, it sounds reasonable enough, but can it be justified?

An agent has a utility function, u, and let us for simplicity say that he
derives utility from directly from terminal wealth. (So in fact we are saying
that we can eat money.) We can expand u in a Taylor series around the
expected terminal wealth,

u(Wy) = U({E(Wl)) + ' (E(WL)) (WL — E(Wh))
+§u”(E(W1))(W1 — E(W1))?* + Rs,

where the remainder term Rj is

Ry = 3" 2uld (BOW) (W, — EOW))'

1=3

“and hopefully small”. With appropriate (weak) regularity condition this
means that expected terminal wealth can be written as

E(u(Wh)) = u(E(W1)) + %u”(E(Wl))Var(Wl) + E(R3),

where the remainder term involves higher order central moments. As usual
we consider agents with increasing, concave (i.e. u"” < 0) utility functions
who maximize expected wealth. This then shows that to a second order
approximation there is a preference for expected wealth (and thus, by (9.1),
to expected rate of return), and an aversion towards variance of wealth (and
thus to variance of rates of return).

But we also see that mean-variance analysis cannot be a completely gen-
eral model of portfolio choice. A sensible question to ask is: What restrictions
can we impose (on u and/or on r) to ensure that mean-variance analysis is
fully consistent with maximization of expected utility?

An obvious way to do this is to assume that utility is quadratic. Then the
remainder term is identically 0. But quadratic utility does not go too well
with the assumption that utility is increasing and concave. If u is concave
(which it has to be for mean-variance analysis to hold ; otherwise our interest
would be in maximizing variance) there will be a point of satiation beyond
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which utility decreases. Despite this, quadratic utility is often used with a
“happy-go-lucky” assumption that when maximizing, we do not end up in
an area where it is decreasing.

We can also justify mean-variance analysis by putting distributional re-
strictions on rates of return. If rates of return on individual assets are nor-
mally distributed then the rate of return on a portfolio is also normal, and
the higher order moments in the remainder can be expressed in terms of the
variance. In general we are still not sure of the signs and magnitudes of
the higher order derivatives of u, but for large classes of reasonable utility
functions, mean-variance analysis can be formally justified.

9.1 The Mathematics of the Efficient Frontier

9.1.1 The case with no riskfree asset

First we consider a market with no riskfree asset and n risky assets. Later
we will include a riskfree asset, and it will become apparent that we have
done things in the right order.

The risky assets have a vector of rates of return of r, and we assume that

E(r) = p, (9.2)
Var(r) = X, (9.3)

where X is positive definite (hence invertible) and not all coordinates of p
are equal. As a covariance matrix ¥ is always positive semidefinite, the
definiteness means that there does not exist an asset whose rate of return
can be written as an affine function of the other n — 1 assets’ rates of return.
Note that the existence of a riskfree asset would violate this.

Consider the following problem:

1
minw§wT2w := 0% subject to W' p=rp

wil=1

First note that our assumptions on g and X ensure that a unique finite
solution exits for any value of rp. Second note that the problem can be
interpreted as choosing portfolio weights (the second constraint ensures that
w is a vector of portfolio weights) such that the variance on the return on the
portfolio (w' Xw; the “1/2” is just there for convenience) is minimized given
that we want a specific expected rate of return (rp; “P is for portfolio”).
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To solve the problem we set up the Lagrange-function with multipliers
1
L(W, A1, A2) = EWTEW — MW —71p) = A(w'l—1).

The first-order conditions for optimality are

oL
w'l—1 = 0. (9.6)

Usually we might say “and these are linear equations that can easily be
solved”, but working on them algebraically leads to a much deeper under-
standing and intuition about the model. Note that invertibility gives that
we can write (9.4) as (check for yourself)

w=X""'u 1] [ i; } : (9.7)

and (9.5)-(9.6) as
1w = [Tl” ] . (9.8)

Multiplying both sides of (9.7) by [ 1]T and using (9.8) gives

[ 1 } =piw=(p1] % n [ t } | (9.9)

By using the multiplication rules for partitioned matrices we see that

A= 'Sy p™ST1 ] [a b
I 720>t T B > N I /R

We now show that A is positive definite, in particular it is invertible. To this
end let z" = (21, 22) # 0 be an arbitrary non-zero vector in R2. Then

y=lu1l| 2 | =l w120

because the coordinates of p are not all equal. From the definition of A we
get
VZz#£0 : z'Az=y T 'y >0,
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because X1 is positive definite (because X is). In other words, A is positive
definite. Hence we can solve (9.9) for the \’s,

=)

and insert this into (9.7) in order to determine the optimal portfolio weights

W= p1A" [ 7“1” } . (9.10)

The portfolio w is called the minimum variance portfolio for a given mean rp
(So we can’t be bothered to say the correct full phrase: “minimum variance
on rate of return for a given mean rate on return rp ”.) Twice the optimal
value (i.e. the minimal portfolio return variance) is

52 = WEw
]
]

“p 1'ESTEE T p A e 1)1
e = e ) A e 1T

- -

A
= A

[T‘p 1
[T‘p 1

—A by def.
f— [TP ]_]AA._1 |: 7’.1P } ,

where symmetry (of ¥ and A and their inverses) was used to obtain the
second line. But note that

1 c —b
-1 _
A _ac—bQ[—b a]’

o a—2brp+cry
= . 9.11
Op ac — b2 ( )

which gives us

In (9.11) the relation between the variance of the minimum variance portfolio
for a given 7, 8;, is expressed as a parabola and is called the variance
portfolio frontier or locus. In mean-standard deviation-space the relation
is expressed as a hyperbola. Figure 9.1 illustrates what things look like in
mean-variance-space. (When using graphical arguments you should be quite
careful to use “the right space”; for instance lines that are straight in one
space, are not straight in the other.) The upper half of the curve in Figure
9.1 (the solid line) identifies the set of portfolios that have the highest mean
return for a given variance; these are called mean-variance efficient portfolios.
The portfolios on the bottom half (the dotted part) are called inefficient
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Figure 9.1: The minimum variance portfolio frontier.

portfolios. Figure 9.1 also shows the global minimum variance portfolio, the

portfolio with the smallest possible variance for any given mean return. Its
mean, 7¢, is found by minimizing (9.11) with respect to 7p, and is 7gpy = %

By substituting this in the general 5-expression we obtain

. a =200 gy + 1, a—2b(b/c) +c(b/c)? 1

gmv

ac — b? ac — b? c

bl

while the general formula for portfolio weights gives us

~ 1
Womy = 22_11.

Example 11 (A Recurrent Numerical Example) Consider the case with
3 assets (referred to as A, B, and C) and

0.1 0.25 010 -0.10
u=1012 |, X = 0.10 0.36 —0.30
0.15 —-0.10 —-0.30 0.49
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Min.-Var set in (var(r), E(r))-space

0.16

expected return
0.12
™

0.08

0.0 0.2 0.4 0.6 0.8 1.0 1.2

variance

Min.-Var set in (std.dev.(r), E(r))-space

0.16

expected return

0.08

0.0 0.2 0.4 0.6 0.8 1.0 1.2
std. dev.

Figure 9.2: The minimum variance frontiers and individual assets for Exam-
ple 11

The all-important A-matrix is then

0.33236  2.56596

A =19 565060 20.04712 |

which means that the locus of mean-variance portfolios is given by
G5 = 4.22918 — 65.30317p + 255.0977%,.

The locus is illustrated in Figure 9.2 in both in (variance, expected return)-
space and (standard deviation, expected return)-space.

An important property of the set of minimum variance portfolios is is so-
called two-fund separation. This means that the minimum variance portfolio
frontier can be generated by any two distinct frontier portfolios.

Proposition 30 Let x, and x; be two minimum variance portfolios with
mean returns v, and Ty, T4 # 1y. Then every minimum variance portfolio,
X. 18 a linear combination of X, and x,. Conwversely, every portfolio that is
a linear combination of x, and xy (i.e. can be written as ax, + (1 — a)x;)
s a mintmum variance portfolio. In particular, if X, and X, are efficient
portfolios, then ax, + (1 — a)xy is an efficient portfolio for a € [0;1].
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Proof. To prove the first part let r. denote the mean return on a given
minimum variance portfolio x.. Now choose « such that r. = ar,+ (1 — a)ry,
that is & = (r. — 75)/(re — 1) (which is well-defined because r, # 7). But
since X, is a minimum variance portfolio we know that (9.10) holds, so

1

s lian]

x, = X7 u 1]A‘1[T°’]

= X7 'p 1]A7 [
= ax,+ (1 — a)xp,

where the third line is obtained because x, and x, also fulfill (9.10). This
proves the first statement. The second statement is proved by “reading from
right to left” in the above equations. This shows that x, = ax, + (1 — @)%, is
the minimum variance portfolio with expected return ar, + (1 — «)rp. From
this, the validity of the third statement is clear.

Another important notion is orthogonality of portfolios. We say that two
portfolios xp and x,p (“z is for zero”) are orthogonal if the covariance of
their rates of return is 0, i.e.

x, pXxp = 0. (9.12)
Often x,p is called xp’s 0-F portfolio (we’ll see why later).

Proposition 31 For every minimum variance portfolio, except the global
minimum variance portfolio, there exists a unique orthogonal minimum vari-
ance portfolio. Furthermore, if the first portfolio has mean rate of return rp,
its orthogonal one has mean

a—brp
r,p = b

—crp

Proof. First note that r,p is well-defined for any portfolio except the global
minimum variance portfolio. By (9.10) we know how to find the minimum
variance portfolios with means 7p and r,p = (a — brp)/(b— crp). This leads
to

X pExp = [rp 1A [u 1]'S7'ES [ 1]JA  [rp 1]7
r:p AT ([ 1127 p 1) AMrp 1]7

- -

—A by def.
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= [rp 1A [ TIP ] (9.13)

. a—bTP1 1 c =bl|[rp
| b—crp ac—b2 | —b a 1

_ 1 a—brp 1 crp—0b
 ac—b |b—crp a—brp

= 0,

which was the desired result. Il

Proposition 32 Let X, (# Xgmo, the global minimum variance portfolio) be
a portfolio on the mean-variance frontier with rate of return r,,,, expected rate
of return i, and variance o2,,. Let X,m, be the corresponding orthogonal
portfolio, xp be an arbitrary portfolio, and use similar notation for rates of
return on these portfolios. Then the following holds:

Hp — Moy = BP,mv (lu’mv - u’zmv)’

where
_ Cov(rp, Tmy)

ﬂP,mv - O_%rw

Proof. Consider first the covariance between return on asset ¢ and x,,,. By
using (9.10) we get

Cov(Ti, Tmy) = € ZXpny

— e/lu A | e |

= [y 1A [ “flrw } .

From calculations in the proof of Proposition 31 we know that the covari-
ance between X, and x,,, is given by (9.13). We also know that it is 0.
Subtracting this 0 from the above equation gives

COV(Tiava) = [/1’1 — Hemy O]Ail [ ,uimj :|

Clhyy — b

= (u — 9.14
(B = o) =5 (9.14)

=y
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where we have used the formula for A~!. Since this holds for all individual
assets and covariance is bilinear, it also holds for portfolios. In particular for

Xmu,
o-?rw = ’Y(lu’mv - lu’zmv)ﬂ

50 v = 02,/ (my — Mome)- BY substituting this into (9.14) we get the desired
result for individual assets. But then linearity ensures that it holds for all
portfolios. W

Proposition 32 says that the expected excess return on any portfolio (over
the expected return on a certain portfolio) is a linear function of the expected
excess return on a minimum variance portfolio. It also says that the expected
excess return is proportional to covariance.

9.1.2 The case with a riskfree asset

We now consider a portfolio selection problem with n + 1 assets. These are
indexed by 0,1, ...,n, and 0 corresponds to the riskfree asset with (determin-
istic) rate of return 7. For the risky assets we let ;¢ denote the ezcess rate of
return over the riskfree asset, i.e. the actual rate of return less ro. We let p®
denote the mean excess rate of return, and X the variance (which is of course
unaffected). A portfolio is now a n + 1-dimensional vector whose coordinate
sum to unity. But in the calculations we let w denote the vector of weights
wi, ..., w, corresponding to the risky assets and write wg =1 — w 1.

With these conventions the mean excess rate of return on a portfolio P
is

rTh=W U
and the variance is
0% =w Zw.

Therefore the mean-variance portfolio selection problem with a riskless asset
can be stated as

.1 .
mmwinZw subject to W' ¢ = 1%,

Note that w'1l = 1 is not a constraint; some wealth may be held in the
riskless asset.

As in the previous section we can set up the Lagrange-function, differen-
tiate it, at solve to first order conditions. This gives the optimal weights

o T;’ —-1,.e
W=— P  slye 9.15
() = P (919)
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Figure 9.3: The capital market line.

and the following expression for the variance of the minimum variance port-
folio with mean excess return rp:

e\2
52 = (i—P{ (9.16)
(ne) X 'pe

So we have determined the efficient frontier. For required returns above
the riskfree rate, the efficient frontier in standard deviation-mean space is a
straight line passing through (0, ry) with a slope of 1/ (u¢) "X~ ue. This line
is called the capital market line.

The tangent portfolio, x, is the minimum variance portfolio with all
wealth invested in the risky assets, i.e. x,,,1 = 1. The mean excess re-
turn on the tangent portfolio is

. ”Tz—l n

Ttan = ]_TE—l“ ’

which may be positive or negative. It is economically plausible to assert
that the riskless return is lower than the mean return of the global minimum
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variance portfolio of the risky assets. In this case the situation is as illustrated
in Figure 9.3, and that explains why we use the term “tangency”. When
Tt > 0, the tangent portfolio is on the capital market line. But the tangent
portfolio must also be on the “risky assets only” efficient frontier. So the
straight line (the CML) and the hyperbola intersect at a point corresponding
to the tangency portfolio. But clearly the CML must be above the efficient
frontier hyperbola (we are minimizing variance with an extra asset). So the
CML is a tangent to the hyperbola.

For any portfolio, P we define the Sharpe-ratio as excess return relative
to standard deviation,

Hp —To
op

Sharpe-ratiop, =

In the case where rf,, > 0, we see note from Figure 9.3 that the tangency
portfolio is the “risky assets only”-portfolio with the highest Sharpe-ratio
since the slope of the CML is the Sharpe-ratio of tangency portfolio. (Gen-
erally /”strictly algebraically” we should say that x,, has maximal squared
Sharpe-ratio.)

Note that a portfolio with full investment in the riskfree asset is orthogo-
nal to any other portfolio; this means that we can prove the following result
in exactly the manner as Proposition 32.

Proposition 33 Let x,,, be a portfolio on the mean-variance frontier with
rate of return T, expected rate of return p,,, and variance o2,,. Let xp be
an arbitrary portfolio, and use similar notation for rates of return on these
portfolios. Then the following holds:

Kp —To = ﬂP,mv(lj’mv - TO)’

where

Cov(rp, T'my)
ﬂP,mv - 5 -

2
T

9.2 The Capital Asset Pricing Model (CAPM)

With the machinery of portfolio optimization in place, we are ready to for-
mulate one of the key results of modern finance theory, the CAPM-relation.
Despite the clearly unrealistic assumptions on which the result is built it still
provides invaluable intuition on what factors determine the price of assets in
equilibrium. Note that until now, we have mainly been concerned with pric-
ing (derivative) securities when taking prices of some basic securities as given.
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Here we try to get more insight into what determines prices of securities to
begin with.

We consider an economy with n risky assets and one riskless asset. Here,
we let r; denote the rate of return on the 7’th risky asset and we let rq denote
the riskless rate of return. We assume that r( is strictly smaller than the
return of the global minimum variance portfolio.

Just as in the case of only risky assets one can show that with a riskless
asset the expected return on any asset or portfolio can be expressed as a
function of its beta with respect to an efficient portfolio. In particular, since
the tangency portfolio is efficient we have

Er; =190 = B yan(ETtan — 70) (9.17)

where
_ Cou(ri, Tan)

/Bi,tan - (918)

O-%an
The critical component in deriving the CAPM is the identification of the
tangency portfolio as the market portfolio. The market portfolio is defined
as follows: Assume that the initial supply of risky asset 7 at time 0 has a
value of Pg . (So Pg is the number of shares outstanding times the price per
share.) The market portfolio of risky assets then has portfolio weights given
as PO
W = = 9.19

> (%19
Note that it is quite reasonable to think of a portfolio with these weights as
reflecting “the average of the stock market”.

Now if all (say K) agents are mean-variance optimizers (given wealths of
W;(0) to invest), we know that since there is a riskless asset they will hold a
combination of the tangency portfolio and the riskless asset since two fund
separation applies. Hence all agents must hold the same mix of risky assets
as that of the tangency portfolio. This in turn means that in equilibrium
where market clearing requires all the risky assets to be held, the market
portfolio (which is a convex combination of the individual agents’ portfolios)
has the same mixture of assets as the tangency portfolio. Or in symbols: Let
¢; denote the fraction of his wealth that agent 7 has invested in the tangency
portfolio. By summing over all agents we get

K
Total value of asset j = Z & Wi(0)Xyan (5)
i—1

= Xtan(j) x Total value of all risky assets,
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where we have used that market clearing condition that all risky assets must
be held by the agents. (This is a very weak consequence of equilibrium; some
would just call it an accounting identity. The main economic assumption is
that agents are mean-variance optimizers so that two fund separation ap-
plies.) Hence we may as well write the market portfolio in equation (9.17).
This is the CAPM:

Er; — 19 = B (BT — 10) (9.20)

where [, . is defined using the market portfolio instead of the tangency
portfolio. Note that the type of risk for which agents receive excess returns
are those that are correlated with the market. The intuition is as follows: If
an asset pays off a lot when the economy is wealthy (i.e. when the return of
the market is high) that asset contributes wealth in states where the marginal
utility of receiving extra wealth is small. Hence agents are not willing to pay
very much for such an asset at time 0. Therefore, the asset has a high return.
The opposite situation is also natural at least if one ever considered buying
insurance: An asset which moves opposite the market has a high pay off in
states where marginal utility of receiving extra wealth is high. Agents are
willing to pay a lot for that at time 0 and therefore the asset has a low return.
Indeed it is probably the case that agents are willing to accept a return on
an insurance contract which is below zero. This gives the right intuition but
the analogy with insurance is actually not completely accurate in that the
risk one is trying to avoid by buying an insurance contract is not linked to
market wide fluctuations.

Note that one could still view the result as a sort of relative pricing result
in that we are pricing everything in relation to the given market portfolio.
To make it more clear that there is an equilibrium type argument underlying
it all, let us see how characteristics of agents help in determining the risk
premium on the market portfolio. Consider the problem of agent 7 in the one
period model. We assume that returns are multivariate normal and that the
utility function is twice differentiable and concave!:

max E(u;(W?))

st.Wi=Wy(w'r+ (1—w'1)rg)

When forming the Lagrangian of this problem, we see that the first order
condition for optimality is that for each asset j and each agent ¢ we have

E (uj(Wi)(rj =) =0 (9.21)

! This derivation follows Huang and Litzenberger: Foundations for Financial Economics



148 CHAPTER 9. PORTFOLIO THEORY

Remembering that Cov(X,Y) = EXY — EXEY we rewrite this as
E (u;(W1)) E(rj — o) = =Cov(u;(W}), 1)

A nice lemma known as Stein’s lemma says that for bivariate normal distri-
bution (X,Y) we have

Cov(9(X),Y) = Eg'(X)Cov(X,Y)
and using this we have the following first order condition:
E (u;(Wy)) E(rj — ro) = —Euj(W})Cov(Wy, ;)
ie. ,
—E (uj(W})) E(rj — ro)
Bui (W)

Now define the following measure of agent ¢’s absolute risk aversion:

= Cov(Wi, ;)

—Bul(W))
0; = ——~.
B (W)

Then summing across all agents we have that

1
E(rj —ry) = = Cov(Wi,1))
i=16;
L WyCou(rm,ry)
= oL oU\Tm, Ty
i

where the total wealth at time 1 held in risky assets is W; = Zfil Wi, W
is the total wealth in risky assets at time 0, and

therefore is the return on the market portfolio. Note that this alternative
representation tells us more about the risk premium as a function of the
aggregate risk aversion across agents in the economy. By linearity we also
get that
1
Erm —ro = W'Var(ry,) —% =
i=19;
which gives a statement as to the actual magnitude expected excess return
on the market portfolio. A high 6; corresponds to a high risk aversion and

this contributes to making the risk premium larger, as expected. Note that if
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one agent is very close to being risk neutral then the risk premium (holding
that person’s initial wealth constant) becomes close to zero. Can you explain
why that makes sense?

The derivation of the CAPM when using returns is not completely clear
in the sense that finding an equilibrium return does not separate out what
is found exogenously and what is found endogenously. One should think
of the equilibrium argument as determining the initial price of assets given
assumptions on the distribution of the price of the assets at the end of the
period. A sketch of how the equilibrium argument would run is as follows:

1. Given the expected value and the covariance of end of period asset
prices for all assets

2. Given a utility function for each investor which depends only on mean
and variance of end-of-period wealth. Assume that utility decreases as
a function of variance and increases as a function of mean. Assume
also sufficient differentiability

3. Let investor ¢ have an initial fraction of the total endowment of risky
asset j.

4. Assume that there is riskless lending and borrowing at a fixed rate r.
Hence the interest rate is exogenous.

5. Given initial prices of all assets, agent ¢ chooses portfolio weights on
risky assets to maximize end of period utility. The difference in price
between the initial endowment of risky assets and the chosen portfolio
of risky assets is borrowed n/placed in the money market at the riskless
rate. (In equilibrium where all assets are being held this implies zero
net lending/borrowing.)

6. Compute the solution as a function of the initial prices.

7. Find a set of initial prices such that markets clear, i.e such that the
sum of the agents positions in the risky assets sum up to the initial
endowment of assets.

8. The prices will reflect characteristics of the agents’ utility functions,
just as we saw above.

9. Now it is possible to derive the CAPM relation by computing expected
returns etc. using the endogenously determined initial prices. This is
a purely mathematical exercise translating the formula for prices into
formulas involving returns.
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Hence CAPM is to be thought of as an equilibrium argument explaining asset
prices.

There are of course many unrealistic assumptions underlying the CAPM.
The distributional assumptions are clearly problematic. Even if basic secu-
rities like stocks were well approximated by normal distributions there is no
hope that options would be well approximated due to their truncated payoffs.
An answer to this problem is to go to continuous time modelling where "local
normality’ holds for very broad classes of distributions but that is outside
the scope of this course. Note also that a conclusion of CAPM is that all
agents hold the same mixture of risky assets which casual inspection show
is not the case. A final problem, originally raised by Roll (1977)?, concerns
the observability of the market portfolio and the logical equivalence between
the statement that the market portfolio is efficient and the statement that
the CAPM relation holds. To see that observability is a problem think for
example of human capital. Economic agents face many decisions over a life
time related to human capital - for example whether it is worth taking a loan
to complete an education, weighing off leisure against additional work which
may increase human capital etc. Many empirical studies use all traded stocks
(and perhaps bonds) on an exchange as a proxy for the market portfolio but
clearly this is at best an approximation. And what if the test of the CAPM
relation is rejected using that portfolio? The relation At the intuitive level,
the (9.17) tells us that this is equivalent to the inefficiency of the chosen
portfolio. Hence one can always argue that the reason for rejection was not
that the model is wrong but that the market portfolio is not chosen correctly
(i.e. is not on the portfolio frontier). Therefore, it becomes very hard to
truly test the model. While we are not going to elaborate on the enormous
literature on testing the CAPM, note also that even at first glance it is not
easy to test what is essentially a one period model. To get estimates of the
fundamental parameters (variances, covariances, expected returns) one will
have to assume that the model repeats itself over time, but when firms change
the composition of their balance sheets they also change their betas.

Hence one needs somehow to accommodate betas which change over time
and this inevitably requires some statistical compromises.

2R. Roll (1977): A critique of the asset pricing theory’s test; Part I, Journal of Financial
Economics, 4:pp 129 - 76
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9.3 Relevant, but not particularly structured,
remarks on CAPM

9.3.1 Systematic and non-systematic risk

This section follows Huang and Litzenberger’s Chapters 3 and 4. We have
two versions of the capital asset pricing model. The most “popular” version,
where we assumed the existence of a riskless asset whose return is rg, states
that the expected return on any asset satisfies

Eri — 1o = B; 1 (ETm — 10). (9.22)

This version we derived in the previous section. The other version is the
so-called zero-beta CAPM, which replaces the return on the riskless asset by
the expected return on m's zero-covariance portfolio:

Eri — Erym = By (ETm — ET).

This version is proved by assuming mean-variance optimizing agents, using
that two-fund separation then applies, which means that the market portfolio
is on the mean-variance locus (note that we cannot talk about a tangent
portfolio in the model with no riskfree asset) and using Proposition 32. Note
that both relations state that excess returns (i.e. returns in addition to the
riskless returns) are linear functions of 3;,,.

From now on we will work with the case in which a riskless asset exists, but
it is easy to translate to the zero-beta version also. Dropping the expectations
(and writing “error terms” instead) we have also seen that if the market
portfolio m is efficient, the return on any portfolio (or asset) g satisfies

re=(1— ﬂq,m)rf + BymTm + €gm

where
Eeym = Eegmrm = 0.

Hence
Var(r,) = ﬂim\/ar (rm) + Var(egm)-

This decomposes the variance of the return on the portfolio ¢ into its system-
atic risk ﬂngar (rm) and its non-systematic or idiosyncratic risk Var(egm).
The reason behind this terminology is the following: We know that there ex-
ists a portfolio which has the same expected return as ¢ but whose variance
is ﬂgm\/ar (Tm) - simply consider the portfolio which invests 1 — 3, in the

™m
riskless asset and 3 in the market portfolio. On the other hand, since this

q,m?
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portfolio is efficient, it is clear that we cannot obtain a lower variance if we
want an expected return of Er,. Hence this variance is a risk which is corre-
lated with movements in the market portfolio and which is non-diversifiable,
i.e. cannot be avoided if we want an expected return of Er,. On the other
hand as we have just seen the risk represented by the term VAR(e,;,,) can
be avoided simply by choosing a different portfolio which does a better job
of diversification without changing expected return.

9.3.2 Problems in testing the CAPM

Like any model CAPM builds on simplifying assumptions. The model is
popular nonetheless because of its strong conclusions. And it is interesting
to try and figure out whether the simplifying assumptions on the behavior of
individuals (homogeneous expectations) and on the institutional setup (no
taxation, transactions costs) of trading are too unrealistic to give the model
empirical relevance. What are some of the obvious problems in testing the
model?

First, the model is a one period model. To produce estimates of mean
returns and standard deviations, we need to observe years of price data. Can
we make sure that the distribution of returns over several years remain the
same3?

Second (and this a very important problem) what is the 'market portfo-
lio’ 7 Since investments decisions of firms and individuals in real life are not
restricted to stocks and bonds but include such things as real estate, edu-
cation, insurance, paintings and stamp collections, we should include these
assets as well, but prices on these assets are hard to get and some are not
traded at all.

A person rejecting the CAPM could always be accused of not having
chosen the market portfolio properly. However, note that if 'proper choice’
of the market portfolio means choosing an efficient portfolio then this is
mathematically equivalent to having the CAPM hold.

This point is the important element in what is sometimes referred to as
Roll’s critique of the CAPM. When discussing the CAPM it is important to
remember which facts are mathematical properties of the portfolio frontier
and which are behavioral assumptions. The key behavioral assumption of
the CAPM is that the market portfolio is efficient. This assumption gives
the CAPM-relation mathematically. Hence it is impossible to separate the
claim ’the portfolio m is efficient’ from the claim that '"CAPM holds with
m acting as market portfolio’.

3Mulitiperiod versions exist, but they also face problems with time varying parameters.
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9.3.3 Testing the efficiency of a given portfolio

Since the question of whether CAPM holds is intimately linked with the
question of the efficiency of a certain portfolio it is natural to ask whether
it is possible to devise a statistical test of the efficiency of a portfolio with
respect to a collection of assets. If we knew expected returns and variances
exactly, this would be a purely mathematical exercise. However, in practice
parameters need to be estimated and the question then takes a more statis-
tical twist: Given the properties of estimators of means and variances, can
we reject at (say) a 5% level that a certain portfolio is efficient? Gibbons,
Ross and Shanken (Econometrica 1989, 1121-1152) answer this question -
and what follows here is a sketch of their test.

Given a portfolio m and N assets whose excess returns are recorded in T’
time periods. It is assumed that a sufficiently clear concept of riskless return
can be defined so that we can really determine excess returns for each period.
NOTE: We will change our notation in this section slightly and assume that
Tp, BTy and p, refer to ercess returns, mean excess returns and estimated
mean excess returns of an asset or portfolio p. Hence using this notation the
CAPM with a riskless asset will read

Er, = ﬂp,mErm.

We want to test this relation or equivalently whether m is an efficient portfolio
in a market consisting of IV assets. Consider the following statistical model
for the excess returns of the assets given the excess return on the portfolio
m:

Tit = Qi + 7Y Tmt + €it
i=1,...,Nandt=1,....T

where 7;; is the (random) ezcess teturn® of asset ¢ in the #'th period,
is the observed ezcess return on the portfolio in the t'th period, a;,7; are
constants and the €;’sare normally distributed with Cov(e;, €j1) = 0;; and
Cov(ey, €;5) =0 for t # s. Given these data a natural statistical representa-
tion of the question of whether the portfolio m is efficient is the hypothesis
that @y = --- = ay = 0. This condition must hold for (9.22) to hold.

To test this is not difficult in principle (but there are some computational
tricks involved which we will not discuss here): First compute the MLE’s
of the parameters. It turns out that in this model this is done merely by
computing Ordinary Least Squares estimators for o,y and the covariance

4Note this change to excess returns.
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matrix for each period X. A so-called Wald test of the hypothesis o = 0 can
then be performed by considering the test statistic

Wo = aVar(@)a™!

which you will learn more about in a course on econometrics. Here we simply
note that the test statistic measures a distance of the estimated value of
afrom the origin. Normally, this type of statistics leads to an asymptotic
chi squared test, but in this special model the distribution can be found
explicitly and even more interesting from a finance perspective, it is shown
in GRS that Wy has the following form

where the symbols require a little explanation: In the minimum variance
problem with a riskless asset we found that the excess return of any portfolio
satisfies
Ery = BpmETm.

We refer to the quantity

Er,

o(rp)
as the Sharpe ratio for portfolio p. The Sharpe ratio in words compares excess

return to standard deviation. Note that using the CAPM relation we can
write

Ery  0(rm)pmp
o(rp)  0%(rm)
where p,,,, is the correlation coefficient between the return of portfolios p and
m. From this expression we see that the portfolio which maximizes the Sharpe
ratio is (proportional) to m.Only portfolios with this Sharpe ratio are effi-
cient. Now the test statistic W, compares two quantities: On one side, the
maximal Sharpe ratio that can be obtained when using for parameters in
the minimum variance problem the estimated covariance matrix and the es-
timated mean returns for the economy consisting of the N assets and the
portfolio m. On the other side, the Sharpe ratio for the particular portfolio
m (based on its estimated mean return and standard deviation).
Large values of W, will reject the hypothesis of efficiency and this corre-
sponds to a case where the portfolio m has a very poor expected return per
unit of standard deviation compared to what is obtained by using all assets.

(Erm)



