Chapter 7

The Black-Scholes formula

7.1 Black-Scholes as a limit of binomial mod-
els

So far we have not specified the parameters p, u, d and R which are of course
critical for the option pricing model. Also, it seems reasonable that if we
want the binomial model to be a realistic model for stock prices over a certain
interval of time we should use a binomial model which divides the (calendar)
time interval into many sub-periods. In this chapter we will first show that if
one divides the interval into finer and finer periods and choose the parameters
carefully, the value of the option converges to a limiting formula, the Black-
Scholes formula, which was originally derived in a continuous time framework.
We then describe that framework and show how to derive the formula in it.

Our starting point is an observed stock price whose logarithmic return

satisfies
=)
EP [In| —- =
[ <St—1

and

where S; is the price of the stock ¢ years after the starting date 0. Also,
assume that the money market account has a continuously compounded re-
turn of r, i.e. an amount of 1placed in the money market account grows
to exp(r) in one year. Note that since RT = exp (T'In (R)), a yearly rate of
R = 1.1 (corresponding to a yearly rate of 10%) translates into the contin-
uous compounding analogue r = In (1.1) and this will be a number smaller
than 0.1.

99



100 CHAPTER 7. THE BLACK-SCHOLES FORMULA

Consider pricing an option on this stock with time to maturity 7' years
in a binomial model. Divide each year into n periods. This gives a binomial
model with nT" periods. In this tree, which we label the nth tree, choose

( 1)
u, = exp|oy/— |,
n
1 1
d, = exp (—a\/j> =—,
n U,

n = oo(l)

1 IM\F
=5tV

With the setup in the nth model specified above you may show by simple
computation that the one-year logarithmic return satisfies

and

EF [111 (%)] =n{p,In(u,) + (1 —p,)In(d,)} = p

S 1
P 1 1 — 2 __ -2
|4 <n<_5’0 07— i

so the log-return of the price process has the same mean and almost the same
variance as the process we have observed. And since

VP (ln (%)) — 0% for n — oo,
0

it is presumably so that large values of n brings us closer to to “desired”
model.

The above story was primarily motivational. Let us now investigate pre-
cisely what happens to stock and call prices when n tends to infinity. For
each n we may compute the price of a call option with maturity 7" in the
binomial model and we know that it is given as

and

, K
C" = S,v (an; nT’; qn) — W\I’ (an;nT; qyn) (7.1)
where
. Rn - dn ' ﬂ
W= g b=
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and a, is the smallest integer larger than In (K/(SodZ™)) /In (u,/d,). Note
that alternatively we may write(7.1) as

C" = SyQ'(Sp(T) > K) — Ke "™ Q(S,(T) > K) (7.2)

where S,(T) = Syuid’™ 7 and j 2 bi(Tn, g,) and j g bi(Tn,q,). It is easy
to see that

MP = E9(InS,(T))=InS;+Tn(g,Inu, + (1 —q,)Ind,)
Ve = V9nS,(T)) = Tng,(1 — ¢,)(Inu, —Ind,)?

and that similar expressions (with ¢/, instead of ¢,) hold for ()’-moments.
Now rewrite the expression for M in the following way:

r/n _ ,—0o/V/n o/vn _ or/n
M,?—lnSozTn(a e e o e e )

VetV —e=o/Nn |\ p e/ — e=a/vn
267'/7" — eU/\/ﬁ — e_U'/ﬁ
= Tvno ( o N — oV )

Recall the Taylor-expansion to the second order for the exponential function:
exp(+z) =1+ + 22/2 + o(z?). From this we get

e'’™ = 1+47r/n+o(1/n)
eV = 1+ a/\/n+0%/(2n) +o(1/n).

Inserting this in the M@ expression yields

M2 -8y = Tv/no (27°/”“’2/"+0(1/n))

20/y/n+o(1/n)
Ty 2r —o?+o(1)
- <2o+o<wﬁ>)

o2
— T(r—;) for n — oo.

Similar Taylor expansions for V.2, M$' and V¢ show that

Ve — o°T,

n

2
M2 —InS, — T (7“ + %) (note the change of sign on ¢?),

Ve - 52T

n
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So now we know what the @)/’ moments converge to. Yet another way
to think of In S, (T) is as a sum of T'n independent Bernoulli-variables with
possible outcomes (Ind,,Inu,) and probability parameter ¢, (or ¢,). This
means that we have a sum of (well-behaved) independent random variables
for which the first and second moments converge. Therefore we can use a
version of the Central Limit Theorem!® to conclude that the limit of the sum
is normally distributed, i.e.

InS,(T) ¥ N(In Sy + (r £ 0%/2)T, 6°T).

This means (almost by definition of the form of convergence implied by CLT)
that when determining the limit of the probabilities on the right hand side of
(7.2) we can (or: have to) substitute In S, (7") by a random variable X such
that

X —InSy— (r+0%/2)T q/¢'

oVT

X U N(n So+ (r+02/2)T, 0°T) &

N(0,1).

The final analysis:
lim C" = lim (SoQ (InS,(T) > InK) — Ke ""Q(In S, (T) > In K))
n—0o0 n—0o0

= SQ'(X >InK) - Ke ™ Q(X >InK)

— 5,0 <X —InSy — (r+02/2)T S InK —1InSy — (7‘—|—02/2)T>
- ovT ovT
ey (X =Sy = (r = a?/2)T an—lnSo—(r—JQ/Q)T)
Ke Q( T > /T

Now multiply by —1 inside the @’s (hence reversing the inequalities), use that
the N(0,1)-variables on the left hand sides are symmetric and continuous,
and that In(z/y) =Inz — Iny. This shows that

lim C" = Sy® (dy) — Ke ™T® (dy),

n—oo
where ® is the standard normal distribution function and
In (%) +(r+30°)7T

d = :
' o T

d2 = K 2 = d1 — U\/T.
oVT
! Actually you cannot quite make do with the De Moivre-version that you know from
Stat 0 because we do not have a scaled sum of identically distributed random variables.
You need the notion of a triangular array and the Lindeberg-Feller-version of the Central
Limit Theorem. Yet another reason to take Stat 2b.
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This formula for the call price is called the Black-Scholes formula. So far
we can see it just as an artifact of going to the limit in a particular way
in a binomial model. But the formula is so strikingly beautiful and simple
that there must be more to it than that. In particular, we are interested in
the question: Does that exist a “limiting” model in which the above formula
is the exact call option price? The answer is: Yes. In the next section we
describe what this “limiting” model looks like, and show that the Black-
Scholes formula gives the exact call price in the model. That does involve
a number of concepts, objects and results that we cannot possibly make
rigorous in this course, but the reader should still get a “net benefit” and
hopefully an appetite for future courses in financial mathematics.

7.2 The Black-Scholes model

The Black-Scholes formula for the price of a call option on a non-dividend
paying stock is one of the most celebrated results in financial economics.
In this chapter we will indicate how the formula is derived. A rigorous
derivation requires some fairly advanced mathematics which is beyond the
scope of this course. Fortunately, the formula is easy to interpret and to
apply. Even if there are some technical details left over for a future course,
the rigorous understanding we have from our discrete-time models of how
arbitrage pricing works will allow us to apply the formula safely.

The formula is formulated in a continuous time framework with random
variables that have continuous distribution. The continuous-time and infinite
state space setup will not be used elsewhere in the course.? But let us mention
that if one wants to develop a theory which allows random variables with
continuous distribution and if one wants to obtain results similar to those of
the previous chapters, then one has to allow continuous trading as well. By
‘continuous trading’ we mean that agents are allowed to readjust portfolios
continuously through time.

If X is normally distributed X ~ N (o, 0?), then we say that YV :=
exp(X) is lognormally distributed and write Y ~ LN(a, 0?). There is one
thing you must always remember about lognormal distributions:

2
If Y ~ LN(a,0?) then E(Y) = exp (a + %) .

2 A setup which combines discrete time and continuous distributions will be encountered
later when discussing CAPM and APT, but the primary focus of these models will be to
explain stock price behavior and not — as we are now doing — determining option prices
for a given behavior of stock prices
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If you have not seen this before, then you are strongly urged to check it.
(With that result you should also be able to see why there is no need to
use “brain RAM” remembering the variance of a lognormally distributed
variable.) Often the lognormal distribution is preferred as a model for stock
price distributions since it conforms better with the institutional fact that
prices of a stock are non-negative and the empirical observation that the
logarithm of stock prices seem to show a better fit to a normal distribution
than do prices themselves. However, specifying a distribution of the stock
price at time ¢, say, is not enough. We need to specify the whole process of
stock prices, i.e. we need to state what the joint distribution (Sy,,..., Siy)
is for any 0 < t; < ... < ty. To do this the following object is central.

Definition 39 A (standard) Brownian motion ((S)BM) is a stochastic pro-
cess B = (Bt)tE[O;oo[ -i.e. a sequence of random variables indexed by t such
that:

2. Bi—B;,~N(0,t—s)Vs<t

3. B has independent increments, i.e. for every N and a set of N time
points t]_ < .. < tN; Btl’BtQ - Bt17Bt3 - Btz,- . 'aBtN — BtN—l are
independent random variables.

That these demands on a process can be satisfied simultaneously is not
trivial. But don’t worry, Brownian motion does exist. It is, however, a fairly
“wild” object. The sample paths (formally the mapping ¢ — B; and intu-
itively simply the graph you get by plotting “temperature/stock price/...”
against time) of BM are continuous everywhere but differentiable nowhere.
The figure shows a simulated sample path of a BM and should give an indica-
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tion of this.
Brownian motion

B(t)
0.5 0.0 0.5 1.0 1.5

-1.0

t

A useful fact following from the independent increment property is that
for any measurable f : R—R for which E[|f (B; — Bs)|] < co we have

E [f (Bt - Bs)| -7:3] =E [f (Bt - Bs)] (7'3)

where Fy, =0 {B, : 0 <u < s}.
The fundamental assumption of the Black-Scholes model is that the stock
price can be represented by

Sy = Spexp (at + o By) (7.4)

where B; is a SBM. Such a process is called a geometric BM (with drift).
Furthermore, it assumes that there exists a riskless asset (a money market
account). One dollar invested in the money market account will grow as

By = eXP(Tt) (7.5)

where r is a constant (typically » > 0). Hence [, is the continuous time
analogue of Ry ;.
What does (7.4) mean? Note that since B; ~ N (0,t), S; has a lognormal

distribution and 5
In (S—t;> = at; + 0By,
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In (%) = (tg — tl) + 0o (Bt2 — Btl)
t1

%) and In (52)
are independent. The return, defined in this section as the logarithm of the
price relative, that the stock earns between time £, and ¢, is independent
of the return earned between time 0 and time t;, and both are normally
distributed. We refer to o as the wolatility of the stock - but note that it
really describes a property of the logarithmic return of the stock. There are
several reasons for modelling the stock price as geometric BM with drift or
equivalently all logarithmic returns as independent and normal. First of all,
unless it is blatantly unreasonable, modelling “random objects” as “nuid”
is the way to start. Empirically it is often a good approximation to model
the logarithmic returns as being normal with fixed mean and fixed variance
through time.®> From a probabilistic point of view, it can be shown that if
we want a stock price process with continuous sample paths and we want
returns to be independent and stationary (but not necessarily normal from
the outset), then geometric BM is the only possibility. And last but not
least: It gives rise to beautiful financial theory.

If you invest one dollar in the money market account at time 0, it will
grow as 3, = exp(rt). Holding one dollar in the stock will give an uncertain
amount at time t of exp(at+ o B;) and this amount has an expected value of

Since at, « (ty —t1), and o are constant, we see that In (

1
Eexp(at + oBy) = exp(at + 50215).

The quantity p = o + %0'2 is often referred to as the drift of the stock. We
have not yet discussed (even in our discrete models) how agents determine p
and o2, but for now think of it this way: Risk averse agents will demand p

to be greater than r to compensate for the uncertainty in the stock’s return.
The higher o2 is, the higher should p be.

7.3 A derivation of the Black-Scholes formula

In this section we derive the Black-Scholes model taking as given some facts
from continuous time finance theory. The main assertion is that the funda-
mental theorem of asset pricing holds in continuous time and, in particular,
in the Black-Scholes setup:

Sy = Spexp (at + oBy)

3But skeptics would say many empirical analyses of financial data is a case of “believing
is seeing”rather than the other way around.
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B, = exp(rt)
What you are asked to believe in this section are the following facts:

e There is no arbitrage in the model and therefore there exists an equiv-

alent martingale measure () such that the discounted stock price g—z is

a martingale under ). (Recall that this means that F? [*;—i \.7-'5} = %)
The probabilistic behavior of S; under @) is given by

Sy = Spexp ((r — %0’2) t+ GE) , (7.6)

where E is a SBM under the measure Q).

e To compute the price of a call option on S with expiration date T
and exercise price K, we take the discounted expected value of C'r =
[Sy — K] assuming the behavior of S; given by (7.6).

Recall that in the binomial model we also found that the expected return
of the stock under the martingale measure was equal to that of the riskless
asset.(7.6) is the equivalent of this fact in the continuous time setup. Before
sketching how this expectation is computed note that we have not defined
the notion of arbitrage in continuous time. Also we have not justified the
form of S; under ). But let us check at least that the martingale behavior
of g—: seems to be OK (this may explain the ”—1o?¢"-term which is in the

expression for S;). Note that

E€ [&] = E¢ [SO exp (—10215 + aétﬂ
By 2
_ 1 2 Q o)
= Spexp (—50 t) E [exp (aBtﬂ .

But 0B, ~ N (0,0?t) and since we know how to compute the mean of the
lognormal distribution we get that

Qi]: _ 5
o [ﬁt =3,

By using the property (7.3) of the Brownian motion one can verify that

, since 3, = 1.

S,
E< it
B

s
Bs

, (Fs = ”information at time s”).

r] -
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but we will not do that here.*
Accepting the fact that the call price at time 0 is

+
Co = exp (—rT) E° [SO exp ((7’ — %02> T + O'BT> - K}

we can get the Black-Scholes formula: We know that By ~ N (0,0°T) and
also “the rule of the unconscious statistician”, which tells us that to compute
E[f (X)] for some random variable X which has a density p (z), we compute
[ f(z)p(x)dz. This gives us

+ 1 2

2 1 z
C, = e—rT/ [Soe(r—rf /2)T+$_K] ——¢ 2.27T(g
. \/27r0\/T

The integrand is different from 0 when
Soe(rfoz/Z)T-}-:c S K

i.e. when®

z>In(K/Sy) — (r—o0°/2) T=d
S0

Co = et /Oo (Soe(r_%”J)T_"ﬂc —
d

22

1
e

1
K) 7\/%0\/?6

1 1 a2 2
6(7‘—50'2)71—{—3:675;:277" dm— z

1
2027 dg .

0 1 *° 1
—rT —rT
e ™S _ Ke / ——e¢
. 0 /d Vv 27r0\/T N d vV 27TO'\/T
—A =B

It is easy to see that B = Ke "' Prob(Z > d), where Z ~ N(0,0°T). So by
using symmetry and scaling with ov/T we get that

B=Ke ™ (dy),

4If you want to try it yourself, use

Sil.1 . [5B,5.
E[ﬁt E] = E[ssﬂtﬁs E]
_ & Stﬂs
- ﬁSE[ssﬁt IS]

and then see if you can bring (7.3) into play and use

Blexp (0(B: - Ba))] = exp (3%t - )

5This should bring up memories of the quantity a which we defined in the binomial
model.
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where (as before)

hed M) =) T
oVT oVT

So “we have half the Black-Scholes formula”. The A-term requires a little

more work. First we use the change of variable y = z/(0v/T) to get (with

a few rearrangements, a completion of the square, and a further change of

variable (z = y — oV/T))

< 1 2
A = S e—TU2/2/ eoVTy=9*/24
0 » o Y
— Soe—TU2/2 * 1 e—(y—aﬁ)z/Q—kTaz/Zdy

—dy V 27

o0
L e_ZZ/de,

—d1 V 2T

where as per usual d; = dy + 0/T. But the last integral we can write as
Prob(Z > d;) for a random variable Z ~ N(0, 1), and by symmetry we get

= 5

A= S5,®(dy),
which yields the “promised” result.

Theorem 26 The unique arbitrage-free price of a Furopean call option on
a non-dividend paying stock in the Black-Scholes framework is given by

Co = Sy® (dy) — Ke ™ '® (dy)

where
In (%) + (r+30°)T

d, =
! o/T

and

dgzdl—aﬁ,

where ® is the cumulative distribution function of a standard normal distri-
bution.

As stated, the Black-Scholes formula says only what the call price is at time
0. But it is not hard to guess what happens if we want the price at some
time t € [0;T]: The same formula applies with Sy substituted by S; and T
substituted by 7" — ¢t. You may want to “try your hand” with conditional
expectations and properties of BM by proving this.
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7.3.1 Hedging the call

There is one last thing about the Black-Scholes model/formula you should
know. Just as in the binomial model the call option can be hedged in the
Black-Scholes model. This means that there exists a self-financing trading
strategy involving the stock and the bond such that the value of the strategy
at time 7 is exactly equal to the payoff of the call, (Sp — K)*. (This is in
fact the very reason we can talk about a unique arbitrage-free price for the
call.) It is a general fact that if we have a contract whose price at time ¢ can

be written as
m(t) = F(t,S)

for some deterministic function F', then the contract is hedged by a strategy

consisting of

50 = 2 (t,)

=S}
units of the stock and ¢°(t) = 7(t) — ¢'(t)S; $ in the bank account. Note
that this is a strategy that is continuously adjusted.

For the Black-Scholes model this applies to the call with

FBSeall(y 1) = 26 (ln (%) + S: ‘;U_Q/f) (T - t))

(Tt ln(%)—i—(r—aQ/Z)(T—t)
—Ke™" >c1>< gy )

The remarkable result (and what you must forever remember) is that the
partial derivative (wrt. x) of this lengthy expression is simple:®

aFBScall _ In (%) + (T + 02/2) (T — t) —
T(ta x) = ( o\/m ) - (I)(dl)’

where the last part is standard and understandable but slightly sloppy no-
tation. So to hedge the call option in a Black-Scholes economy you have to
hold (at any time ¢) ®(d;) units of the stock. This quantity is called the delta
(or: A) hedge ratio for the call option. The “lingo” comes about because of
the intimate relation to partial derivatives; A is approximately the amount
that the call price changes, when the stock price changes by 1. In this course
we will use computer simulations to illustrate, justify, and hopefully to some
degree understand the result.

6At one time or another you are bound to be asked to verify this, so you may as well
do it right away. Note that if you just look at the B-S formula, forget that Sy (or z) also
appears inside the ®’s, and differentiate, then you get the right result with a wrong proof.



