Chapter 6
Option pricing

The classical application of the arbitrage pricing machinery we have devel-
oped is to the pricing of options. The pricing models we obtain are used
with minor modifications all over the world as the basis for trading billions
of dollars worth of contracts every day. For students planning to become
traders of financial derivatives this of course gives plenty of motivation for
learning these models. But recent collapses of financial institutions have also
reminded us that financial managers and executives must understand the way
the derivatives markets work. A manager who understands the markets well
may use them for effective risk management and will be able to implement
effective control mechanisms within a firm to make sure that traders use the
markets in accordance with the firm’s overall objectives.

From a theoretical perspective, options are very important in several areas
of finance. We will see later in the course how they are indispensable for
our understanding of a firm’s choice of capital structure. Also, a modern
theory of capital budgeting relies critically on recognizing options involved
in projects, so-called real options. And in actuarial science options appear
when modelling reinsurance contracts.

6.1 Terminology

A European (American) call option on an underlying security S, with strike
price K and expiration date T, gives the owner the right, but not the obli-
gation, to buy S at a price of K at (up to and including) time 7.

A European (American) put option on an underlying security S, with
strike price K and ezpiration date T, gives the owner the right, but not the
obligation, to sell S at a price of K at (up to and including) time 7.

The strike price is also referred to as the ezxercise price, and using the
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76 CHAPTER 6. OPTION PRICING

right to buy or sell is referred to as ezercising the option.

There is no good reason for the American/European terminology - both
types are traded in America and Europe.

In the definition above, we think of the person selling a call option (say),
often referred to as the person writing an option, as actually delivering the
underlying security to the option holder if the option holder decides to exer-
cise. This is referred to as physical delivery. In reality, options are often cash
settled. This means that instead of the option holder paying K to the writer
of the call and the writer delivering the stock, the holder merely receives an
amount S — K from the option writer.

Some common examples of options are stock options in which the under-
lying security is a stock, currency options in which the underlying security
is a foreign currency and where the strike price is to be thought of as an
exchange rate, bond options which have bonds as underlying security and
index options whose underlying security is not really a security but a stock
market index (and where the contracts are then typically cash settled.) It
will always be assumed that the underlying security has non-negative value.

6.2 Diagrams, strategies and put-call parity

Before we venture into constructing exact pricing models we develop some
feel for how these instruments work. In this section we focus on what can
be said about options if all we assume is that all securities (stocks, bonds,
options) can be bought and sold in arbitrary quantities at the given prices
with no transactions costs or taxes. This assumption we will refer to as an
assumption of frictionless markets. We will also assume that at any time ¢
and for any date T > t, there exists a zero coupon bond with maturity 7" in
the market whose price at time ¢ is d(¢, 7).

An immediate consequence of our frictionless markets assumption is the
following

Proposition 20 The value of an American or European call option at the
expiration date T is equal to Cr = max(Sy — K,0), where St is the price
of the underlying security at time T. The value of an American or European
put option at the expiration date T is equal to max(K — Sr,0).

Proof. Consider the call option. If S7 < K, we must have Cr = 0, for
if C7 > 0 you would sell the option, receive a positive cash flow, and there
would be no exercise.! If Sy > K, we must have Cr = Sy — K. For if

! Actually, here we need to distinguish between whether the person who bought the
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Cr > St — K you would sell the option and buy the stock. After the option
has been exercised, you are left with a total cash flow of C— S+ K > 0, and
you would have no future obligations arising from this trade. If Cr < S — K,
buy the option, exercise it immediately, and sell the stock. The total cash
flow is —C'r + S — K > 0, and again there would be no future obligations
arising from this trade. The argument for the put option is similar.

We often represent payoffs of options at an exercise date using payoff
diagrams, which show the value of the option as a function of the value of
the underlying:

Cr Pr

option is an idiot or a complete idiot. Both types are not very smart to pay something for
the option at time T'. The idiot, however, would realize that there is no reason to pay K
to receive the stock which can be bought for less in the market. The complete idiot would
exercise the option. Then you as the person having sold the option would have to buy the
stock in the market for Sz, but that would be more than financed by the K you received
from the complete idiot.
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Of course, you can turn these hockey sticks around in which case you are
looking at the value of a written option:

Cr St Pr St

Note that we are only looking at the situation at an exercise date (i.e.
date T for a European option). Sometimes we wish to take into account that
the option had an initial cost at date 0, ¢y for a call, py for a put, in which
case we get the following profit diagrams:

Cr Pr

K —po
K K

I 4 g NN

St St

Of course, we are slightly allergic to subtracting payments occurring at dif-
ferent dates without performing some sort of discounting. Therefore, one
may also choose to represent the prices of options by their time T forward

discounted values d(gf’T) and d(gf’T).

The world of derivative securities is filled with special terminology and
here are a few additions to your vocabulary: A call option with strike price
K is said to be (deep) in-the-money at time ¢ if S; > K (S; > K).The
opposite situation S; < K (S; < K) is referred to as the call option being
(deep) out-of-the-money. If S; ~ K, the option is said to be at-the-money.
The same terminology applies to put options but with ’opposite signs’: A
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put option is in-the-money if S; < K.

The diagrams we have seen so far considered positions consisting of just
one option. We considered a long position, i.e. a position corresponding
to holding the option, and we considered a short position, i.e. a position
corresponding to having written an option. One of the attractive features
of options is that they can be combined with positions in other options, the
underlying security and bonds to produce more complicated payoffs than
those illustrated in the profit diagrams above. We will see examples of this
in the exercises. Note that you should think of the payoff diagram for holding
the stock and the diagram for holding the bond as being represented by:

St d(T,T)

A

ST ST

Until further notice we will assume that the stock does not pay any dividends
in the time interval [0, T']. This means that if you own the stock you will not
receive any cash unless you decide to sell the stock. With this assumption
and the maintained assumption of frictionless markets we will give some re-
strictions on option prices which follow solely from arbitrage considerations.

The most important relation is the so-called put-call parity for European
options. Consider the portfolio strategy depicted in the table below and the
associated cash flows at time ¢ and time 7. Assume that both options are
Furopean, expire at date 7" and have strike price equal to K :

| strategy\cashflow | date ¢ | date T, Sr < K | date T, Sy > K |
sell 1 call ct 0 K —Sr
buy 1 put —py K —Sr 0
buy stock -5, St St
sell K bonds Kd(t,T) -K -K
‘ total cash flow ‘ must be 0 ‘ 0 ‘ 0 ‘

Note that we have constructed a portfolio which gives a payoff of 0 at time
T no matter what the value of Sr. Since the options are European we need
not consider any time points in (¢, T"). This portfolio must have price 0, or else
there would be an obvious arbitrage strategy. If, for example, the portfolio
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had positive value, we would sell the portfolio (corresponding to reversing
the strategy in the table) and have no future obligations. In other words
we have proved that in a frictionless market we have the following

Proposition 21 (Put-call parity) The price ¢; of a European call and the
price p; of a European put option with expiration date T' and exercise price
K must satisfy

¢t —pr =Sy — Kd(t,T).

Note one simple but powerful consequence of this result: When deciding
which parameters may influence call and put prices the put-call parity gives
a very useful way of testing intuitive arguments. If Sy, K and d(¢,T) are
fixed, then a change in a parameter which produces a higher call price, must
produce a higher put-price as well. One would easily for example be tricked
into believing that in a model where St is stochastic, a higher mean value of
St given S; would result in a higher call price since the call option is more
likely to finish in-the-money and that it would result in a lower put price since
the put is more likely then to finish out-of-the money. But if we assume that
S; and the interest rate are held fixed, put-call parity tells us that this line
of reasoning is wrong.

Also note that for K = d(ffT) we have ¢; = p;. This expresses the fact that
the exercise price for which ¢; = p; is equal to the forward price of S at time
t. A forward contract is an agreement to buy the underlying security at the
expiration date 7T of the contract at a price of F;. Note that F} is specified
at time ¢ and that the contract unlike an option forces the holder to buy. In
other words you can lose money at expiration on a forward contract. The
forward price F; is decided so that the value of the forward contract at date
tis 0. Hence the forward price is not a price to be paid for the contract at
date t¢. It is more like the exercise price of an option. Which value of F; then
gives the contract a value of 0 at date t?7 Consider the following portfolio
argument:

‘ strategy\cashflow ‘ date ¢ ‘ date T ‘

buy 1 stock —S; St

5 3
sell d(t,‘T) bonds Sy — d(th)
sell 1 forward 0 F, — St
total cash flow ‘ 0 ‘ F, — %

Note that the cash flow at time T is known at time ¢ and since the cash flow
by definition of the forward price is equal to 0 at date ¢, the cash flow at
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date T" must be 0 as well. Hence

St

F = dt, T)

Note that buying a call and selling a put, both with exercise price K and
expiration date 7T, is equivalent to buying forward at the price K. Therefore
the convention that the forward contract has value 0 at date ¢ is exactly
equivalent to specifying K so that c¢; = p;.

6.3 Restrictions on option prices

In this section we derive some bounds on call prices which much be satisfied
in frictionless markets. The line of reasoning used may of course be used on
put options as well.

Consider a European call option with expiration date 7' and exercise price
K. Assume that the underlying security does not pay any dividends during
the life of the option. Then the value of the option ¢; satisfies

Sy > ¢ > max (0,5, — Kd(t,T)) . (6.1)

Proof. Clearly, ¢; > 0. Also, the corresponding put option satisfies p, > 0.
Hence
Ct 2 Ct — Pt = St - Kd(t, T) (62)

where we have used put-call parity. To see that S; > ¢;, assume that S; < ¢
and consider the strategy of buying the stock and selling the option. That
gives a positive cash flow at time ¢. If at time 7', S > K and the option is
exercised the stock is delivered to the option holder and K is received. If
the option is not exercised, the stock can be sold at non-negative value.

|

It is clear that an American option is more valuable than the correspond-
ing European option, hence we note that the price C; of an American option
also satisfies Cy > S;— Kd(t,T). If interest rates are positive, i.e. d(¢,T) < 1,
this produces the interesting result that the value of the American call is al-
ways strictly greater than the immediate exercise value Sy — K when ¢t < T.
This shows the important result that an American option on a non-dividend
paying stock should never be exercised early. Our inequalities above show
that it will be better to sell the option. A corresponding result does not hold
for put options. This is perhaps not so surprising considering that postpon-
ing the exercise of a put postpones the receipt of K, whereas delaying the
exercise of a call delays the payment of K.
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Typically, stocks pay dividends and it is important to take this into ac-
count when pricing options. It will often be the case that the option contract
does not take into account whether the underlying stock pays dividends. A
dividend payment will normally produce a drop in the stock price and an
owner of a call option will be hurt by this drop without receiving the benefit
of a dividend. A date t is denoted an ez-dividend date if purchasing the stock
at time s < ¢ gives the new owner part in the next dividend payment whereas
a purchase at time ¢ does not. For simplicity, we assume in the following
that the dividend payment takes place at the ex-dividend date. Furthermore,
we will assume that the size of the dividend is known some time before the
dividend date. In a world with no taxes it ought to be the case then that
the drop in the stock price around the dividend date is equal to the size of
the dividend. Assume, for example, that the drop in the stock price is less
than D. Then buying the stock right before the dividend date for a price of
S;_ and selling it for S;; immediately after the dividend date will produce a
cash flow of S;; + D — S;_ > 0. This resembles an arbitrage opportunity and
it is our explanation for assuming in the following that S;_ = S; + D.

Now let us consider the price at time 0 of a European call option on a
stock which is known to pay one dividend D at time ¢. Then

co > max (0, So — Kd(0,T) — Dd(0,t)).

Again, ¢y > 01is trivial. Assume ¢y < Sy — Kd(0,7) — Dd(0,t). Then
buy the left hand side and sell the right hand side. At time ¢, we must pay
dividend D on the stock we have sold, but that dividend is exactly received
from the D zero coupon bonds with maturity . At time 7" the value of the
option we have sold is equal to max (0, S; — K) . The value of the right hand
side is equal to S — K. If S > K the total position is 0.If S; < K the
total position has value K — S7. Hence we have constructed a positive cash
flow while also receiving money initially. This is an arbitrage opportunity
and hence we rule out ¢y < Sy — Kd(0,7) — Dd(0,1).

There are many possible variations on the dividend theme. If dividends
are not known at time 0 we may assume that they fall within a certain
interval and then use the endpoints of this interval to bound calls and puts.
The reader may verify that the maximal dividend is important for bounding
calls and the minimum dividend for bounding put prices.

However, we maintain the assumption of a known dividend and finish this
section by another important observation on the early exercise of American
calls on dividend paying stocks. Assume that the stock pays a dividend at
time ¢ and that we are at time 0 < ¢. It is then not optimal to exercise the
option at time 0 whereas it may be optimal right before time ¢. To see that it
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is not optimal at time 0, note that the American option contains as a part of
its rights an option with expiration date s € (0, t), and since this option is an
option on a non-dividend paying stock we know that its value is larger than
So — K, which is the value of immediate exercise. Therefore, the American
option is also more worth than Sy — K and there is no point in exercising
before ¢. To see that it may be optimal to exercise right before ¢, consider
a firm which pays a liquidating dividend to all its shareholders. The stock
will be worthless after the liquidation and so will the call option. Certainly,
the option holder is better off to exercise right before the dividend date to
receive part of the liquidating dividend.

The picture is much more complicated for puts. In the next section we
will see how to compute prices for American puts in binomial models and
this will give us the optimal exercise strategy as well.

6.4 Binomial models for stock options

In this section we will go through the binomial model for pricing stock op-
tions. Our primary focus is the case where the underlying security is a
non-dividend paying stock but it should be transparent that the binomial
framework is highly flexible and will easily handle the pricing and hedging
of derivative securities with more complicated underlying securities.

We consider a model with 7 periods and assume throughout that the
following two securities trade:

1. A money market account with a constant spot rate process p. Let
1+ p, = R, where R > 1. Hence we have for s <t

Rs,t == Rt_s.

2. A stock? S, which pays no dividends® , whose price at time 0 is Sy and
whose evolution under the measure P is described in the tree (where
we have assumed that v > R > d > 0) shown below.

2Since there is only one stock we will write S instead of S!.

3To comply with the mathematical model of the previous chapter we should actually
say that the stock pays a liquidating dividend of St at time 7. We will however speak of
St as the price at time T of the stock.
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The mathematical description of the process is as follows: Let Uy, ..., Ur

be a sequence of i.i.d. Bernoulli variables, let p = P(U; = 1) and define

Think of N;as the number of up-jumps that the stock has had between
time 0 and t. Clearly, this is a binomially distributed random variable. Let
u > R > d > Obe constants. Later, we will see how these parameters are
chosen in practice. Then

Sy = SouPNtd M, (6.3)

Using the results on one-period submodels it is clear that the model is
arbitrage free and complete and that the equivalent martingale measure is
given in terms of conditional probabilities as

R—d
Q(S; =uS;1|Si-1) = q= v —d
u—R

Q(St:dst—l‘st—l) = 1l—-¢qg= "
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6.5 Pricing the European call

We now have the martingale measure () in place and hence the value at time
t of a European call with maturity 7' is given in an arbitrage-free model by

1
RT—t

Ct: EQ (maX(O,ST—K)LE)

Using this fact we get the following

Proposition 22 Let the stock and money market account be as described in
section 6.4. Then the price of a European call option with exercise price K
and maturity date T is given as

1 T—t

T — 4\ . , . .
Cy = Z ( . t) ¢'(1 — ¢)T """ max(0, Syu'd" " — K).

1=0

Proof. Since the money market account and Sy are deterministic, we have
that we get all information by observing just stock-prices, or equivalently the
U’s, i.e. Fy = 0(S1,...,8) = o(U,...,U;). By using (6.3) twice we can
write

St = Stu(NT_Nt)d(T_t)_(NT_Nt) — Stuzd(T—t)—Z’

where Z = Np — Ny = Z]T:tﬂ U; R bi(g; (T' —t)), and Z is independent of

F; (because the U’s are independent). Therefore
R™'Cy = E9((Sr — K)T|F,) = E9((Sw”d" =7 — K)*|F).

At this point in the narrative we need something called “the useful rule”. It
states the following: Suppose we are given a function f : R? — R, a o-algebra
F, an F-measurable random variable X and a random variable Y that is
independent of F. Define the function g : R — R by g(z) = E(f(z,Y)).
Then E(f(X,Y)|F) = g(X). We then use this in the above expression with
S, playing the role of X, Z as Y, and f(z,y) = (zu?d™—9~¥ — K)*. By using
the general transformation rule for discrete random variables E(h(Y)) =
>y Pyi) P(Y = y;), and the fact that Z is Q-binomially distributed we get
in the notation of “the useful rule” that

T—t

g(x) = Z ( T z_ t ) ¢'(1— q)(T—t)—i(xuid(T—t)—i — Kt

=0

and the desired result follows. l
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We rewrite the expression for Cj using some handy notation. Let a be
the smallest number of upward jumps needed for the option to finish in the
money, 1.e.

a = min{j|Sou!d" 7 > K}
jEN
= I_réigll{j|jlnu+(T—j)lnd>ln(K/So)}
j

= min{jlj > In(K/ (Sod"))/In(u/d)}

ln(L)
_ 7111‘?’%'1; ey

Letting

¥(a;T,q) = XT: ( 7; ) )

i=a

we may write (you may want to check the first term on the RHS)

K
Co =S¥ (a;T,q') — ﬁll’ (a; T, q) (6.4)

where

q :EQ-

Using put-call parity gives us the price of the European put:

Corollary 23 The price of a European put option with T periods to matu-
rity, exercise price T and the stocks as underlying security has a price at time
0 given by

P, 1= (a;T,q)) = So (1 =9 (a;T,q))

=gl

Note that our option pricing formulae use 7" to denote the number of
periods until maturity. Later, we will be more explicit in relating this to
actual calendar time.

6.6 Hedging the European call

We have already seen in a two period model how the trading strategy repli-
cating a European call option may be constructed. In this section we simply
state the result for the case with T periods and we then note an interesting
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way of expressing the result. We consider the case with a money market
account and one risky asset S and assume that the market is complete and
arbitrage-free. The European call option has a payout at maturity of

07 = max(Sy — K, 0).

Proposition 24 A self-financing trading strategy replicating the dividend
process of the option from time 1 to T is constructed recursively as follows:
Find ¢p_; = (¢7_1, or_1) such that

¢0T—1R + ¢1T—1ST = 07.
Fort=T—2,T—3,...,1 find ¢, = (¢), ¢;) such that
¢?R + ¢%St+1 = ¢g+1 + ¢i+18t+1-

The trading strategy is self-financing by definition, replicates the call
and its initial price of ¢8 + ¢(1)SO is equal to the arbitrage-free price of the
option. We may easily extend to the case where both the underlying and the
contingent claim have dividends other than the one dividend of the option
considered above. In that case the procedureis the following:Find ¢,_; =
(¢7_1,d7_1) such that

¢7 1R+ ¢p (St +07) = 6%
Fort=T—2,T—3,...,1find ¢, = (¢, #;) such that

"R+ ¢} (Ses1 + 0e41) = B0y + Dp1Sipr + 0541

In this case the trading strategy is not self-financing in general but it matches
the dividend process of the contingent claim, and the initial price of the
contingent claim is still ¢g + ¢;So.

An additional insight into the hedging strategy is given by the proposition
below.

Recall the notation

for the discounted price process of the stock. Let C; denote the price process
of a contingent claim whose dividend process is 6 and let

~ Ct

C, = =4
! Ry,

~c o¢

Ry
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denote the discounted price and dividend processes of the contingent claim.
Define the conditional covariance under the martingale measure @) as follows:

Cov® (Xig1, Yeg1 | F) = E° (X1 — Xo) (Y1 — Y2)| 7o)
One may then show the following (but we will omit the proof):

Proposition 25 Assume that the stock pays no dividends during the life of
the option. The hedging strategy which replicates §¢ is computed as follows:

Cov® (§t+1, 5t+1 + 5t+1

%)

¢ = t=0,1,...,T -1

VAR® (S*Hl m)
¢ = C; — ¢1 S, t=0,1,.... T -1

Note the similarity with regression analysis! We will not go further into
this at this stage. But this way of looking at hedging is important when
defining so-called risk minimal trading strategies in incomplete markets.

The number of stocks held at time ¢ in the replicating strategy is called
the hedge ratio. The hedge ratio for a call option is a number between 0 and
1, and it is larger the more in-the-money the call is.

6.7 Recombining tree representation

If the number of time periods 7' is large it the tree representing the stock
price evolution grows very rapidly. The number of nodes at time ¢ is equal
to 2¢, and since for example 22° = 1048576 we see that when you implement
this model in a spreadsheet and you wish to follow C;and the associated
hedging strategy over time, you may soon run out of space. Fortunately, in
many cases there is a way around this problem: If your security price process
is Markov and the contingent claim you wish to price is path-independent,
you can use a recombining tree to do all of your calculations. Let us look
at each property in turn*: The process S is a Markov chain under Q if it
satisfies

Q(St+1 = St+1 |St =84...591=581,5 = 80) = Q(St+1 = St+1 |St = St)

for all t and all (s4y1, S¢, - - - , S1, So)- Intuitively, standing at time ¢, the current
value of the process s; is sufficient for describing the distribution of the

“These properties are interesting to consider for the stock only since the money market
account trivially has all nice properties discussed in the following.
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uTSO

dSo d2 Sy dT 8q

Figure 6.1: A lattice, i.e. a recombining tree.

process at time ¢ 4 1. The binomial model of this chapter is clearly a Markov
chain. An important consequence of this is that when F;, = o(So,...,S:)
then for any (measurable) function fand time points ¢ < u there existsa
function g such that

E° (f(Su) |F) = 9(Sy)- (6.5)

In other words, conditional expectations of functions of future values given
everything we know at time ¢ can be expressed as a function of the value
of S; at time t. The way S arrived at S; is not important. We used this
fact in the formula for the price of the European call: There, the conditional
expectation given time ¢ information became a function of S;. The past did
not enter into the formula. We can therefore represent the behavior of the
process S in a recombining tree, also known as a lattice, as shown in Figure
6.1 in which one node at time t represents exactly one value of S;. Another
way of stating this is to say that the tree keeps track of the number of up-
jumps that have occurred, not the order in which they occurred. A full event
tree would keep track of the exact timing of the up-jumps.

To see what can go wrong, Figure 6.2 shows a process that is not Markov.
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Figure 6.2: A tree that’s not a lattice.

The problem is at time 2 when the value of the process is Sy, we need to
know the pre-history of S to decide whether the probability of going up to
uS is equal to ¢ or ¢'. In standard binomial models such behavior is normally
precluded.

Note that now the number of nodes required at time ¢ is only ¢ 4+ 1, and
then using several hundred time periods is no problem for a spreadsheet.

A technical issue which we will not address here is the following: Normally
we specify the process under the measure P, and it need not be the case that
the Markov property is preserved under a change of measure. However,
one may show that if the price process is Markov under P and the model
is complete and arbitrage-free, then the price process is Markov under the
equivalent martingale measure () as well.

A second condition for using a recombining tree to price a contingent
claim is a condition on the contingent claim itself:

Definition 37 A contingent claim with dividend process 6¢ is path indepen-
dent if 6; = fi(Sy) for some (measurable) function f.

Indeed if the claim is path independent and the underlying process is
Markov, we have
:Ft)

T
Ct = RQ’tE ( Z 5:

i=t+1
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= Ry E ( ZTj £i(S:) ﬂ)

i=t+1

= RoE ( > F(SH) St)

i=t+1

and the last expression is a function of S; by the Markov property. A Euro-
pean option with expiration date 7'is path-independent since its only divi-
dend payment is at time 7" and is given as max(Sy — K, 0).

The Asian option is an example of a contingent claim which is not path-
independent. An Asian option on the stock, initiated at time 0, expiration
date T and exercise price K has a payoff at date 7" given by

T
asian __ 1
CT = max (0, (T—H tz_(;st) - K)

Hence the average of the stock price over the period determines the option
price. Clearly, St is not sufficient to describe the value of the Asian option
at maturity. To compute the average value one needs the whole path of S.
As noted above, even in a binomial model keeping track of the whole path
for, say, 50 periods becomes intractable.

6.8 The binomial model for American puts

We describe in this section a simple way of pricing the American put option
in a binomial model. Strictly speaking, an American put is not a contingent
claim in the sense we have thought of contingent claims earlier. Generally, we
have thought of contingent claims as random variables or sometimes as pro-
cesses but a put is actually not specified until an exercise policy is associated
with the put. What we will do in the following is to simultaneously solve
for the optimal exercise policy, i.e. the one that maximizes the expected,
discounted value of the cash flows under the martingale measure, and the
price of the option. The argument given is not a proof but should be enough
to convince the reader that the right solution is obtained (it is fairly easy to
show that another exercise policy will create arbitrage opportunities for the
option writer).
The value of an American put at its maturity is easy enough:®

Pr = max(0, K — Sr). (6.6)

50r is it? As it stands P; is really the value at time ¢ given that the put has not been
exercised at times 0,1,¢# — 1. But that will most often be exactly what we are interested
in; if we exercised the put to years ago, we really don’t care about it anymore.
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Now consider the situation one period before maturity. If the put has
not been exercised at that date, the put option holder has two possibilities:
Exercise the put at time 7" — 1 or hold the put to maturity. The value of
holding the put to maturity is given as the discounted (back to time 7" — 1)
value of (6.6), whereas the value at time T — 1 of exercising immediately is
K — S7_1 something only to be considered of course if K > Sy ;. Clearly,
the put option holder has a contract whose value is given by the maximal
value of these two strategies, i.e.5

Now continue in this fashion by working backwards through the tree to obtain
the price process of the American put option given by the recursion

Pr

PT_1 = Imax (K - ST_l,EQ < R

P
P, ; = max (K — S, 1, E® <—t

_ =1,...,T.
Rﬂl)) t ) ’

Once this price process is given we see that the optimal exercise strategy is
to exercise the put the first time ¢ for which

This way of thinking is easily translated to American call options on dividend
paying stocks for which early exercise is something to consider.

P,
K—St>EQ<%1

6.9 Implied volatility

We assume in this section that the Black-Scholes formula is known to the
reader: The price at time ¢ of a European call option maturing at time 7',
when the exercise price is K and the underlying security is a non-dividend
paying stock with a price of S;, is given in the Black-Scholes framework by

Ct = Stq) (dl) - KE_T(T_t)(b (dg)

where
i log (5¢) + (r + 20?) (T —t)
b oV —t
and

dgzdl—g\/T—t

6We do not need 0 in the list of arguments of max since positivity is assured by Pr > 0.
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where @ is the cumulative distribution function of a standard normal distri-
bution.

Consider the Black-Scholes formula for the price of a European call on an
underlying security whose value at time 0 is So: Recall that ® is a distribution
function, hence ®(z) — 1 as z — oo and ®(z) — 0 as x — —oo. Assume
throughout that 7" > 0. From this it is easy to see that ¢y — Sy as 0 —
00. By considering the cases Sy < Kexp(—rT), Sy = Kexp(—rT) and
So > Kexp(—rT) separately, it is easy to see that as 0 — 0, we have
cp — max (0,Sy — K exp(—rT)). By differentiating ¢y with respect to o,
one may verify that ¢y is strictly increasing in o. Therefore, the following
definition makes sense:

Definition 38 Given a security with price Sy. Assume that the risk free
rate (i.e. the rate of the money market account) is equal to r. Assume that
the price of a call option on the security with exercise price K and time to
maturity T is observed to have a price of c®® with

max(0, Sy — K exp(—rT)) < ¢® < S,.
Then the implied volatility of the option is the unique value of o for which
CO(SO; K7 Ta g, T) = CObs'

In other words, the implied volatility is the unique value of the volatility
which makes the Black-Scholes model ’fit’ c¢®®*. Clearly, we may also asso-
ciate an implied volatility to a put option whose observed price respects the
appropriate arbitrage bounds.

A very important reason for the popularity of implied volatility is the
way in which it allows a transformation of option prices which are hard to
compare into a common scale. Assume that the price of a stock is 100 and
the riskfree rate is 0.1. If one observed a price of 9.58 on a call option on the
stock with exercise price 100 and 6 months to maturity and a price of 2.81
on a put option on the stock with exercise price 95 and 3 months to maturity
then it would require a very good knowledge of the Black-Scholes model to
see if one price was in some way higher than the other. However, if we are
told that the implied volatility of the call is 0.25 and the implied volatility
of the put is 0.30, then at least we know that compared to the Black-Scholes
model, the put is more expensive than the call. This way of comparing is in
fact so popular that traders in option markets typically do not quote prices
in (say) dollars, but use ’vols’ instead.

If the Black-Scholes model were true the implied volatility of all options
written on the same underlying security should be the same, namely equal
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to the volatility of the stock and this volatility would be a quantity we could
estimate from historical data. In short, in a world where the Black-Scholes
model holds, historical volatility (of the stock) is equal to implied volatility
(of options written on the stock). In practice this is not the case - after
all the Black-Scholes model is only a model. The expenses of hedging an
option depend on the volatility of the stock during the life of the option.
If, for example, it is known that, after a long and quiet period, important
news about the underlying stock will arrive during the life of the option, the
option price should reflect the fact that future fluctuations in the stock price
might be bigger than the historical ones. In this case the implied volatility
would be higher than the historical.

However, taking this knowledge of future volatility into account one could
still imagine that all implied volatilities of options on the same underlying
were the same (and equal to the ’anticipated’ volatility). In practice this is
not observed either. To get an idea of why, we consider the notion of portfolio
insurance.

6.10 Portfolio insurance, implied volatility and
crash fears

Consider a portfolio manager who manages a portfolio which is diversified
so that the value of her portfolio follows that of the market stock index.
Assume that the value of her portfolio is 1000 times the value of the index
which is assumed to be at 110. The portfolio manager is very worried about
losing a large portion of the value of the portfolio over the next year - she
thinks that there is a distinct possibility that the market will crash. On the
other hand she is far from certain. If she were certain, she could just move
the money to a bank at a lower but safer expected return than in the stock
market. But she does not want to exclude herself from the gains that a surge
in the index would bring. She therefore decides to buy portfolio insurance
in such a way that the value of her portfolio will never fall below a level of
(say) 90.000. More specifically, she decides to buy 1000 put options with one
year to maturity and an exercise price of 90 on the underlying index. Now
consider the value of the portfolio after a year as a function of the level of
the index St :

value of index Sr > 90 St <90
value of stocks St x 1000 St x 1000
value of puts 0 1000 x (90 — St)

| total value | Sy x 1000 > 90.000 | 90.000 |
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Although it has of course not been costless to buy put options, the port-
folio manager has succeeded in preventing the value of her portfolio from
falling below 90.000. Since the put options are far out-of-the-money (such
contracts are often called “lottery tickets”) at the time of purchase they are
probably not that expensive. And if the market booms she will still be a
successful portfolio manager.

But what if she is not alone with her fear of crashes. We may then imagine
a lot of portfolio managers interested in buying out-of-the-money put options
hence pushing up the price of these contracts. This is equivalent to saying
that the implied volatility goes up and we may experience the scenario shown
in the graph below, in which the implied volatility of put options is higher
for low exercise price puts:

Imp . BS-vol.

So exercise price

This phenomenon is called a “smirk”. If (as it is often seen from data) the
implied volatility is increasing (the dotted part of the curve) for puts that are
in the money, then we have what is known as a “smile”. Actually options that
are deeply in-the-money are rarely traded, so the implied volatility figures
used to draw “the other half” of the smile typically comes from out-of-the-
money calls. (Why/how? Recall the put-call parity.)

A smirk has been observed before crashes and it is indicative of a situation
where the Black-Scholes model is not a good model to use. The typical
modification allows for stock prices to jump discontinuously but you will
have to wait for future courses to learn about this.

6.11 Debt and equity as options on firm value

In this section we consider a very important application of option pricing.
Our goal is to learn a somewhat simplified but extremely useful way of think-
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ing about a firm which is financed by debt and equity (see below). A fun-
damental assumption in this section is that a firm has a market value given
by a stochastic process V. In Arrow-Debreu economies in which we know
prices and production plans adopted by the firms, it is easy to define the
value of a firm as the (net) value of its production. In reality things are of
course a lot more complicated. It is hard to know, for example, what the
value of Novo-Nordisk is - i.e. what is the market value of the firm’s assets
(including know-how, goodwill etc.). Part of the problem is of course that it
is extremely difficult to model future prices and production levels. But in a
sense the actual value does not matter for this section in that the ’sign’ of
the results that we derive does not depend on what the value of the firm is -
only the "magnitude’ does.

The fundamental simplification concerns the capital structureof the firm.
Assume that the firm has raised capital to finance its activities in two ways:
It has issued stocks (also referred to as equity) and debt. The debt consists
of zero coupon bonds with face value D maturing at time 7. Legally what
distinguishes the debt holders from the stock holders is the following: The
stock holders control the firm and they decide at time 7" whether the firm
should repay its debt to the bondholders. If the bondholders are not repaid
in full they can force the firm into bankruptcy and take over the remaining
assets of the firm (which means both controlling and owning it). The stocks
will then be worthless. If the stockholders pay back D at maturity to the
bondholders, they own the firm entirely. They may then of course decide to
issue new debt to finance new projects but we will not worry about that now.

It is clear that the stockholders will have an interest in repaying the
bondholders precisely when Vi > D. Only then will the expense in paying
back the debt be more than outweighed by the value of the firm. If Vi < D
(and there are no bankruptcy costs) the stockholders will default on their
debt, the firm will go into bankruptcy and the bondholders will take over.
In short, we may write the value of debt and equity at time T as

Br = min(D,Vy) =D — max (D — Vp,0)
Sy = max(Vr — D,0).

In other words, we may think of equity as a call option on the value of
the firm and debt as a zero coupon bond minus a put option on the value
of the firm. Assuming then that V' behaves like the underlying security in
the Black-Scholes model and that there exists a money market account with
interest rate r, we can use the Black-Scholes model to price debt and equity
at time O :

By = Dexp(—rT)—po(Vo,D,T,0,1)
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SO = cO(%a Da Ta g, T)

where pyg, ¢y are Black-Scholes put and call functions.

Let us illustrate a potential conflict between stockholders and bondholders
in this model. Assume that at time 0 the firm has the possibility of adopting
a project which will not alter the value of the firm at time 0, but which will
have the effect of increasing the volatility of the process V. Since both the
value of the call and the put increases when o increases we see that the
stockholders will like this project since it increases the value of the equity
whereas the bondholders will not like the project since the put option which
they have in a sense written will be a greater liability to them. This is a very
clear and very important illustration of so-called asset substitution, a source
of conflict which exists between stock-and bondholders of a firm. This setup
of analyzing the value of debt and equity is useful in a number of contexts
and you should make sure that you understand it completely. We will return
to this towards the end of the course when discussing corporate finance.
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