Chapter 5

Arbitrage pricing in the
multi-period model

5.1 An appetizer

It is fair to argue that to get realism in a model with finite state space we
need the number of states to be large. After all, why would the stock take
on only two possible values at the expiration date of the option? On the
other hand, we know from the previous section that in a model with many
states we need many securities to have completeness, which (in arbitrage-free
models) is a requirement for pricing every claim. And if we want to price
an option using only the underlying stock and a money market account, we
only have two securities to work with. Fortunately, there is a clever way out
of this.

Assume that over a short time interval the stock can only move to two
different values and split up the time interval between 0 and 7" (the maturity
date of an option) into small intervals in which the stock can be traded.
Then it turns out that we can have both completeness and therefore arbitrage
pricing even if the number of securities is much smaller than the number of
states. Again, before we go into the mathematics, we give an example to
help with the intuition.

Assume that Q = {w;,ws,ws,ws} and that there are three dates: ¢ €
{0,1,2}. We specify the behavior of the stock and the money market account
as follows: Assume that 0 < d < R < u and that S > 0. Consider the
following graph:

35
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State

R2
( a2s ) wa

t=0 t=1 t=2

At time 0 the stock price is S, the money market account is worth 1.
At time 1, if the state of the world is w; or w,, the prices are uS and R ,
respectively, whereas if the true state is wsz or wy, the prices are dS and R.
And finally, at time ¢t = 2, the prices of the two instruments are as shown in
the figure above. Note that w € €2 describes a whole ”sample path” of the
stock price process and the money market account, i.e. it tells us not only
the final time 2 value, but the entire history of values up to time 2.

Now suppose that we are interested in the price of a European call option
on the stock with exercise price K and maturity 7" = 2. At time 2, we know
it is worth

Cs (w) = [S2 () = K]

where Sy (w) is the value of the stock at time 2 if the true state is w.

At time 1, if we are in state w; or wsy, the money market account is
worth R and the stock is worth .S, and we know that there are only two
possible time 2 values, namely (R? u?S) or (R? duS). But then we can use
the argument of the one period example to see that at time 1 in state w; or
wy we can replicate the calls payoff by choosing a suitable portfolio of stock
and money market account: Simply solve the system:

au?S + bR? = [uZS - KTF =Cu

aduS + bR* = [duS — K|" = Cy,
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for (a,b) and compute the price of forming the portfolio at time 1. We find

a = Cuu_cdu h— ucdu_dcuu
S uSu—d)) " (u—d)R* "’

The price of this portfolio is
R (Cuu - Cdu) uodu - dCuu

S+bR = —
s R (u—d) (u—d) R
1 [(R—d) (u— R)
D uw Cu = Cu
R | (u—d) (uw—d)
This is clearly what the call is worth at time ¢ = 1 if we are in w;

or wq, i.e. if the stock is worth S at time 1. Similarly, we may define
Cua := [udS — K]|* (which is equal to Cy,) and Cyq = [d2S — K ]+ . And now
we use the exact same argument to see that if we are in state ws or wy, i.e.
if the stock is worth dS at time 1, then at time 1 the call should be worth
Cy where

1 [(R—d) (u — R)
Cd = =

R | (u—d) (u—d)

Now we know what the call is worth at time 1 depending on which state
we are in: If we are in a state where the stock is worth u.S, the call is worth
C, and if the stock is worth dS, the call is worth Cy.

Looking at time 0 now, we know that all we need at time 1 to be able to
"create the call”, is to have C, when the stock goes up to uS and C; when
it goes down. But that we can accomplish again by using the one-period
example: The cost of getting (gz) is

Cud +

(u—R)
Co:=—= Cu C
“C R w=a) T w=a) "
If we let ¢ = % and if we insert the expressions for C', and Cy, noting

that Cyy = C4y,, we find that

Co ¢*Cuu +2q (1 — q) Cua + (1 — q)* Cad)

= [
which the reader will recognize as a discounted expected value, just as in the
one period example. (Note that the representation as an expected value does
not hinge on Cyy = Cyy.)

The important thing to understand in this example is the following: Start-
ing out with the amount Cj, an investor is able to form a portfolio in the
stock and the money market account which produces the payoffs C, or Cy
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at time 1 depending on where the stock goes. Now without any additional
costs, the investor can rearrange his/her portfolio at time 1, such that at
time 2, the payoff will match that of the option. Therefore, at time 0 the
price of the option must be Cj.

This ”dynamic hedging” argument is the key to pricing derivative securi-
ties in discrete-time, finite state space models. We now want to understand
the mathematics behind this example.

5.2 Price processes, trading and arbitrage

Given a probability space (2, F, P) with ( finite, let F := 2 (i.e. the set of
all subsets of ) and assume that P (w) > 0 for all w € Q. Also assume that
there are T+1 dates, starting at date 0, ending at date 7. To formalize how
information is revealed through time, we introduce the notion of a filtration:

Definition 23 A filtration F = {ft}tho i an increasing sequence of o-
algebras contained in F:Fy C F, C ... C Fr.

We will always assume that Fy = {0, 2} and Fr = F. Since  is finite,
it will be easy to think of the o—algebras in terms of partitions:

Definition 24 A partition Py of Q2 is a collection of non-empty subsets of
Q such that

g UPiEPt-Pi =0
e P,N P; = () wheneveri # j, P;, P; € P;.

Because (2 is finite, there is a one-to-one correspondence between parti-
tions and o—algebras: The elements of P; corresponds to the atoms of F;.
The concepts we have just defined are well illustrated in an event-tree:
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Po Py P

N
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The event tree illustrates the way in which we imagine information about
the true state being revealed over time. At time ¢ = 1, for example, we may
find ourselves in one of two nodes: &;; or &;5. If we are in the node &y, we
know that the true state is in the set {wy,ws,...,ws}, but we have no more
knowledge than that. In &5, we know (only) that w € {ws,w7,...,wg}. At
time ¢ = 2 we have more detailed knowledge, as represented by the partition
P,. Elements of the partition P; are events which we can decide as having
occurred or not occurred at time t, regardless of what the true wis. At
time 1, we will always know whether {wy,ws,...,ws} has occurred or not,
regardless of the true w. If we are at node £,,, we would be able to rule out
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the event {w;,ws} also at time 1, but if we are at node &;;, we will not be
able to decide whether this event has occurred or not. Hence {wy,ws} is not
a member of the partition.

Make sure you understand the following

Remark 2 A random variable defined on (S0, F, P) is measurable with re-
spect to F; precisely when it is constant on each member of P;.

A stochastic process X := (X;)i=o,.r is a sequence of random vari-
ables Xy, Xq,...,X¢r. The process is adapted to the filtration F if X, is
Fi—measurable (which we will often write: X; € F) for t = 0,...,T.
Returning to the event tree setup, it must be the case, for example, that
Xi(wy) = Xi(ws) if X is adapted, but we may have X;(w1) # Xi(ws).

Given an event tree, it is easy to construct adapted processes: Just assign
the values of the process using the nodes of the tree. For example, at time
1, there are two nodes £;; and &;,. You can choose one value for X; in &
and another in &,5,. The value chosen in &;; will correspond to the value of
X; on the set {w;,ws,...,ws}, the value chosen in &, will correspond to
the common value of X; on the set {ws, ..., wq}. When X, is constant on an
event A; we will sometimes write X;(A;)for this value. At time 2 there are
five different values possible for X,. The value chosen in the top node is the
value of X, on the set {wy,ws}.

As we have just seen it is convenient to speak in terms of the event tree
associated with the filtration. From now on we will refer to the event tree
as the graph = and use £to refer to the individual nodes. The notation
p(§) will denote the probability of the event associated with &; for example
P(&;) = P({wi,ws,...,ws}). This graph = will also allow us to identify
adapted processes with vectors in R=. The following inner products on the
space of adapted processes will become useful later: Let X,Y be adapted
processes and define

D XY () > Xi(Au)Yi(Ay)
ge= {(t,Ay): Ay €P;,0<t<T}

EY XY = Y POXE©Y()

=S fcE

Y PA)X(A)Yi(A)
{(t,Ay): Ay €P,0<ILT}

Now we are ready to model financial markets in multi-period models.
Given is a vector of adapted dividend processes

§=(8"...,6Y)
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and a vector of adapted security price processes
S=(S,...,9M).

The interpretation is as follows: S¢(w) is the price of security 7 at time ¢ if the
state is w. Buying the i'th security at time ¢ ensures the buyer (and obligates
the seller to deliver) the remaining dividends 4., 8} ,, ..., d%.! Hence the
security price process is to be interpreted as an ez-dividend price process
and in particular we should think of S7 as 0.In all models considered in
these notes we will also assume that there is a money market account which
provides locally riskless borrowing and lending. This is modeled as follows:
Given an adapted process - the spot rate process

p = (pos P1s---s Pr_1)-

To make the math work, all we need to assume about this process is that it
is strictly greater than —1 at all times and in all states, but for modelling
purposes it is desirable to have it non-negative. Now we may define the
money market account as follows:

Definition 25 The money market account has the security price process

S o= 1, t=0,1,...,T—1
Sy = 0.

and the dividend process

§(w) = py(w) forallwandt=1,...,T —1,
07(w) = 14 pr ().

This means that if you buy one unit of the money market account at time
t you will receive a dividend of p, at time ¢4 1. Since p, is known already at
time ¢, the dividend received on the money market account in the next period
t+1 is known at time ¢. Since the price is also known to be 1 you know that
placing 1in the money market account at time ¢ and selling the asset at time
t+ 1 will give you 1+ p,.This is why we refer to this asset as a locally riskless
asset. You may of course also choose to keep the money in the money market
account and receive the stream of dividends. Reinvesting the dividends in the
money market account will make this account grow according to the process
R defined as

Ry =1+ pp)---(L4p 1)

'We will follow the tradition of probability theory and often suppress the win the
notation.
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We will need this process to discount cash flows between arbitrary periods
and therefore introduce the following notation:

Ry, = (I+pg) (14 p; 1)

Definition 26 A trading strateqy is an adapted process
¢ = (d)?: ey d)iv)t:O,...,T—l-

and the interpretation is that ¢!(w) is the number of the 7'th security held at
time ¢ if the state is w. The requirement that the trading strategy is adapted
is very important. It represents the idea that the strategy should not be able
to see into the future. Returning again to the event tree, when standing in
node £, a trading strategy can base the number of securities on the fact
that we are in &;; (and not in &;5), but not on whether the true state is w;
or wy.

The dividend stream generated by the trading strategy ¢is denoted 6?
and it is defined as

5¢:_¢0'So
5 =¢,  (Si+6)—¢, S fort=1,...,T.

Definition 27 An arbitrage is a trading strateqy for which (5? 1S a positive
process, i.e. always nonnegative and (5?(@0) > 0 for some t and w. The model
s said to be arbitrage-free if it contains no arbitrage opportunities.

In words, there is arbitrage if we can adopt a trading strategy which at
no point in time requires us to pay anything but which at some time in some
state gives us a strictly positive payout. Note that since we have included the
initial payout as part of the dividend stream generated by a trading strategy,
we can capture the definition of arbitrage in this one statement. This one
statement captures arbitrage both in the sense of receiving money now with
no future obligations and in the sense of paying nothing now but receiving
something later.

Definition 28 A trading strategy ¢ is self-financing if it satisfies
Grq - (Sp+0¢))=¢,- Sy fort=1,...,T.

The interpretation is as follows: Think of forming a portfolio ¢, ; at
time ¢t — 1. Now as we reach time ¢, the value of this portfolio is equal to
¢, - (St + 6¢), and for a self-financing trading strategy, this is precisely the
amount of money which can be used in forming a new portfolio at time ¢.
We will let & denote the set of self-financing trading strategies.
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5.3 No arbitrage and price functionals

We have seen in the one period model that there is equivalence between the
existence of a state price vector and absence of arbitrage. In this section we
show the multi-period analogue of this theorem.

The goal of this section is to prove the existence of the multi-period
analogue of state-price vectors in the one-period model. Let L denote the set
of adapted processes on the given filtration.

Definition 29 A pricing functional F is a linear functional
F:L—->R
which is strictly positive, i.e.

F(X) > 0 forX>0
F(X) > 0 for X >0.

Definition 30 A pricing functional F' is consistent with security prices if
F(6%) = 0 for all trading strategies ¢.

Note that if there exists a consistent pricing functional we may arbitrarily
assume that the value of the process 1;;—gy (i.e. the process which is 1 at time
0 and 0 thereafter) is 1.

By Riesz’ representation theorem we can represent the functional F'as

F(X)=> _X()f(©)

£eE

With the convention F'(1g—0;) = 1, we then note that if there exists a trading
strategy ¢ which is initiated at time 0 and which only pays a dividend of 1in
the node &, then

bo - So = f(£)-
Hence f(§) is the price at time 0 of having a payout of 1in the node &.

Proposition 11 The model (9, S) is arbitrage-free if and only if there exists
a consistent pricing functional.

Proof. First, assume that there exists a consistent pricing functional F. Any
dividend stream 6% generated by a trading strategy which is positive must
have F'(6%) > 0 but this contradicts consistency. Hence there is no arbitrage.
The other direction requires more work:
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Define the sets

L' = {XelL

X >0 and ZX(g):1}

{eE
L’ = {4” €L|¢ trading strategy }

and think of both sets as subsets of R*. Note that L'is convex and compact
and that I is a linear subspace, hence closed and convex. By the no arbitrage
assumption the two sets are disjoint. Therefore, there exists a separating
hyperplane H(f;c) := {x € R® : f -2 = «a} which separates the two sets
strictly and we may choose the direction of f such that f-z < « for z € L.°.
Since LY is a linear subspace we must have f -z = 0 for z € L° (why?).
Strict separation then gives us that f-z > 0 for z € L', and that in turn
implies f > 0 (why?). Hence the functional

F(X)=>_f&X(©)

£eE

is consistent. B

By using the same geometric intuition as in Chapter 2, we note that there
is a connection between completeness of the market and uniqueness of the
consistent price functional:

Definition 31 The security model is complete if for every X € 1L there exists
a trading strateqy ¢ such that (52’ = X; fort > 1.

If the model is complete and arbitrage-free, there can only be one consis-
tent price functional (up to multiplication by a scalar). To see this, assume
that if we have two consistent price functionals F, G both normed to have
F(14=0y) = G(1y4=03) = 1. Then for any trading strategy ¢ we have

0 = =y So+ F(ly=067)
= _¢0'SO+G(1{t>O}5¢)

hence F' and G agree on all processes of the form 1{t>0}(5¢. But they also
agree on ly—oy and therefore they are the same since by the assumption of
completeness every adapted process can be obtained as a linear combination
of these processes.

Given a security price system (m, D), the converse is shown in a way
very similar to the one-period case. Assume the market is arbitrage-free and
incomplete. Then there exists a process 7w in L, whose restriction to time
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t > 1 is orthogonal to any dividend process generated by a trading strategy.
By letting mo = 0 and choosing a sufficiently small ¢ > 0, the functional
defined by
(F +em) (8°) = D (£(6) +em(£)) 8(¢)
ges

is consistent. Hence we have shown:

Proposition 12 If the market is arbitrage-free, then the model is complete
if and only if the consistent price functional is unique.

5.4 Conditional expectations and martingales

Consistent price systems turn out to be less interesting for computation when
we look at more general models, and they do not really explain the strange
probability measure ¢ which we saw earlier. We are about to remedy both
problems, but first we need to make sure that we can handle conditional
expectations in our models and that we have a few useful computational
rules at our disposal.

Definition 32 The conditional expectation of an F,—measurable random
variable X, given Fy, where Fy C F,, is given by

1
E(X, |F)(w) = P EP; CALP(Av)Xu(AU) for w e A,

where we have written X,(A,) for the value of X,(w) on the set A, and
where A; € P.

We will illustrate this definition in the exercises. Note that we obtain
an F;—measurable random variable since it is constant over elements of the
partition P;. The definition above does not work when the probability space
becomes uncountable. Then one has to adopt a different definition which we
give here and which the reader may check is satisfied by the random variable
given above in the case of finite sample space:

Definition 33 The conditional expectation of an F,—measurable random
variable X, given Fy is a random variable E(X, |F;) whichis F;—measurable
and satisfies
/ E(X,|F)dP = X,dP
Ag A
for all Ay € F.



66CHAPTER 5. ARBITRAGE PRICING IN THE MULTI-PERIOD MODEL
It is easy to see that the conditional expectation is linear, i.e. if X,,Y, €
Fy and a,b € R, then
E(aX, +bY, |F) =aE(X,|F) +0E(Y, |F).

We will also need the following computational rules for conditional expecta-
tions:

E(E(X.|F)) = EX, (5.1)
E(ZX,|F) = Z,E(X,|F) whenever Z;, € F, (5.2)
E(E(X,|FR)I|Fs) = E(Xy|Fs) whenever s <t <u (5.3)

Note that a consequence of (5.2) obtained by letting X, = 1, is that

E(Zt |ft) = Zt whenever Zt S ft. (54)
Now we can state the important definition:

Definition 34 A stochastic process X is a martingale with respect to the
filtration F if it satisfies

E(Xt|ft_1):Xt_1 alltzl,,T
You can try out the definition immediately by showing:

Lemma 13 A stochastic process defined as
Xi=EX|FR) t=0,1,...,T
where X € Fr, is a martingale.

Proof. Use (5.3)!'®
Let E¥(Y;A) = [,YdP for any random variable Y and A € F.Using
this notation and the definition (33) of a martingale, this lemma says that

E(X;A)=E(X4; A) for all tand A € F;

When there can be no confusion about the underlying filtration we will
often write E;(X)instead of E(X |F;).

Two probability measures are equivalent when they assign zero probabil-
ity to the same sets and since we have assumed that P(w) > 0 for all w, the
measures equivalent to P will be the ones which assign strictly positive prob-
ability to all events.

We will need a way to translate conditional expectations under one mea-
sure to conditional expectations under an equivalent measure. To do this we
need the density process:
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Definition 35 Let the density process Z be defined as

and
Zy=EY(Zy|F) t=0,1,...,T.

We will need (but will not prove) the following result of called the Abstract
Bayes Formula.

Proposition 14 Let X be a random variable on (2, F). Then

1
E°(X|F) = E" (X Z:| 7).
t

5.5 Equivalent martingale measures

In this section we state and prove what is sometimes known as the funda-
mental theorem of asset pricing. This theorem will explain the mysterious
g—probabilities which arose earlier and it will provide an indispensable tool
for constructing arbitrage-free models and pricing contingent claims in these
models.

We maintain the setup with a money market account generated by the
spot rate process pand N securities with price- and dividend processes S =
(S%,...,8N), 6 = (6%,...,6"). Define the corresponding discounted processes
g,g by defining for each : =1,..., N

~. S

Sio= t=0,...,T,
! Roy

~i 5

5, = —* t=1,...,T.
! Roy

Definition 36 A probability measure Q) on Fis an equivalent martingale
measure (EMM)if Q(w) > 0all wand for alli=1,...,N

T
§§=E?(ZS’;> t=0,...,T—1. (5.5)

j=t+1

The term martingale measure has the following explanation: Given a
(one-dimensional) security price process S whose underlying dividend process
only pays dividend d7 at time 7. Then the existence of an EMM will give us

§t:E?(5T) t=0,...,T—1.
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and therefore the process (§0,§1, e, §T_1,5T) is a martingale, cf. Lemma
(13).

We are now ready to formulate and prove what is sometimes known as
‘the fundamental theorem of asset pricing’ in a version with discrete time
and finite state space:

Theorem 15 In our security market model the following statements are
equivalent:

1. There are no arbitrage opportunities.

2. There exists an equivalent martingale measure.

Proof. We have already seen that no arbitrage is equivalent to the ex-
istence of a consistent price functional F. Therefore, what we show in the
following is that there is a one-to-one correspondence between consistent
price functionals (up to multiplication by a positive scalar) and equivalent
martingale measures. We will need the following notation for the restriction
of F to an F,—measurable random variable: Let 6 be a dividend process
whose only payout is X at time ¢. Define

Fi(X) = F(6%).

If we assume (as we do from now on) that Fy(1) = 1, we may think of
F;(1,4) as the price a time 0 of a claim (if it trades) paying off 1 at time ¢if
w € A. Note that since we have a assumed the existence of a money market
account, we have

Fr(Ror) =1 (5.6)

First, assume there is no arbitrage and let F' be a consistent price func-
tional. Our candidate as equivalent martingale measure is defined as follows:

Q(A) = FT(lARO,T) AeF=Fr. (57)

By the strict positivity, linearity and (5.6) we see that () is a probability
measure which is strictly positive on all w.We may write (5.7) as

EQlA :FT(lARO,T) A EIEFT

and by writing a random variable X as a sum of constants times indicator
functions, we note that

E9(X) = Fr(XRor) (5.8)
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Now we want to check the condition (5.5). By definition (33) this is equivalent
to showing that for every security we have

T
EQ(1,48!) = E° (1A > ?53) t=1,...,T. (5.9)
j=t+1

Consider for given A € F; the following trading strategy ¢:

e Buy one unit of stock i at time 0 (this costs S¢ ). Invest all dividends
before time ¢ in the money market account and keep them there at
least until time £.

o At time ¢, if w € A (and this we know at time ¢ since A € F;) sell the
security and invest the proceeds in the money market account, i.e. buy
S? units of the 0'th security and roll over the money until time 7.

o If w¢ A, then hold the i'th security to time 7.

This strategy clearly only requires an initial payment of Si. The dividend
process generated by this strategy is non-zero only at time 0 and at time
T. At time T the dividend is

t T
82 = 14Ryr (Sg‘ + Za;Rj,t) +14e Y OiR;p

j=1 j=1
~ ¢ ~i T ;
= 14Ror (S; + Z‘%) +14c Y ORyr
j=1 j=1

One could also choose to just buy the i’th security and then roll over the
dividends to time 7. Call this strategy . This would generate a terminal
dividend which we may write in a complicated but useful way as

T T
8 = 14 iRz +1s Y OiRjr
7j=1 7j=1

T T
~i ;
= 1AR0’TE 5j+1AcE (S;-R'7T
j=1 j=1

The dividend stream of both strategies at time 0is —Sg. We therefore have

Fr(6%) = Fr(5%)
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which in turn implies
~ b T
Fr (1AR0,T (S; +) 5].)) =Fr <1ARO,T > 5j)
j=1 j=1

1.e.

T
FT (1AR0,TSZ) == FT <1ARO,T Z 5;) .
j=t+1
Now use (5.8) to conclude that
~ T 7
E9(14S}) =E9(14 Y 0))

j=t+1

and that is what we needed to show. () is an equivalent martingale measure.
Now assume that () is an equivalent martingale measure. Define for an
arbitrary dividend process ¢

J=0

Clearly, F'is linear and strictly positive. Now consider the dividend process
6? generated by some trading strategy ¢. To show consistency we need to
show that

T
= <
¢o- So=FEVY 6.
j=1
Notice that we know that for individual securities we have
S Q ~i
Se=E> 6,
j=1

We only need to extend that to portfolios. We do some calculations (where
we make good use of the rule E9F; = E9F;_;)

T T
E®Y S = E9 (Z¢j1-(§j+?§j>—¢j-§j>

i=1

_ ge (é b1 (E? (ga» ~ 9 B (éF'“))
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_ EQ<é¢j_l.( (Za)) éqﬁ]l.Ef_l(kZ:?i))

- 5 (o (5720
k=1
= E° (¢0 : §0)
= ¢0 : §0
This completes the proof. l
Earlier, we established a one-to-one correspondence between consistent

price functionals (normed to 1 at date 0) and equivalent martingale measures.
Therefore we have also proved the following

Corollary 16 Assume the security model is arbitrage-free. Then the market
1s complete if and only if the equivalent martingale measure is unique.

Another immediate consequence from the definition of consistent price
functionals and equivalent martingale measures is the following

Corollary 17 Let the security model defined by (S,6) (including the money
market account) on (2, P,F,F) be arbitrage-free and complete. Then the
augmented model obtained by adding a new pair (SN, 6™ 1Y) of security price
and dividend processes is arbitrage-free if and only if

SN+ — g@ (Z NN“) (5.10)

Jj=t+1
i.e.
ﬂ — E9 ( i (5;'\“—1)
Roy t j=t+1 Ro,j

where Q is the unique equivalent martingale measure for (S,0).

In the special case where the discount rate is deterministic the expression
simplifies somewhat. For ease of notation assume that the spot interest rate
is not only deterministic but also constant and let R = 1 + p. Then (5.10)
becomes

N+1 t Q@ a 6N+1

j=t+1 0

T 5N+1
— Q J
- ()

j=t+1
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5.6 Omne-period submodels

Before we turn to applications we note a few results for which we do not
give proofs. The results show that the one-period model which we analyzed
earlier actually is very useful for analyzing multi-period models as well.

Given the market model with the N—dimensional security price process
S and dividend process ¢ and assume that a money market account exists as
well. Let A; € P, and let

N(At) = |{B € Pt_|_1 : B g At}| .

This number is often referred to as the splitting index at A;. In our
graphical representation where the set A; is represented as a node in a graph,
the splitting index at A; is simply the number of vertices leaving that node.
At each such node we can define a one-period submodel as follows: Let

7t A) = (1, 8HA), ..., SM(A) .

Denote by By, ..., By(a,) the members of P, which are subsets of A; and
define

1+ p,(A) e 1+ py(Ar)
D(t, A) = St (B1) ‘_"5?+1(Bl) P Sk (Bran) + 021 (Bn(an):
St]j—l(Bl) + 51]:11(31) Tt Sg_l(BN(At)) + 51{\4[-1(BN(A¢))

Then the following results hold:

Proposition 18 The security market model is arbitrage-free if and only if
the one-period model (n(t, Ay), D(t, Ay)) is arbitrage-free for all (t, Ay) where
At € Pt.

Proposition 19 The security market model is complete if and only if the
one-period model (w(t, Ay), D(t, Ay)) is complete for all (t,A;) where A; €
P;.

In the complete, arbitrage-free case we obtain from each one-period sub-
model a unique state price vector ¢(¢, A;) and by following the same proce-
dure as outlined in chapter (4) we may decompose this into a discount factor,
which will be 1+ p,(A;), and a probability measure gi, ..., gn(a,). The prob-
abilities thus obtained are then the conditional probabilities ¢; = Q(B; |A;)
for i = 1,...,N(A;). From these conditional probabilities the martingale
measure can be obtained.
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The usefulness of these local results is that we often build multi-period
models by repeating the same one-period structure.We may then check ab-
sence of arbitrage and completeness by looking at a one-period submodel
instead of the whole tree.

5.7 The multi-period model on matrix form

As a final curiosity we note that it is in fact possible to embed a multi-period
model into one giant one-period model by stacking the one-period submodels
defined above into a giant matrix. Instead of giving the abstract notation
for how this is done, we indicate for the two-period model of chapter (5) how
this is done. Consider the following table in which we have defined a set of
‘elementary securities’:

| [0 |11 12 [21 ][22 [23 |24 |
SO -1 R R 0 0 0 0
St —S|uS [dS |0 0 0 0
SO({WL(A)Q}) 0 —R 0 R2 R2 0 0

St{wi,we}) [0 | —uS |0 u?S | duS | 0 0
SO({C()g,W4}) 0 0 —-R 0 0 R2 R2
ST{wsz,ws}) [0 |0 —dS | 0 0 udS | d*S

Each elementary security is to be thought of as arising from buying the
security at one node and selling at the successor nodes. The pairs 1,1 ; 1,2 etc.
in the top row are to be read as date 1, partition element 1; date 1 partition
element 2, etc. Note that the setup is very much as in the application of
Stiemke’s lemma to one-period models in that we include negative prices for
one date and positive prices for the subsequent date. Define

-1 R R 0 0

-S uS dS 0 0
0 —R 0 R? R?
0 —uS 0 u’S duS 0
0 0 —R 0 0 R? R?
0 0 —-ds 0 0 wudS d?S

0 0
0 0
0 0

What you can check for yourself now is that we can define a trading
strategy as a vector 6 € R and then interpret D, as the dividend process
generated by the trading strategy. A self-financing strategy would be one for
which the dividend process was non-zero at all dates 1,...,7 — 1 (although

this could easily be relaxed to a definition of self-financing up to a liquidation
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date t < T'). Arbitrage may then be defined as a trading strategy generating
a positive, non-zero dividend stream. If the market is arbitrage-free, the
corresponding vector of state prices is an element of R” and if we normalize
the first component to be 1, the state prices correspond to time-zero prices
of securities delivering one unit of account at nodes of the tree.

We will not go further into this but note that it may be a useful way of
representing a multi-period model when one wants to introduce short-selling
constraints into the model.



