Chapter 4

Arbitrage pricing in a
one-period model

One of the biggest success stories of financial economics is the Black-Scholes
model of option pricing. But even though the formula itself is easy to use,
a rigorous presentation of how it comes about requires some fairly sophis-
ticated mathematics. Fortunately, the so-called binomial model of option
pricing offers a much simpler framework and gives almost the same level of
understanding of the way option pricing works. Furthermore, the binomial
model turns out to be very easy to generalize (to so-called multinomial mod-
els) and more importantly to use for pricing other derivative securities (i.e.
different, contract types or different underlying securities) where an extension
of the Black-Scholes framework would often turn out to be difficult. The flex-
ibility of binomial models is the main reason why these models are used daily
in trading all over the world.

Binomial models are often presented separately for each application. For
example, one often sees the ”classical” binomial model for pricing options on
stocks presented separately from binomial term structure models and pricing
of bond options etc.

The aim of this chapter is to present the underlying theory at a level
of abstraction which is high enough to understand all binomial /multinomial
approaches to the pricing of derivative securities as special cases of one model.

Apart from the obvious savings in allocation of brain RAM that this pro-
vides, it is also the goal to provide the reader with a language and framework
which will make the transition to continuous-time models in future courses
much easier.
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4.1 An appetizer.

Before we introduce our model of a financial market with uncertainty for-
mally, we present a little appetizer. Despite its simplicity it contains most
of the insights that we are about to get in this chapter.

Consider a one-period model with two states of nature, w; and wy. At
time ¢t = 0 nothing is known about the time state, at time ¢ = 1 the state is
revealed. State w; occurs with probability p. Two securities are traded:

e A stock which costs S at time 0 and is worth «.S at time 1 in one state
and dS in the other.

o A money market account which costs 1 at time 0 and is worth R at
time 1 regardless of the state.

Assume 0 < d < R < u. (This condition will be explained later.) We
summarize the setup with a graph:
R
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Now assume that we introduce into the economy a Furopean call option
on the stock with exercise price K and maturity 1. At time 1 the value
of this call is equal to (where the notation [y]* (or sometimes (y)*) means
max(y, 0))

S— K" ifw=uw
Ciwy=4 )
1(w) { [dS — K] if w = w,
We will discuss options in more detail later. For now, note that it can be

thought of as a contract giving the owner the right but not the obligation to
buy the stock at time 1 for K.
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To simplify notation, let C, = C1(w1) and Cy = C(ws). The question is:
What should the price of this call option be at time 0?7 A simple portfolio
argument will give the answer: Let us try to form a portfolio at time 0 using
only the stock and the money market account which gives the same payoff
as the call at time 1 regardless of which state occurs. Let (a,b) denote,
respectively, the number of stocks and units of the money market account
held at time 0. If the payoff at time 1 has to match that of the call, we must
have

a(uS) + bR = C,
a(dS) + bR = Cy

Subtracting the second equation from the first we get

alu—d)S =Cy, — Cy

ie.
. Cy,—Cy
~ S(u—d)
and algebra gives us
1 uCy — dC,
b= ———
R (u—d)

where we have used our assumption that u > d. The cost of forming the
portfolio (a,b) at time 0 is

(Cu - Cd) lqu - dCu )

Sw—d TR w=a '

R(Cu—Cd) luC’d—dC’u
R (u—d) R (u—d)
1 |R-d u—R

R [u—dcujL u—d

We will formulate below exactly how to define the notion of no arbitrage
when there is uncertainty, but it should be clear that the argument we have
just given shows why the call option must have the price

1 [R—d -
coz—[R Cu+ - Rcd]

i

u—d u—d

Rewriting this expression we get

R—-d\ C, u— R\ Cy
Co = <u—d>§+<u—d)f
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and if we let

_R-d
q_u—d
we get
Cu Ca
Co=q=2+(1-q)=2.
0 QR+( Q)R

If the price were lower, one could buy the call and sell the portfolio (a,b),
receive cash now as a consequence and have no future obligations except to
exercise the call if necessary.

Some interesting features of this example will be much clearer as we go
along:

e The probability p plays no role in the expression for Cj.

e A new set of probabilities

R—d u— R
=4 and 1_q_u—d

q

emerges (this time we also use that d < R < u) and with this set of
probabilities we may write the value of the call as

o r[Ef?

i.e. an expected value using ¢ of the discounted time 1 value of the
call.

e If we compute the expected value using ¢ of the discounted time 1 stock
price we find

S(w) R—d\ 1 u—RY\ 1
q — il — =
E [ R] (u_d>R(uS)+<u_d)R(dS) s
The method of pricing the call really did not use the fact that C', and Cjy

were call-values. Any security with a time 1 value depending on w; and wo
could have been priced.

4.2 The single period model

The mathematics used when considering a one-period financial market with
uncertainty is exactly the same as that used to describe the bond market in
a multiperiod model with certainty: Just replace dates by states.
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Given two time points £ = 0 and £ = 1 and a finite state space

Q=A{wy,...,ws}.

Whenever we have a probability measure P (or ()) we write p; (or ¢;) instead
of P ({wi}) (or @ ({w:})).

A security price system is a vector 7 € RV and an N x S matrix D where
we interpret the i’th row (d;,...,d;s) of D as the payoff at time 1 of the
i’th security in states 1,...,.5, respectively. The price at time 0 of the i’th
security is m;. A portfolio is a vector € RY whose coordinates represent the
number of securities bought at time 0. The price of the portfolio 8 bought
at time 0 is 7 - 6.

Definition 18 An arbitrage in the security price system (7, D) is a portfolio
0 which satisfies either

7-0<0€R and D' >0€eR®

or
7-0<0€R and D'O>0eR®

A security price system (m, D) for which no arbitrage ezists is called arbitrage-
free.

Remark 1 Our conventions when using inequalities on a vector in R¥ are
the same as described in Chapter 3.

When a market is arbitrage-free we want a vector of prices of ’elementary
securities’ - just as we had a vector of discount factors in Chapter 3.

Definition 19 o € Rfur (i.e. 1 > 0) is said to be a state-price vector for
the system (m, D) if it satisfies

™= D
Clearly, we have already proved the following in Chapter 3:

Proposition 6 A security price system is arbitrage-free if and only if there
exists a state-price vector.

Unlike the model we considered in Chapter 3, the security which pays 1
in every state plays a special role here. If it exists, it allows us to speak of
an ’interest rate’:
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Definition 20 The system (m, D) contains a riskless asset if there exists a
linear combination of the rows of D which gives us (1,...,1) € RY.

In an arbitrage-free system the price of the riskless asset dj is called the
discount factor and Ry = % is the return on the riskless asset. Note that
when a riskless asset exists, and the price of obtaining it is dy, we have

do =07 =0 Dy =ty + - + g

where 6, is the portfolio that constructs the riskless asset.
Now define y
i =—ti=1,...,8
qi do
Clearly, ¢; > 0 and 25:1 ¢; = 1, so we may interpret the g;’s as probabilities.
We may now rewrite the identity (assuming no arbitrage) m = D as follows:

1
7 = doDq = —Dgq, where ¢ = (g1, - - .,qg)T
Ry
If we read this coordinate by coordinate it says that

T = Ri (udi + ... + qsdis)
0
which is the discounted expected value using g of the i’th security’s payoff
at time 1. Note that since Ry is a constant we may as well say ”expected
discounted ...”.
We assume throughout the rest of this section that a riskless asset exists.

Definition 21 A security ¢ = (c1,...,cs) is redundant given the security
price system (m, D) if there exists a portfolio 0. such that D'0. = c.

Proposition 7 Let an arbitrage-free system (m, D) and a redundant security

c by given. The augmented system (%\, 13) obtained by adding 7. to the vector

7 and c € R® as a row of D is arbitrage-free if and only if

1
ﬂ'c:—(C]161+...+qS05)E’([)101+...+1/JSCS.

Ry
Proof. Assume 7, < 9,¢1 + ...+ ¥gcs. Buy the security ¢ and sell the
portfolio #.. The price of . is by assumption higher than 7., so we receive
a positive cash-flow now. The cash-flow at time 1 is 0. Hence there is an
arbitrage opportunity. If 7. > ;¢ + ... + 1 gcg reverse the strategy. B
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Definition 22 The market is complete if for every y € RS there erists a
0 € RN such that

D'9=y
i.e. if the rows of D (the columns of D' ) span RY.

Proposition 8 If the market is complete and arbitrage-free, there exists pre-
cisely one state-price vector 1.

The proof is exactly as in Chapter 3 and we are ready to do contingent
claims pricing! Here is how it is done in a one-period model: Construct a
set of securities (the D-matrix,) and a set of prices. Make sure that (7, D)
is arbitrage-free. Make sure that either

(a) the model is complete, i.e. there are as many linearly independent
securities as there are states

or

(b) the contingent claim we wish to price is redundant given (7, D).

Clearly, (a) implies (b) but not vice versa. (a) is almost always what is
done in practice. Given a ”contingent claim” ¢ = (cy, ..., cs). Now compute
the price of the contingent claim as

1 1<
7 (c) = R_OEq (c) = Ry ZQiCi
i=1

where ¢; = Z’—; = Ryv,;. The portfolio generating the claim is the solution to
D', = ¢, and since we can always in a complete model reduce the matrix
to an S x S invertible matrix without changing the model this can be done
by matrix inversion.

Let us return to our example in the beginning of this chapter: The security

price system is
1 R R
S )\ uS dS ’

For this to be arbitrage-free, proposition (6) tells us that there must be a
solution (¢,1,) with ¥, > 0 and 1, > 0 to the equation

(5)=(s as ) (30)

u # d ensures that the matrix (fg fs, ) has full rank. u > d can be
assumed without loss of generality. We find
R—d

%:R(u—d)
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u—R
Yy =
R (u—d)
and note that the solution is strictly positive precisely when v > R > d

(given our assumption that v > d > 0).
Clearly the riskfree asset has a return of R, and

R—d
qlszlz u—d
u— R
g2 = Ripy = vw—d

are the probabilities defining the measure ¢ which can be used for pricing.
Note that the market is complete, and this explains why we could use the
procedure in the previous example to say what the correct price at time 0 of
any claim (¢q, ¢2) should be.

4.3 The economic intuition

At first, it may seem surprising that the 'objective’ probability p does not
enter into the expression for the option price. Even if the the probability is
0.99 making the probability of the option paying out a positive amount very
large, it does not alter the option’s price at time 0. Looking at this problem
from a mathematical viewpoint, one can just say that this is a consequence of
the linear algebra of the problem: The cost of forming a replicating strategy
does not depend on the probability measure and therefore it does not enter
into the contract. But this argument will not (and should not) convince a
person who is worried by the economic interpretation of a model. Addressing
the problem from a purely mathematical angle leaves some very important
economic intuition behind. We will try in this section to get the economic
intuition behind this ’invariance’ to the choice of p straight. This will provide
an opportunity to outline how the financial markets studied in this course fit
in with a broader microeconomic analysis.

Before the more formal approach, here is the story in words: If we argue
(erroneously) that changing p ought to change the option’s price at time 0,
the same argument should also lead to a suggested change in Sy. But the
experiment involving a change in p is an experiment which holds Sy fized.
The given price of the stock is supposed to represent a ’sensible’ model of the
market. If we change p without changing Sy we are implicitly changing our
description of the underlying economy. An economy in which the probability
of an up jump p is increased to 0.99 while the initial stock price remains
fixed must be a description of an economy in which payoff in the upstate has
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lost value relative to a payoff in the downstate. These two opposite effects
precisely offset each other when pricing the option.

The economic model we have in mind when studying the financial market
is one in which utility is a function of wealth in each state and wealth is
measured by a scalar (kroner, dollars, ...). Think of the financial market
as a way of transferring money between different time periods and different
states. A real economy would have a (spot) market for real goods also (food,
houses, TV-sets, ...) and perhaps agents would have known endowments of
real goods in each state at each time. If the spot prices of real goods which
are realized in each state at each future point in time are known at time 0,
then we may as well express the initial endowment in terms of wealth in each
state. Similarly, the optimal consumption plan is associated with a precise
transfer of wealth between states which allows one to realize the consumption
plan. So even if utility is typically a function of the real goods (most people
like money because of the things it allows them to buy), we can formulate
the utility as a function of the wealth available in each state.

Consider' an agent who has an endowment e = (ey,...,es) € R]. This
vector represents the random wealth that the agent will have at time 1. The
agent has a utility function U : RS — R which we assume to be concave,
differentiable and strictly increasing in each coordinate. Given a financial
market represented by the pair (7, D), the agent’s problem is

m;%xU(e + Do) (4.1)

st. 70 < 0.

If we assume that there exists a security with a non-negative payoff which
is strictly positive in at least one state, then because the utility function
is increasing we can replace the inequality in the constraint by an equality.
And then the interpretation is simply that the agent sells endowment in some
states to obtain more in other states. But no cash changes hands at time 0.
Note that while utility is defined over all (non-negative) consumption vectors,
it is the rank of D which decides in which directions the consumer can move
away from the initial endowment.
Now make sure that you can prove the following

Proposition 9 If there exists a portfolio 0 with D0 > 0 then the agent can
find a solution to the mazimization problem if and only if (m, D) is arbitrage-
free.

LThis closely follows Darrell Duffie: Dynamic Asset Pricing Theory. Princeton Univer-
sity Press. 1996
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The ’only if’ part of this statement shows how no arbitrage is a necessary
condition for existence of a solution to the agent’s problem and hence for the
existence of equilibrium for economies where agents have increasing utility
(no continuity assumptions are needed here). The ’if’ part uses continuity
and compactness (why?) to ensure existence of a maximum, but of course to
discuss equilibrium would require more agents and then we need some more
of our general equilibrium apparatus to prove existence.

The important insight is the following (see Proposition 1C in Duffie
(1996)):

Proposition 10 Assume that there exists a portfolio @ with D70 > 0. If
there exists a solution 6" to (4.1) and the associated optimal consumption
is given by ¢* = e+ DT0* >> 0, then the gradient VU(c*) (thought of
as a column vector) is proportional to a state-price vector. The constant of
proportionality is positive.

Proof. Since c¢* is strictly positive, then for any portfolio 8 there exists
some k() such that ¢* + DT > 0 for all  in [—k(f), k(0)]. Define

go - [=k(0), k(0)] — R

as
g9(a) =U(c" + aDTQ)

Now consider a § with 770 = 0. Since ¢* is optimal, g must be maximized
at a = 0 and due to our differentiability assumptions we must have

95(0) = (VU(c")) ' D0 =0.

We can conclude that any 6 with 76 = 0 satisfies (VU (c*)) " D70 = 0. Trans-
posing the last expression, we may also write T DVU(c*) = 0. In words, any
vector which is orthogonal to 7 is also orthogonal to DVU(c*). This means
that um = DVU(c*) for some p showing that U(c*) is proportional to a
state-price vector. Choosing a 8% with DT > 0 we know from no arbitrage
that 7' > 0 and from the assumption that the utility function is strictly
increasing, we have VU(c*)D 6" > 0. Hence p must be positive. W

To understand the implications of this result we turn to the special case
where the utility function has an expected utility representation, i.e. where
we have a set of probabilities (p,...,ps) and a function u such that
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In this special case we note that the coordinates of the state-price vector
satisfy

¥, = dpiu'(cf), i=1,...,8. (4.2)

where ) is some constant of proportionality. Now we can state the economic
intuition behind the option example as follows (and it is best to think of
a complete market to avoid ambiguities in the interpretation): Given the
complete market (7, D) we can find a unique state price vector . This state
price vector does not depend on p. Thus if we change p and we are think-
ing of some agent out there ’justifying’ our assumptions on prices of traded
securities, it must be the case that the agent has different marginal utili-
ties associated with optimal consumption in each state. The difference must
offset the change in p in such a way that (4.2) still holds. We can think
of this change in marginal utility as happening in two ways: One way is to
change utility functions altogether. Then starting with the same endowment
the new utility functions would offset the change in probabilities so that the
equality still holds. Another way to think of state prices as being fixed with
new probabilities but utility functions unchanged, is to think of a different
value of the initial endowment. If the endowment is made very large in one
state and very small in the other, then this will offset the large change in
probabilities of the two states. The analysis of the single agent can be carried
over to an economy with many agents with suitable technical assumptions.
Things become particularly easy when the equilibrium can be analyzed by
considering the utility of a single, ’representative’ agent, whose endowment
is the sum of all the agents’ endowments. An equilibrium then occurs only if
this representative investor has the initial endowment as the solution to the
utility maximization problem and hence does not need to trade in the market
with the given prices. In this case the aggregate endowment plays a crucial
role. Increasing the probability of a state while holding prices and the utility
function of the representative investor constant must imply that the aggre-
gate endowment is different with more endowment (low marginal utility) in
the states with high probability and low endowment (high marginal utility)
in the states with low probability. This intuition is very important when we
discuss the Capital Asset Pricing Model later in the course.

A market where we are able to separate out the financial decisions as
above is the one we will have in our mind throughout this course. But do keep
in mind that this leaves out many interesting issues in the interaction between
real markets and financial markets. For example, it is easy to imagine that an
incomplete financial market (i.e. one which does not allow any distribution
of wealth across states and time periods) makes it impossible for agents to
realize consumption plans that they would find optimal in a complete market.
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This in turn may change equilibrium prices on real markets because it changes
investment behavior. For example, returning to the house market, the fact
that financial markets allows young agents to borrow against future income,
makes it possible for more consumers to buy a house early in their lives. If
all of a sudden we removed the possibility of borrowing we could imagine
that house prices would drop significantly, since the demand would suddenly
decrease.



