Chapter 4

Bond Price Volatility: Duration
and Convexity
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Can anyone measure the ocean by handfuls

or measure the sky with his hands?
—lsaiah 40:12

Understanding how bond price and interest rate move with respect to each other is
key to risk management of interest rate-sensitive securities. This chapter focuses on bond
price volatility, which measures the extent of price movements when interest rates move.
Two classic notions, duration and convexity, will be introduced for this purpose. A few

applications of duration in risk management will also be presented.

4.1 Price Volatility

The sensitivity of the percentage bond price change to changes in interest rates, (0P/P)/0dy,
is what people have in mind for the price volatility. The degree of volatility is signified by
the absolute value of (0P/P)/dy. For example, a bond with (0P/P)/dy = —200 is more
volatile than one with (0P/P)/dy = 100. The sign of (0P/P)/dy says about the direction
of price changes with respect to interest rate changes. It is also not hard to see that
(0P/P)/dy < 0 for bonds without embedded options.
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For coupon bonds,

aP/P _ (Clyyn—(C/y*) (1+ )" = (1 +y)) —nF

dy Oy (+y T —(+y)+F(Q+y (4.1)

where n is the number of periods before maturity, ¥ is the period required yield, F is the
par value, and ' is the coupon payment. In the above, C, I/, and n must be independent
of y; in other words, the cash flow should not be linked to interest rates or yields [280].

Price volatility increases as the coupon rate decreases, other things being equal. Fig-
ure 4.1 demonstrates this point clearly. As a consequence, zero-coupon bonds have the
greatest volatility for a given maturity, and bonds selling at a deep discount will have
greater volatility than those selling near or above par. Figure 4.1 also shows another impor-
tant characteristic: Price volatility increases as the required yield decreases, other things
being equal. So, bonds traded with higher yields have less volatility.

Figure 4.1: VOLATILITY WITH
RESPECT TO COUPON RATE AND
REQUIRED YIELD. Plotted is the
percentage price change per percent-
age change in the required yield,
or (OP/P)/0y. Bonds are assumed
to pay semiannual coupon payments
with a maturity date of September
15, 2000. The settlement date is
~*coupon September 15, 1995. Note that the
degree of volatility is related to the
magnitude of the value on the z-axis
in the above graph.
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Price volatility typically increases as the term to maturity becomes higher. That is,
bonds with longer maturity have more price volatility, other things being equal. This is
consistent with the preference for liquidity and with the empirical fact that long-term bond
prices are more volatile than short-term ones. The yields of long-term bonds, however, are
less volatile than those of short-term bonds [185]. Price volatility typically increases (but
at a decreasing rate) with term to maturity as shown in Fig. 4.2. The above statement can
be violated in extreme cases. Figure 4.3, for example, shows an example which goes against

this typical trend of increasing volatility for longer maturity.

4.2 Duration

The Macaulay duration, first proposed in 1938 by Macaulay [541], is defined as the
weighted average of the terms to maturity of a security’s cash flows with the weights being

each cash flow’s present value as a percentage of the security’s full price. Formally, it is
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Figure 4.2: VOLATILITY WITH RESPECT
TO TERMS TO MATURITY. Plotted is the
percentage bond price change per percent-
age change in the required yield at various
remaining terms to maturity. The annual
coupon rate is 10%, with coupons paid semi-
annually. The yield to maturity is identical
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Figure 4.3: VOLATILITY WITH RESPECT
TO TERMS TO MATURITY: AN ANOMALY.
The annual coupon rate is 10%), with coupons
paid semiannually, and the yield to maturity
is 40% (a deep discount bond). The remain-
ing terms to maturity are measured in half-
years. The rest follows Fig. 4.2.

to the coupon rate.

defined as .
MD = % 3 L
i=1 (1+y)
where n is the number of periods before maturity, y is the period interest rate or the
required yield, C; is the cash flow at time 7, and P is the price of the security. Clearly,
the Macaulay duration (in periods) is equal to

MD = —(1+y) 2= (4.2)

This simple relationship was discovered by Hicks in 1939 [200, 451]. In particular, the
Macaulay duration for option-free bonds is

1 (. C F
MD:F<;Z(1+y)i+n(1+y)n). (4.3)

Comment 4.2.1 We emphasize that the above equations hold only if the coupon C, the
par value F’, and the maturity n are independent of the yield w; in other words, the cash
flow is not affected by changes in the yield. O

Based on (4.3), it is not hard to show that

MD:c(1+y)((1+y)”—1)+ny(y—6)7 (4.4)

cy((T+y)" —1) +y?

where ¢ is the period coupon rate [303]. The above equation reduces to

(I+y) (A+y"-1)
y(1+y)"

MD =
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when ¢ = y. As another example, the Macaulay duration of a zero-coupon bond is n
(corresponding to ¢ = 0), exactly its term to maturity. In general, the Macaulay duration
of a coupon bond is less than its maturity. In fact, (4.4) says the Macaulay duration of a
coupon bond approaches (1+ y)/y as the maturity increases, independent of the coupon
rate.

To convert the Macaulay duration to be year-based, modify (4.3) thus,

1 ) C n F
e (Z (it (/m) BT <y/k>>n) |

where y is the annual yield, and k is the compounding frequency per annum. Now (4.2)

becomes

MD:—(1+3)

ap/P
L) -

dy

Note that
MD (in periods)

k
Although the Macaulay duration has its origin in measuring the length of time a bond

MD (in years) =

investment is outstanding, it should be seen mainly as measuring the sensitivity of price
to change in market yield, that is, price volatility [303]. As a matter of fact, many, if not
most, duration-related terminology cannot be comprehended otherwise. A related measure
is modified duration defined as

modified duration = _op/p __MD . (4.5)
dy  (1+y)

The rightmost equality above is valid if the cash flow is independent of changes in interest

rates (see Comment 4.2.1). Modified duration is clearly positive for option-free bonds. It
can be easily checked that the modified duration of a portfolio equals

Z w; D, (4.6)

where D; is the modified duration of the ith asset, and w; is the market value of that asset
expressed as a percentage of the market value of the portfolio. To measure the modified
duration by the year, (4.5) should be changed to
MD (in years)

1+ (y/k)

where y is the annual yield, and k is the payment frequency per annum.

modified duration =

Taylor’s expansion implies the following approximation formula
percentage price change ~ —modified duration X yield change. (4.7)

Mathematically speaking, the modified duration is simply the negation of the first derivative
of the bond price with respect to yield divided by the price. As an example, the modified
duration of an option-free bond, whose cash flow is hence fixed, is equal to minus (4.1).
The value is also equal to (4.4) divided by (1+4y) and with the substitution ¢ = C/F. See
Fig. 4.4 for illustration.
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Figure 4.4: MODIFIED DURATION
WITH RESPECT TO COUPON RATE
AND REQUIRED YIELD. The bond is
identical to the one in Fig. 4.1.

Example 4.2.2 Consider a bond whose modified duration is 11.54 with a yield of 10%.
This means that, if yields increase instantaneously from 10% to 10.1%, the approximate
percentage price change would be —11.54 x 0.001 = —0.01154, or —1.154%. a

Cash flows of securities with an embedded option depend on interest rate movements.
The duration measures introduced up to now are hence inappropriate for them. To see this
point, suppose the required yield decreases. The Macaulay duration will be lengthened.
However, for securities whose cash flows actually increase as a result of yield decline, the
Macaulay duration may decrease. For this reason, the Macaulay duration should be used
only for securities whose cash flows do not change with yields.

A general formula to measure volatility is

P —P

Polyy —y-)’ (48

where P_ is the price if yield is decreased by Ay, Py is the price if yield is increased by
Ay, Fy is the initial price, y is the initial yield, y+ = y+ Ay, y— =y — Ay, and Ay is suf-
ficiently small. This is called effective duration. A less accurate, albeit computationally
economical formula for effective duration is to use forward difference
Py - F
Fy Ay

instead of the central difference in (4.8). Effective duration is most useful in cases where
yield changes alter the cash flows and where the cash flows are so complex that simple
formulae such as (4.1) are unavailable. This duration measure strengthens our contention
that duration should be looked upon as a measure of volatility and not average term to
maturity. In fact, it is possible for the duration of a security to be longer than its maturity
or even negative [279].

In principle, one can compute the effective duration of almost any financial instrument.
The prices Py and P_ are usually expected values themselves. One particular methodology
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that takes into account the option features of securities, called the option-adjusted spread
(OAS), gives rise to the option-adjusted spread duration [47, 288]. We will return to
this topic later in the book.

4.2.1 Continuous compounding

Under continuous compounding, the formula for duration is slightly changed. To start
with, the price of a bond is now P =Y. Cie” " where t; denotes the time when payment
C; is made. Since duration measures the average time before a bond holder receives cash

payments, we have

. El tiCie_y“ 8P/P

duration (continuous compounding) = = 4.9
( pounding) = 21 - (1.9

Unlike the Macaulay duration in (4.2), the extra 1+ y term disappears.
Example 4.2.3 The duration of an n-period zero-coupon bond is n. a

For the rest of the book, we shall mean by duration the mathematical expression

—(0P/P)/0y or its approximation, effective duration. As a consequence,
percentage price change =~ —duration X yield change. (4.10)

The principal applications of duration are in hedging and asset/liability matching [47].

4.2.2 Applications to immunization

Suppose a fund manager has a liability in the future. Buying coupon bonds to meet that
liability incurs certain risks which are missing from zero-coupon bonds. If the interest rate
rises subsequent to the purchase, then the interest on interest from the reinvestment of the
coupon payments will increase. But, assuming the investment horizon is shorter than the
maturity of the bond, a capital loss will occur for the sale of the bond. The reverse is
true if the interest rate falls. The result is uncertainty in meeting future liabilities. Such a
situation naturally arises when, for example, a bank issues certificates of deposit and has to
invest the proceeds in such a way that the future value can cover the liabilities whichever
way the interest rate moves. Can one find a bond or a bond portfolio that is immunized
against interest rate changes?

A portfolio is said to be immunized for a holding period if its value at the end of the
period, for any rate movement during the holding period, is at least as large as it would have
been had the interest rate remained constant during the period. The idea of immunization
is due to Redington in 1952 [638].

Amazingly, the answer to the above question is as elegant as it is simple: Construct a
bond or a bond portfolio whose Macaulay duration is equal to the length of the investment
horizon and whose present value is equal to the present value of the single future liability
[305]. This means a liability of $100,000 twelve years from now should be matched by a
portfolio with a Macaulay duration of twelve years and with a future value of $100,000.
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When these two conditions are satisfied, losses from the interest on interest will be compen-
sated by gains in the sale price when the interest rate falls, and losses from the sale price
will be compensated by the gains in the interest on interest when the interest rate rises.

Figure 4.5 illustrates the connection between Macaulay duration and immunization.

Figure 4.5: VALUES OF AN 8%, 15-
YEAR BOND UNDER THREE INTEREST
RATE SCENARIOS. Plotted is the value of
an 8%, 15-year bond at every period un-
6%  til maturity when the interest rate is un-
changed at 8% (solid line), increased by
25% instantaneously to 10% (dashed line),
and decreased by 25% instantaneously to
6% (dotted line). At the time which cor-
responds to the Macaulay duration m =
17.9837 (half years), the curves converge.
At any time before m, a rate decline adds

10%
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to the return and a rate increase subtracts
from the return; the opposite holds at any
time after m. The Macaulay duration cor-
responds to that point in time at which
small interest rate changes now will leave
the future value relatively unchanged [89).

The above claim can be verified as follows. Suppose the liability is a certain L at time
m and the current interest rate is y. We are looking for a coupon bond such that

(1) its future value, FV,is L at time m;
(2) 9FV/0y = 0;
(3) FV is convex for all y > 0.

Condition (1) says the bond has to meet the obligation. Conditions (2) and (3) say the
obligation has to be met whichever way the interest rate moves. These conditions together
mean the liability L is the bond’s minimum future value: The bond’s future value will be
at least L at the investment horizon.
Let
FV=L=01+y™P

and P be the present value of L discounted at the current interest rate y. Now,

aFV _ m—1 ma_P
a—y_m(l—}—y) P+ (1+4y) R (4.11)

The condition 9FV/dy =0 leads to

aP/P

(4.12)
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This simple identity says the Macaulay duration is equal to the length of the investment
horizon m. The y that satisfies (4.12) is called a critical point. Finally, since

F
FV = )

we have

82FV_Z”:(m—i)(m—i—1)C (m—n)(m—n-1F (4.13)

ot (T (ymz

which is positive for y > —1 because (m — t)(m — i+ 1) is either zero or positive. Note
that 'V is convex for every y > —1, not just around the critical point where the Macaulay
duration is equal to the investment horizon. As a result, the critical point is actually the
global minimum of FV for y > —1 (see Fig. 4.6). Hence (3) is satisfied automatically.

Fori zon price Figure 4.6: IMMUNIZATION AND IN-

400 VESTMENT HORIZON. Plotted is the fu-
350 ture value of a bond at the investment hori-
300 zon. The yield at which the graph is min-
250 imized equates the bond’s Macaulay dura-
200 tion with the horizon. In this example, the
bond pays semiannual coupons at an annual
rate of 10% for 30 years. The investment
horizon is ten years. The future value 1s
50 minimized at y = 9.90878%. One can ver-

Yield ify that the Macaulay duration at the an-
nual yield of 9.90878% is exactly 10 years.
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100
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We conclude that, for a portfolio whose Macaulay duration is equal to the investment
horizon, its future value at the horizon can only increase if the interest rate moves. Note
that this is true regardless of the direction and the size of the change in the interest rate,
as long as the rate remains positive. The implication for immunization is thus established.

If there is no single bond whose Macaulay duration matches our liability, a portfolio of
bonds will do. Suppose we look for a portfolio of two bonds A and B which gives the
Macaulay duration sought for. Mathematically, we solve the following set of linear equations

1 = wap+wp

(4.14)
D = wsDs+wpDp

for wy and wpg, where D; is the Macaulay duration of bond 7 and w; is the (to be
determined) market value of bond ¢ expressed as a percentage of the market value of the
portfolio. That this works follows from (4.6).

We have been dealing with immunizing a single liability. The extension to multiple lia-
bilities can be carried along the same line. But we make a few comments first. Conditions
(1)—(3) still constitute the sufficient conditions for immunization. However, the convexity
condition (3) no longer holds automatically. In fact, even if it happens to hold near the

current interest rate y, it may not hold globally for all y > 0 as before, rendering the
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immunization valid merely for small interest rate movements. We illustrate this point by
an example. Consider a liability stream with two payments. Employ the above analysis to
immunize this liability stream using a zero-coupon bond with a matching Macaulay dura-
tion. Suppose the first liability is due imminently and the interest rate rises instantaneously.
Since a zero-coupon bond does not have interest income, the higher rate lowers the asset
value without helping it to meet the second liability. As a result, depending on the mag-
nitude of the interest rate movement, the second liability may not be met when viewed at
that point in time.

Let there be liabilities of size L; at time ¢ and cash inflows A; at time ¢. The net

present value of these cash flows is

P= Z(AZ» — L)1 +y)~".

Conditions (1)-(3) require that P = 0, dP/dy = 0, and d?P/dy* > 0 for y > 0, re-
spectively. These three requirements guarantee that the cash inflows suffice to cover the
liabilities no matter how the rate moves instantaneously, as long as it remains non-negative.
If condition (3) is relaxed to “d?P/dy* > 0 for the critical point y,” a more likely event,
then the immunization is valid only for a small rate movement around the current rate y.
In this more general setting, the distribution of durations of individual assets must have a
wider range than that of the liabilities to achieve immunization (see Exercise 4.2.9).

Of course, a stream of liabilities can always be immunized with a matching stream of
zero-coupon bonds. This is called cash matching, and the resulting portfolio of bonds is
called dedicated portfolio [699]. There are two problems with this approach: Zero-coupon
bonds may be missing for certain maturities, and they typically carry lower yields.

Immunization is a dynamic process. Once established, it has to be rebalanced con-
tinuously to ensure that the Macaulay duration is equal to the remainder of the horizon.
There are three reasons. First, the Macaulay duration decreases as time passes, and, except
for zero-coupon bonds, the decrement is not equal to the decrement in terms to maturity
[185]. This phenomenon is called duration drift [213]. This point can be easily seen by
considering a coupon bond whose Macaulay duration matches the investment horizon. This
bond’s maturity date hence lies beyond the investment horizon. At horizon, the remaining
term to horizon reaches zero, but the bond’s duration is still positive. Hence, immunization
needs to be re-established even if interest rate never changes. Another reason is that inter-
est rate will fluctuate during the holding period, while in our derivation of the conditions
for immunization, it was assumed that interest rate changes instantaneously after immu-
nization is established and then stays there. One further reason for the need of rebalancing
arises from the possibility that the duration of assets and liabilities may not change at the
same rate [596].

Comment 4.2.4 In Comment 4.2.1, it was asserted that Macaulay duration (4.2) is ap-
plicable only when the cash flow does not depend on interest rates. The steps leading to
(4.12), however, can be used to generalize the concept of Macaulay duration as the point in
time at which the future value of the security is immune to changes in interest rate today.
Figure 4.5 demonstrates this point clearly. O
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In the absence of interest rate changes, it suffices to match the present values of the
future liability and the investment. To see this point, assume again the liability is L at
time m. The present value is therefore L/(1+4 y)™. A coupon bond with an equal present
value will grow to be exactly L at time m. In fact, it is not hard to show that, at any point
in time, the present value of the bond plus the cash incurred by reinvesting the coupon
payments exactly matches the present value of the liability. It was assumed above that the
yield per period y does not change over time, and all the coupon payments were reinvested
at the same yield.

When the duration of the liabilities and that of the assets are mismatched, adverse
interest rate movements can quickly wipe out the equity. A bank that finances long-term
mortgage investments with short-term credit from the savings accounts runs such a risk.
Other institutions that require duration matching are pension funds and life insurance
companies [666].

4.2.3 Macaulay duration of floating-rate instruments

A floating-rate instrument makes interest rate payment based on some publicized index,
such as the prime rate, LIBOR (London Interbank Offered Rate), the U.S. Treasury bill rate,
the constant maturity Treasury rate, or the Cost of Funds Index [303]. Instead of being
locked into a set number, the coupon rate is reset periodically to reflect the prevailing
market interest rate. Herein lies their attractiveness, especially in periods of abnormally
high interest rates.

Start with the simple case where the coupon rate ¢ equals the market yield y. For
simplicity, we work in period rates instead of annual rates and, without loss of generality,
assume the principal is $1. The cash flow is therefore

n

W,y -y y+ 1),

This cash flow implies the instrument is priced at par.

Suppose the first reset date is j periods from now where 0 < 7 < n — 1, and reset will
be performed thereafter. This means the coupon payment at time j+1 starts to reflect the
market yield. For example, if 7 = 0, every coupon payment reflects the prevailing market
interest. On the other hand, if j = 1, a more typical case, interest rate movements during
the first period would not affect the first coupon payment. The cash flow can be seen as

i nd
N
(C7C7"'7C7y7"'7y7y+1)7

where c¢ is a constant and y = c.
The Macaulay duration of such a floating-rate instrument is therefore

aP/P &y Ny 1 1
—(14y) By ey = ;(2 (1+y)l’) i;rl (’ (I+y)? (Hy)“l) +n(1+y)”
- u 1 _(+y(-0+y7)

i=j+1
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where MD is the Macaulay duration of an otherwise identical fixed-rate instrument. For-
mulae for the general case are more complex but do not involve new ideas [303].

The first thing to note is that the duration is independent of n, the maturity of the
bond. Floating-rate instruments are typically less sensitive to interest rate changes than
fixed-rate instruments. Furthermore, the more distant the first reset date, the more volatile
the instrument, which is intuitively obvious. In the limiting case of j = 0, the duration
becomes zero. If every coupon is adjusted to reflect the market yield, then there is no interest
rate risk. In the typical j = 1 case, the duration is only one (period). In comparison, a
bond that pays 5% per period for 30 periods has a duration of 16.14 periods, or roughly
eight years if this 15-year bond pays semiannual interest. The above observations partially
explain the attractiveness of floating-rate instruments.

4.2.4 Applications to hedging

Hedging aims at offsetting the price fluctuations of the position to be hedged by the hedging
instruments in the opposite direction, leaving the overall wealth relatively unchanged [189].
Since a change in the market interest rate may not bring about the same yield changes in
different instruments, we define yield beta to be

change in yield for the hedged security

ield beta = — —— )
yield beta change in yield for the hedging instrument

which measures their relative yield changes. Define dollar duration as

: o : _ : P

dollar duration = modified duration X initial price (% of par) = ~ 0

Y
where y is the yield and P is the price as a percentage of par. A tangent on the price-yield
curve such as the one shown in Fig. 3.8 therefore denotes the dollar duration at a given
yield (modulo the sign). The approximate dollar price change per $100 of par value can

then by computed by
price change ~ —dollar duration X yield change.

The related price value of a basis point or simply basis point value (BPV), defined
as the dollar duration divided by 10,000, measures the price change for a one basis-point
change in the interest rate. One basis point equals 0.01%.

The hedge ratio is defined as

b dollar duration of the hedged security

ield beta. 4.1
dollar dration of the hedging security X yield beta (4.16)

Hedging is accomplished when the value of the hedging security is h times that of the
hedged security since, then,

dollar price change of the hedged security
= —hedge ratio X dollar price change of the hedging security.
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Example 4.2.5 Suppose an investor wants to hedge bond A with a duration of seven using
bond B with a duration of eight. For simplicity, assume the yield beta is one and both
bonds are selling at par. The hedge ratio is hence 7/8. This means an investor who is long

$1 million of bond A should short $7/8 million of bond B. O

4.3 Convexity

Recall
percentage change in price (AP/P) = — duration X yield change.

The above formula works for very small yield changes. To provide better approximations
when yield changes are larger, second-order terms in the Taylor expansion are needed,

ENO_PE _|_182P1(A)2
P Ty P YT 29 PR
If we define convexity as

*P 1
ity (i iods) = — — 4.17
convexity (in periods) 9y7 P’ (4.17)

then the improved approximation formula becomes

AP

: 1 :
7~ —duration X Ay + 3 % convexity x (Ay)?.

See Fig. 4.7 for illustration.

Price

250 Figure 4.7: LINEAR AND QUADRATIC AP-
PROXIMATIONS TO BOND PRICE CHANGES.

200 The dotted line is the result of duration-based
approximation, while the dashed line, which

150 fits better, utilizes the convexity information.
The bond in question has 30 periods to matu-

100 rity with a period coupon rate of 5%, and the
current yield is 4% per period.

50
0.02 0.04 0.06 008" ¢ d

Convexity should be considered in computing the price change when the magnitude of
the interest rate change is non-negligible. Graphically, convexity measures the curvature
of the price-yield relationship. Convexity measured in periods and convexity measured in
years are related by

convexity (in periods)

k? ’

convexity (in years) =

where k is the payment frequency.
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Convexity is related to duration. Define dollar convexity as

: L o*pP
dollar convexity = convexity x initial price (% of par) = e
)
Since dollar duration equals —dP/dy, dollar convexity measures the rate of change of dollar

duration,

d(dollar duration)
dy '

dollar convexity = —
The convexity of an option-free bond equals

1

P

Y

“ C F
26+ ot ) e

which can be simplified to

1rr20c /. 1 3 2Cn nn+1)(F - (Cly))
P[y3 (1 <1+y)n) T T L N (E R ]

(4.18)

This formula makes computing convexity easy.

The convexity of an option-free bond is clearly positive. As a consequence, the per-
centage price change is always positive whether the interest rate movement is up or down.
Positive convexity is a plus for an investor who is long bonds because the price does not
decline as much when the interest rate increases and it increases more than proportionately
when the interest rate decreases. In other words, the price rises more for a given rate decline
than it falls for a similar rate increase. Hence, among two bonds with the same duration,
the one with a higher convexity is more valuable, other things being equal.

In analogy with (4.9), the convexity under continuous compounding is

_Yiti GV 9*P/P

convexity (continuous compounding) = 2 g7

where ; denotes the time when the cash flow C; occurs. This formulation assumes C;
is independent of yield y. It can be shown that the convexity of an option-free bond
increases as its coupon rate decreases (see Exercise 4.3.4). Furthermore, for a given yield
and duration, the convexity decreases as the coupon decreases [283].

A general formula for convexity is

Py + P —2P,
Py (0.5 (y4 — y-))*

where P_ is the price if yield is decreased by Ay, Py is the price if yield is increased by

(4.19)

Ay, Fy is the initial price, y is the initial yield, y+ = y+ Ay, y— = y — Ay, and Ay
is sufficiently small. (Note that (y4+ —y-)/2 = Ay.) This is called effective convexity.
Effective convexity becomes essential when, for example, a bond’s cash flow is interest
rate-sensitive.
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4.3.1 Immunization and convexity

The two-bond immunization scheme in §4.2.2 clearly shows that many two-bond portfolios
(equivalently, (D4, Dp) pairs) satisfy the linear equations of (4.14). The question naturally
arises as to which pair is to be preferred.

As convexity is a desirable feature, we turn the question into one of maximizing the
portfolio convexity among all the duration-matched portfolios. Let there be n kinds of
bonds available with bond ¢ having duration D; and convexity ;. We shall be solving

the following constrained optimization problem,

Maximize w1 Cy + weCo + -+ -+ w,C,,
subject to l=w +wy+ -+ w,

D =wi Dy +we Dy + -+ -+ w, D,y

0< DI <Dy <Dy< <Dy <Dy

The function to be optimized, wiCh 4+ woCy+- - -+w,C),, is called the objective function,
and the other equalities and inequalities make up the constraints. Note that, typically,
D; = 0 (cash) and D, = 30 (30-year zeros). We shall further impose 0 < w; < 1.
Incidentally, the above optimization problem is also a linear programming problem as
all the functions are linear. The optimal solution usually implies a barbell portfolio,
so called because the portfolio contains bonds at the two extreme ends of the duration
spectrum (see Exercise 4.3.6). Many fundamental problems in finance and economics are
best cast as optimization problems [214, 239, 243, 791].

4.4 Concluding Remarks and Additional Reading

Duration and convexity measure the risk of changes in interest rate levels. Other types of
risks such as the frequency of large movements in interest rates are ignored [533]. They
furthermore assume parallel shifts in the yield curve, whereas yield changes are not always
parallel in reality (we will say more about this issue in Chapter 5).

Closed-form formulae for duration and convexity can be found in [83, 178]. See [451] for
a penetrating review. Additional immunization techniques can be found in [175, 283, 479].
See [182, 243, 477] for more information on linear programming.



