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18.2 Monte Carlo Simulation

Monte Carlo simulation is a sampling scheme. In many important applications within
finance and without, Monte Carlo simulation is one of the few viable tools. It is also one of
the most important elements of studying econometrics [573]. When the time evolution of
a stochastic process is not easy to describe analytically, Monte Carlo simulation may very
well be the only strategy that succeeds consistently [400].

Assume Xi,Xs,...,X, have a joint distribution and 6 = E[g(X1, X2,...,X,)] for
some function g is desired. We generate

n

(mgi),xgi),... ,x(i)) , 1<i<N
independently with the same joint distribution as (X1, Xs,...,X,) and set
Yi=g (xg'L)awgl)a s awg)) :

Now, Y1,Y5,...,Yy are independent and identically distributed random variables, and
each Y; has the same distribution as Y = ¢g(X3, Xo,...,X,). Since the average of these
N random variables, Y, satisfies E[Y ] = 0, it can be used to estimate #. In fact, the
strong law of large numbers says that this procedure converges almost surely [724].
The number of replications (or independent trials), N, is called the sample size.

Example 18.2.1 To evaluate the definite integral fab g(z) dxz numerically, consider the ran-
dom variable Y = (b — a) g(X), where X is uniformly distributed over [a,b]. Note that
Prob[X <z]=(z —a)/(b—a) for a <z <b. Since

b T b
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any unbiased estimator of E[Y ] can be used to evaluate the integral. O

The Monte Carlo estimate and true value may differ owing to two reasons: sampling
variation and the discreteness of the sample paths. The former can be controlled by the
number of replications as we shall see shortly, and the latter can be controlled by the number
of observations along the sample path [151].

The statistical error of the sample mean Y of the random variable Y grows as 1/vN
because Var[Y ] = Var[Y ]/N. In fact, this convergence rate is asymptotically optimal by
the Berry-Esseen theorem [429]. As a result, the variance of the estimator Y can be
reduced by a factor of 1/N by doing N times as much work [747]. This property is amazing
because the same order of convergence holds independent of the dimension n. In contrast,
classic numerical integration schemes have an error bound of O(N—¢/") for some constant
¢ > 0. The required number of evaluations thus grows exponentially in n to achieve a given
level of accuracy. This is the familiar curse of dimensionality. The Monte Carlo method,
for example, is more efficient than alternative procedures for securities depending on more
than one asset, the multivariate derivatives [553].

The statistical efficiency of Monte Carlo simulation can be measured by the variance
of its output. If this variance can be lowered without changing the expected value, fewer
replications are needed. Methods that improve efficiency in this manner are called variance
reduction techniques. Such techniques, covered in §18.2.3, become practical when the
added costs are outweighed by the reduction in sampling.



240 Numerical Methods

18.2.1 Monte Carlo option pricing

For the pricing of European options on a dividend-paying stock, we may proceed as follows.

From (14.17), stock prices S1,S2,S53,... at times At,2At,3A¢t,... can be generated via
Sis1 = Siel=o N AHIVALE ¢ N(0,1)

when dS/S = pdt + o dW. Non-dividend-paying stock prices in a risk-neutral economy
can be generated by setting p = r. Figure 18.5 contains a pricing algorithm for arithmetic
average-rate calls.

Monte Carlo method for pricing average-rate calls on a non-

. . Figure 18.5: MONTE CARLO METHOD
dividend-paying stock:

FOR AVERAGE-RATE CALLS. Here, m
input: S, X, n,r, 0, T, m; is the number of replications, and n is the
real P, C, M; number of periods.
real £ // &)~ N0,
integer i, J;
C :=0; // Accumulated terminal option value.
for (i =1 to m) { // Perform m replications.
P:=5;, M :=S85,
for (=1 tomn) {
P := P x e(r=o"/2)(r/n)+oy/7/n €0,
M =M + P;
}
C:=C+max(M/(n+1) - X,0);
}

return Ce " /m;

The sample standard deviation of the estimation scheme in Fig. 18.5 is proportional to
1/y/m, where m is the number of replications. To narrow down the confidence interval by
a factor of f, f2 times as many replications need to be carried out. Although we do not
know how small At = 7/n should be to yield acceptable approximations, it is not hard to
figure out m. Since the estimate is composed of a simple average across replications, the
central limit theorem says the error of the estimate is distributed as N(0,s%/m) with s?
denoting the variance of each replication. Hence, confidence interval requirements can be
used to derive the desired m.

The discreteness of sample paths and the variance in prices do not necessarily make
Monte Carlo results inferior to closed-form solutions. The judgment ultimately depends on
the security being priced. In reality, for instance, a case may be made that, since prices do
not move continuously, discrete-time models are more appropriate.

Monte Carlo simulation is a general methodology. It can be used to value virtually
any European-style derivative security [151]. Standard Monte Carlo simulation, however,
is inappropriate for American options because of early exercise: It is difficult to determine
the early exercise point based on one single path. Intriguingly, Tilley showed that Monte
Carlo simulation can be modified to price American options [873]; the estimate is biased,
however [110].

>Exercise 18.2.1 How to price European barrier options by Monte Carlo simulation?
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>Exercise 18.2.2 Consider the Monte Carlo method that estimates the price of the Amer-
ican call by taking the maximum discounted intrinsic value per simulated path and then
averaging them: E[max;—o1..n e " A max(S; — X, 0) ]. Show that it is biased high.
>Programming assignment 18.2.3 Implement the Monte Carlo method for arithmetic
average-rate calls and puts.

18.2.2 TIto processes

Consider the stochastic differential equation dX; = a(X;)dt + b(X;) dW;. While it is often
difficult to give an analytic solution to the above equation, simulation of the process on a
computer is relatively easy [609]. Recall that Euler’s method picks a small number At and
then approximates the Ito process by

X (tn+1) = X (tn) + a(X () At + b(X (ta)) VAL €,

where £ ~ N(0,1). See Fig. 18.6 for the algorithm. This simulation is exact for any At if
both the drift ¢ and diffusion b are constants as in Brownian motion because the sum of
independent normal distributions remains normal.

Monte Carlo simulation of Ito process: Figure 18.6: MONTE CARLO SIMULA-

input: zo, T, At; TION OF THE ITO PROCESS. The Ito
real X[0..[T/Af]]; process is dX; = a(X;)dt + b(Xy)dWy;. A
real e0); /] €0 ~N(0,1). run of the algorithm generates an approxi-

integer i; mate sample path for the process.

X[0] := xo; // Initial state.
for (i=1 to [T/At])
X[i]=X[i—1]+a(X[i—-1]) At
+b(X[i = 1])VAL £();

return X|J;

>Exercise 18.2.4 The Monte Carlo method for the Ito process in Fig. 18.6 may not be the
most ideal theoretically. Consider the geometric Brownian motion dX/X = pdt + o dW.
Assume you have access to a perfect random number generator for normal distribution.
Find a theoretically better algorithm to generate sample paths for X.

>Programming assignment 18.2.5 Simulate dX; = (0.06 — X;) dt + 0.3dW; using At =
0.01. Explain its dynamics.

Discrete approximations to Ito processes with Brownian bridge

Aside from the Euler method and the related approximation methods in §14.2.1, Brownian
bridge is one more alternative. Let the time interval [0,7"] be partitioned at time points
to,t1,to,..., where ty = 0. Instead of employing

W (tn) = W(tn—1) + /tn —tn—1 & €~ N(0,1)

to generate the discrete-time Wiener process, the new method uses

b1 — b tn = tn— bt — tn)(tn — tn_
W(tn) = _ntl”m W(tnfl) + o nol W(tn—|—1) + ( ntl n)( n n 1) £
t’n-}—l - tn—l tn+1 — tn—l tn+1 _ tn—l
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given a past value W (t,,_1) and a future value W (¢,+1). In general, the method determines
a sample path W(i(T/2™)), i = 0,1,...,2™, over [0,T] as follows. First, set W(0) =0
and W(T) = VT €. Then set the mid-point W(T/2) according to the above equation.
From here, we find the mid-points for (W (0),W(T/2)) and (W(T/2),W(T)), that is,
W(T/4) and W(3T/4), respectively. Iterate for m — 2 more times. This scheme increases
the accuracy of quasi-Monte Carlo simulation to be introduced shortly by reducing its
effective dimension [6, 146, 703, 908].

>Programming assignment 18.2.6 Implement the Brownian bridge approach to generate
the sample path of geometric Brownian motion.

18.2.3 Variance reduction techniques

The success of variance reduction schemes depends critically on the particular problem
of interest. Since it is usually impossible to know beforehand how great a reduction in
variance may be realized, if at all, preliminary runs should be made to compare the results
of a variance reduction scheme with those from standard Monte Carlo simulation.

Antithetic variates

Suppose we are interested in estimating E[g(X1,Xo,... ,X,,)], where X1, Xs,...,X,, are
independent random variables. Let Y; and Y, be random variables with the same distri-
bution as g(Xi, Xo,...,X,). Then

Var |:Y1 + Y2:| _ Var[Y1] n COV[Yl,Yz]

2 2 2
Note that Var[Y;]/2 is the variance of the Monte Carlo method with two (independent)
replications. The variance Var[ (Y7 + Y3)/2] is smaller than Var[Y;]/2 when Y] and Y3
are negatively correlated instead of being independent.

The antithetic variates technique is based on the above observation. First, simu-
late X1, Xs,...,X, via the inverse transform technique. That is, X; is generated by
F7(U;), where U; is a random number uniformly distributed over (0,1) and F; is the
distribution function of X;. Set

Y1 = g(Fl_l(Ul)a s aFn_l(Un))
Since 1 — U is also uniform over (0,1) whenever U is, it follows that
Y, = g(Flil(l - Ul)a v aFn_l(l - Un))

has the same distribution as Y;. When ¢ is a monotone function, Y; and Y5 are indeed
negatively correlated, and the antithetic variates estimate,

g(F7H (), ..., FHU) + g(F (A = Uh), ... , N1 = Uy))
2 )

has a lower variance than the Monte Carlo method with two replications [790]. Computation
time is also saved because only n rather than 2n random numbers need to be generated,
with each number used twice.

Computationally, for each simulated sample path X, a second one is obtained by reusing
the random numbers on which the first path is based, yielding a second sample path Y.
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Two estimates are then obtained, one based on X and the other on Y. If a total of N
independent sample paths are generated, the antithetic variates estimator averages over
2N estimates.

Example 18.2.2 Consider the Ito process dX = a; dt + b;\V/dt €. Let g be a function of n
samples X1, Xo,..., X, on the sample path. We are interested in E[g(X1, Xo,... ,Xpn)].
Suppose one simulation run has realizations &1,&9,...,&, for the normally distributed
fluctuation term &, generating samples z1,z2,...,Z,. The estimate is then g(x), where
x = (z1,22...,%,). Instead of sampling n more numbers from ¢ for the second estimate,
the antithetic variates method computes g(z’) from the sample path =’ = (2,2} ... ,2})
generated by —&1,—&o,... ,—&, and outputs (g(z)+g(z'))/2. Figure 18.7 implements the
antithetic variates method for average-rate options. m

>Exercise 18.2.7 Justify the procedure in Example 18.2.2.

>Programming assignment 18.2.8 Implement the antithetic variates method for arith-
metic average-rate calls and puts. Compare it with the Monte Carlo method in Program-
ming assignment 18.2.3.

Conditioning

Let X be a random variable whose expectation is to be estimated. There is another
random variable Z such that the conditional expectation E[X |Z = z] can be efficiently
and precisely computed. We have E[X | = E[E[X |Z]] by the law of iterated conditional
expectations. Hence the random variable E[X |Z] is also an unbiased estimator of u.
As Var[E[X | Z]] < Var[X ], E[X | Z] indeed has a smaller variance than observing X
directly [790]. The computing procedure is to first obtain a random observation z on Z,
then calculate E[X |Z = z] as our estimate. There is no need to resort to simulation
in computing E[X |Z = z]. The procedure can be repeated a few times to reduce the
variance.

>Programming assignment 18.2.9 Apply conditioning to price European options when
the stock price volatility is stochastic. The stock price and its volatility may be correlated.

Control variates

The idea of control variates is to use the analytic solution of a similar yet simpler problem
to improve the solution. Suppose we want to estimate E[X ] and there exists a random
variable Y with a known mean p = E[Y]. Then W = X 4+ (Y — p) can serve as a
“controlled” estimator of E[X | for any constant [ which scales the deviation Y — p to

arrive at an adjustment for X. However [ is chosen, W remains an unbiased estimator of
E[X]. As

Var[W] = Var[ X ] + 2 Var[ Y] + 28Cov[ X,Y ], (18.5)
W is less variable than X if and only if
(2 Var[Y'] +28Cov[ X,Y] < 0. (18.6)

The success of the scheme clearly depends on both 8 and the choice of Y. For example,
arithmetic average-rate options can be priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and § = —1 [571]. This approach is much more
effective than antithetic variates (see Fig. 18.8) [110].
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Antithetic variates  Control variates Figure 18.7: VARIANCE REDUCTION TECH-
1.11039 1.11452 | 1.11815 1.11864 NIQUES FOR AVERAGE-RATE PUTS. An arith-
1.10952 1.10892 | 1.11788 1.11853 metic average-rate put is priced using antithetic
1.10476 1.10574 | 1.11856 1.11789 variates and control variates (6 = —1). The pa-
1.13225 1.10509 | 1.11852 1.11868 rameters used for each data are S = 50, 0 = 0.2,

(0.009032505) (0.000331789) r =005 r =1/3, X = 50, n = 50, and

m = 10000. Sample standard deviations of the
computed values are in parentheses.

Equation (18.5) is minimized when [ equals * = —Cov[X,Y ]|/Var[Y |, which was
called beta earlier in Exercise 6.4.1. For this specific 3,

2

Var[ W] = Var[ X ] - % = (1- py) Var X,
where pxy is the correlation between X and Y. The stronger X and Y are correlated,
the greater the reduction in variance. For example, if this correlation is nearly perfect (+1),
we could control X almost exactly, eliminating practically all of its variance. Typically,
neither Var[Y] nor Cov[X,Y ] is known, unfortunately. Therefore, we cannot obtain
the maximum reduction in variance. One approach in practice is to guess at these values
and hope that the resulting W does indeed have a smaller variance than X. A second
possibility is to use the simulated data to estimate these quantities.

Observe that —3* has the same sign as the correlation between X and Y. Hence, if
X and Y are positively correlated, hence g* < 0, then X is adjusted downward when-
ever Y > p and upward otherwise. The opposite is true when X and Y are negatively
correlated, in which case 8* > 0.
>Exercise 18.2.10 Pick 8 = +1. The success of the scheme now depends solely on the
choice of Y. Derive the conditions under which the variance is reduced.
>Exercise 18.2.11 Why is it a mistake to use independent random numbers in generating
X and Y7
>Programming assignment 18.2.12 Implement the control variates method for arithmetic
average-rate calls and puts.

Other schemes

We briefly mention two more schemes before closing this section. In stratified sampling,
the support of the random variable being simulated is partitioned into a finite number of
disjoint regions and standard Monte Carlo simulation is performed in each region. When
there is less variance within regions than across the regions, the sampling variance of the
estimate will be reduced. Importance sampling samples more frequently in regions of
the support where there is more variation.

>Exercise 18.2.13 Suppose you are searching in set A for any element from set B C A.
The Monte Carlo approach selects N elements randomly from A and checks if any one
belongs to B. An alternative partitions the set A into m disjoint subsets A1, As,... , Ap,
of equal size, picks N/m elements from each subset randomly, and checks if there is a hit.
Prove that the second approach’s probability of failure can never exceed the Monte Carlo’s.



