Chapter 10

Sensitivity Analysis of Options
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Cleopatra’s nose, had it been shorter,
the whole face of the world
would have been changed.

—DBlaise Pascal (1623-1662)

Understanding how the value of a security changes relative to changes in a chosen
parameter is key to hedging. Duration, for instance, measures the rate of change of the
bond value with respect to interest rate changes. This chapter asks similar questions of
options. The materials here will be used for hedging later in the book.

10.1 Sensitivity Measures (the Greeks)
In the following, we take
In(S/X)+ (r + 02/2) T
oy/T

as in the Black-Scholes formula (see Theorem 9.3.3). We will see a common feature that

T =

sensitivity tends to be highest in absolute terms for options near the money.
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10.1.1 Delta

For a derivative such as option, its delta is defined as A = 0f/dS, where f is the price of
the derivative, and S is that of the underlying asset. The delta of a portfolio of derivatives
on the same underlying asset is the sum of the deltas of the individual derivatives.

For a European call on a non-dividend-paying stock, its delta equals
oC B
as

For a European put on a non-dividend-paying stock, the delta is

P
55 =N@-1<0.

The delta of stock is of course one. We remark that the delta used in the binomial option

N(z) > 0. (10.1)

pricing model to replicate options is the discrete analogue of the delta here.

A position with a delta of zero is said to be delta-neutral. Since it is immune to
small price changes, a delta-neutral portfolio is typically constructed for hedging purposes.
See Fig. 10.1 for illustration. An obvious example of a delta-neutral portfolio consists of
a long position in a call option and a short position in A units of the underlying asset.
In general, one can hedge one option with another option on the same underlying asset by
taking positions in the right proportions: Being short A;/As units of option 2 for each
unit of option 1 held long is delta-neutral where A; is the delta of option ¢ for ¢ =1, 2.

10.1.2 Theta

The theta (or time decay) of a portfolio of derivatives is defined as the rate of change
of the portfolio’s value with respect to time, @ = —911/07, where II is the value of the
portfolio. For a European call on a non-dividend-paying stock,

SN'(z) o
23/7
Note that N'(y) = \/% e™¥’/2 > 0 is the density function of the standard normal distribu-

tion. The call hence loses value with the passage of time. For a European put,
SN'(z) o
23/7

which may be negative or positive. The ambiguity results from two countervailing forces

0=- —rXe N (x - U\/’I_') < 0.

O=— +rXe "N (—m + 0\/F) ,

with the passage of time (i.e., as 7 decreases): (1) The put is less likely to be exercised
because of lower variance, hence more valuable, and (2) the present value of the exercise
payment rises, lifting the put value. See Fig. 10.2 for illustration. Consult [422] for thetas
of European options on stocks that pay known dividend yields.

Theta tends to be negative because an option usually loses value as the expiration date
draws near. In fact, theta is positive only for puts that are deep in the money. The reason
is that, as explained on Page 105, a KEuropean put can be worth less than its intrinsic value
but must eventually rise to its intrinsic value at expiration. Theta achieves the maximum

magnitude near the strike price for calls.
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Figure 10.1: OPTION DELTA. The default parameters are S = 50, X = 50, 7 = 201 (days),
o =0.3,and r = 8%. The dotted lines use S = 60 (in-the-money call or out-of-the-money put), the
solid lines use S = 50 (at-the-money option), and the dashed lines use S = 40 (out-of-the-money
call or in-the-money put).

10.1.3 Gamma

The gamma of a portfolio of derivatives is the rate of change of the portfolio’s delta with
respect to the price of the underlying asset, I' = 9%I1/052. Gamma measures how sensitive
delta is to changes in the price of the underlying asset. The implication is that a delta-
neutral portfolio needs to be rebalanced more often if its gamma is high. Gamma therefore
measures the degree of risk exposure a hedged position will develop if the hedge is not
adjusted. Delta and gamma have obvious counterparts in bonds: duration and convexity.
The gamma of a European call or put on a non-dividend-paying stock is g{;% > 0. See
Fig. 10.3 for illustration.

The change in the value of a portfolio of derivatives can be expanded as

oIl oIl 1 9211 1 9211 %11
dll = — d ——dr 4+ = —— (dS)?* + = —— (dr)? dSdr + ---
95 1T g7 T 5 g5 W) F g G [N g ST
if the volatility of the underlying asset is a constant. The above can be simplied to
ol 1 9% 1
dll = —dr + = dS)* = -0dr + = I'(dS)?
5, T+2852(S) @7’—|—2 (dS)

if the portfolio is also delta-neutral.
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Figure 10.2: OPTION THETA. The default parameters are S = 50, X = 50, 7 = 201 (days),
o =0.3,and r = 8%. The dotted lines use S = 60 (in-the-money call or out-of-the-money put), the
solid lines use S = 50 (at-the-money option), and the dashed lines use S = 40 (out-of-the-money
call or in-the-money put).

10.1.4 Vega

Volatility often changes over time. The vega (sometimes called lambda, kappa, or sigma)
of a portfolio of derivatives is the rate of change of the portfolio’s value with respect to the
volatility of the underlying asset, A = 9l1/do. (Vega is of course not Greek.) A security
with a high vega means it is very sensitive to small changes in volatility. The vega of a
European call or put on a non-dividend-paying stock is' S,/7 N’(z) > 0. (This inequality
incidentally solves Exercise 9.4.1.) See Fig. 10.4 for illustration. A positive vega is consistent
with the intuition that higher volatility increases option value.

10.1.5 Rho

The rho of a portfolio of derivatives is the rate of change in the value of the portfolio with
respect to interest rates, p = 011/9r. The rho of a European call on a non-dividend-paying
stock is X7e™""N (z — 0/7) > 0. The rho of a European put on a non-dividend-paying
stock is —X7e "N (—z + 0./7) < 0.

"For users of Mathematica’s Finance Pack: Its Lambda function is incorrectly implemented and should be
multiplied by 7.
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Figure 10.3: OPTION GAMMA. The default parameters are S = 50, X = 50, 7 = 201 (days),
o =0.3,and r = 8%. The dotted lines use S = 60 (in-the-money call or out-of-the-money put), the
solid lines use S = 50 (at-the-money option), and the dashed lines use S = 40 (out-of-the-money
call or in-the-money put).

Vega (cal |/ put) Vega (cal | /put)
14 17.5
12 15
10 12.5
8 10
6 7.5
4 5
2 2.5
0 OfL="~
0 20 40 60 80 50 100 150 200 250 300 350
Stock price Time to expiration (days)

Figure 10.4: OPTION VEGA. The default parameters are .S = 50, X = 50, 7 = 201 (days),
o = 0.3, and r = 8%. The dotted lines use S = 60 (in-the-money call or out-of-the-money put), the
solid lines use S = 50 (at-the-money option), and the dashed lines use S = 40 (out-of-the-money
call or in-the-money put).

10.2 Numerical Techniques

Sensitivity measures of options for which closed-form formulae do not exist have to be
computed numerically. The issues of efficiency and accuracy can be treacherous here. Take
delta as an example. It is defined as Af/AS, where AS is a small change in the stock price
and Af is the resulting change in the option price. A naive method computes f(S — AS)
and f(S+ AS) before finally settling for

F(S+AS) — £(S — AS)
2AS

as an approximation for delta. The computation time for this numerical differentiation
scheme roughly doubles that for evaluating the option itself. Worse, numerical differentia-
tion may give wildly inaccurate results.

A preferred approach is to take advantage of the intermediate results of the binomial
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Figure 10.5: OPTION RHO. The default parameters are S = 50, X = 50, 7 = 201 (days), ¢ = 0.3,
and r = 8%. The dotted lines use .S = 60 (in-the-money call or out-of-the-money put), the solid
lines use S = 50 (at-the-money option), and the dashed lines use S =40 (out-of-the-money call or
in-the-money put).

tree algorithm. When the algorithm works backward in time and eventually reaches the end
of the first period, C, and C; are computed. Recall that these option values correspond to
stock prices Su and Sd, respectively, where S is today’s stock price. Delta can therefore

be approximated by
Cy —CYy

Su— Sd’
the hedge ratio. The extra computational effort beyond the original binomial tree algorithm
is essentially nil. Note that Su — Sd as the number of periods increases.

Other sensitivity measures can be similarly derived. Take gamma. At the stock price of
(Suu+ Sud)/2, delta is approximately (Cyy, — Cuq)/(Suu— Sud), and at the stock price of
(Sud+S5dd)/2, delta is approximately (Cyq—Cqq)/(Sud—Sdd). Now, gamma is computed
as the rate of change in deltas between (Suu+ Sud)/2 and (Sud+ Sdd)/2, that is,

Ouu_cud _ c4ud_c4dd
2 Suu—Sud Sud—Sdd

Suu — Sdd

Contrast it with the numerical differentiation,

F(S +AS) — 2f(S) + f(S — AS)
(AS)?
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Strictly speaking, the delta and gamma thus computed are the delta at the end of the
first period and the gamma at the end of the second period. In other words, they are
not the sensitivity measures at the present time but at times 7/n and 2 (r/n) from now,
respectively, where n denotes the number of periods into which the time to expiration 7 is
partitioned. However, as n increases, such values should approach delta and gamma well.
Theta, similarly, can be computed as

Cuqg — C
2(r/n) "

As for vega and rho, there is no alternative but to run the binomial tree algorithm twice.

O~

In a coming chapter, theta will be shown to be computable from delta and gamma.
10.2.1 Reasons numerical differentiation fails

7'@S) Figure 10.6: NUMERICAL DIFFERENTIA-
_ TION FOR DELTA AND GAMMA.
o

A careful inspection of (9.10) reveals why numerical differentiation fails. First, the option
value is a continuous piecewise linear function of the current stock price S. Kinks develop
at S = Xu=7d=("=1) (§=0,...,n). As a result, if AS is suitably small, delta computed
by numerical differentiation will be a ladder-like function of S, hence not differentiable, at
the kinks. This bodes ill for numerical gamma. In fact, if AS is suitably small, gamma
computed through numerical differentiation will be zero most of the time since f/(S—AS) =
F(S) = f'(S+ AS) except for S near a kink. When S is near a kink, another problem
arises, however. Assume S is to the right of the kink at S’ and S — AS < S’ < S. Hence,
f1(S) = f'(S+ AS) and f'(S) — f'(S — AS) = 6 for some constant § > 0. Numerical

gamina now equals

F(S+AS) —2f(S) + F(S — AS) _ (5" = S+AS)

(AS)? (AS)?

This number can be huge as AS decreases toward S —S’. Therefore, the standard practice

of reducing the step size does not help at all. See Fig. 10.6 for illustration.

10.2.2 Extended binomial tree algorithms

In the recommended numerical scheme based on the binomial tree for computing delta and
gamma, they are computed not at the current time but one and two periods from now,
respectively. An improved method starts the binomial tree two periods before now as in
Fig. 10.7. Delta is then computed as
Cusa — Cayu
(Su/d) — (Sd/u)’
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Similarly, gamma is computed as

See [624] for more information.

Cusa—C C—Cyy

(Su/d)—S ~ S—(5d[u)

(Su/d) — (Sd/u)

Figure 10.7: EXTENDED BINO-
MIAL TREE. The extended binomial
tree is constructed from the original
binomial tree (in bold lines) but with
time extended beyond the present by
two periods.

Programming assignment 10.2.1 Implement the extended binomial tree algorithm for nu-
merical delta and gamma. Compare the results against numerical differentiation and closed-

form solution.

&



