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Market Models

One of the principal disadvantages of short rate models, and HJM models more generally, is that they focus on
unobservable instantaneous interest rates. The so-called market models that were developed1 in the late 90’s
overcome this problem by directly modelling observable market rates such as LIBOR and swap rates. These
models are straightforward to calibrate and have quickly gained widespread acceptance from practitioners. The
first market models were actually developed in the HJM framework where the dynamics of instantaneous forward
rates are used via Itô’s Lemma to determine the dynamics of zero-coupon bonds. The dynamics of zero coupon
bond prices were then used, again via Itô’s Lemma, to determine the dynamics of LIBOR. Market models are
therefore not inconsistent with HJM models. In these lecture notes, however, we will prefer to specify the
market models directly rather than derive them in the HJM framework. In the process, we will derive Black’s
formulae for caplets and swaptions thereby demonstrating the consistency of these formulae with martingale
pricing theory.

Throughout these notes, we will ignore the possibility of default or counterparty risk and treat LIBOR interest
rates as the fundamental rates in the market. Zero-coupon bond prices are then computed using LIBOR rather
than the default-free rates implied by the prices of government securities. This does result in a minor
inconsistency in that we price derivative securities assuming no possibility of default yet the interest rates
themselves that play the role of “underlying security”, i.e. LIBOR and swap rates, implicitly incorporate the
possibility of default. This inconsistency actually occurs in practice when banks trade caps, swaps and other
instruments with each other, and ignore the possibility of default when quoting prices. Instead, the associated
credit risks are kept to a minimum through the use of netting agreements and by counterparties limiting the
total size of trades they conduct with one another. This approach can also be justified when counterparties have
a similar credit rating and similar exposures to one another. Finally, we should mention that it is indeed
possible2, and sometimes necessary, to explicitly model credit risk even when we are pricing ‘standard’ securities
such as caps and swaps. It goes without saying of course, that default risk needs to be modelled explicitly when
pricing credit derivatives and related securities.

1 LIBOR, Swap Rates and Black’s Formulae for Caps and
Swaptions

We now describe two particularly important market interest rates, namely LIBOR and swap rates. We first
define LIBOR and forward LIBOR, and then describe Black’s formula for caplets. After defining LIBOR we then
proceed to discuss swap rates and forward swap rates as well as describing Black’s formula for swaptions. In
practice, the “underlying security” for caps and swaptions are LIBOR and LIBOR-based swap rates. Therefore
by modelling the dynamics of these rates directly we succeed in obtaining more realistic models than those
developed in the short-rate or HJM framework.

LIBOR

The forward rate at time t based on simple interest for lending in the interval [T1, T2] is given by3

F (t, T1, T2) =
1

T2 − T1

(
ZT1

t − ZT2
t

ZT2
t

)
(1)

1See Miltersen, Sandmann and Sondermann (1997), Brace, Gatarek and Musiela (1997), Jamshidian (1997) and Musiela and
Rutkowski (1997).

2See chapter 11 of Cairns for a model where swaps are priced taking the possibility of default explictly into account.
3This follows from a simple arbitrage argument.
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where, as before, ZT
t is the time t price of a zero-coupon bond maturing at time T . Note also that if we

measure time in years, then (1) is consistent with F (t, T1, T2) being quoted as an annual rate.

LIBOR rates are quoted as simply-compounded interest rates, and are quoted on an annual basis. The
accrual period or tenor, T2−T1, is usually fixed at δ = 1/4 or δ = 1/2 corresponding to 3 months and 6 months,
respectively. With a fixed value of δ in mind we can define the δ-year forward rate at time t with maturity T as

L(t, T ) := F (t, T, T + δ) =
1
δ

(
ZT

t − ZT+δ
t

ZT+δ
t

)
. (2)

Note that the δ-year spot LIBOR rate at time t is then given by L(t, t).

Remark 1 LIBOR or the London Inter-Bank Offered Rate, is determined on a daily basis when the British
Bankers’ Association (BBA) polls a pre-defined list of banks with strong credit ratings for their interest rates.
The highest and lowest responses are dropped and then the average of the remainder is taken to be the LIBOR
rate. Because there is some credit risk associated with these banks, LIBOR will be higher than the
corresponding rates on government treasuries. However, because the banks that are polled have strong credit
ratings the spread between LIBOR and treasury rates is generally not very large and is often less than 100 basis
points. Moreover, the pre-defined list of banks is regularly updated so that banks whose credit ratings have
deteriorated are replaced on the list with banks with superior credit ratings. This has the practical impact of
ensuring that forward LIBOR rates will still only have a very modest degree of credit risk associated with them.

Black’s Formula for Caplets

Consider now a caplet with payoff δ(L(T, T )−K)+ at time T + δ. The time t price, Ct, is given by

Ct = BtE
Q
t

[
δ(L(T, T )−K)+

BT+δ

]

= δZT+δ
t EPT+δ

t

[
(L(T, T )−K)+

]
.

where (Bt, Q) is an arbitrary numeraire-EMM pair and (ZT+δ
t , PT+δ) is the forward measure-numeraire pair.

The market convention is to quote caplet prices using Black’s formula which equates Ct to a Black-Scholes like
formula so that

Ct = δZT+δ
t

[
L(t, T )Φ

(
log(L(t, T )/K) + σ2(T − t)/2

σ
√

T − t

)
− KΦ

(
log(L(t, T )/K)− σ2(T − t)/2

σ
√

T − t

)]
(3)

where Φ(·) is the CDF of a standard normal random variable. Note that (3) is what you would get for Ct if you
assumed that

dL(t, T ) = σL(t, T ) dWT+δ(t)

where WT+δ(t) is a PT+δ-Brownian motion and σ is an ‘implied’ volatility that is used to quote prices.

Black’s formula for caps is to equate the cap price with the sum of caplet prices given by (3) but where a
common σ is assumed. Similar formulae exist for floorlets and floors.

Swap Rates

Consider a payer forward start swap where the swap begins at some fixed time Tn in the future and expires at
time TM ≥ Tn. We assume the accrual period is of length δ. Since payments are made in arrears, the first
payment occurs at Tn+1 = Tn + δ and the final payment at TM+1 = TM + δ. Then martingale pricing implies
that the time t < Tn value, SWt, of this forward start swap is

SWt = EQ
t


δ

M∑

j=n

Bt

BTj+1

(L(Tj , Tj)−R)



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where R is the fixed rate (annualized) specified in the contract. A standard argument using the properties of
floating-rate bond prices implies that

SWTn
= 1− Z

TM+1
Tn

− Rδ

M+1∑

j=n+1

Z
Tj

Tn
.

This in turn easily implies (why?) that for t < Tn we have

SWt = ZTn
t − Z

TM+1
t − Rδ

M+1∑

j=n+1

Z
Tj

t .

Definition 1 The forward swap rate is the value R = R(t, Tn, TM ) for which SWt = 0. In particular, we obtain

R = R(t, Tn, TM ) =
ZTn

t − Z
TM+1
t

δ
∑M+1

j=n+1 Z
Tj

t

. (4)

The swap rate is then obtained by taking t = Tn in (4).

Now consider the time t price4 of a payer-swaption that expires at time Tn > t and with payments of the
underlying swap taking place at times Tn+1, . . . , TM+1. Assuming a fixed rate of R̂ (annualized) and a notional
principle of $1, the value of the option at expiration is given by

CTn =


1− Z

TM+1
Tn

− R̂δ

M+1∑

j=n+1

Z
Tj

Tn




+

. (5)

Substituting (4) at t = Tn into (5) we find that

CTn =


δ

[
R(Tn, Tn, TM )− R̂

] M+1∑

j=n+1

Z
Tj

Tn




+

=


δ

M+1∑

j=n+1

Z
Tj

Tn




[
R(Tn, Tn, TM )− R̂

]+

. (6)

Therefore we see that the swaption is like a call option on the swap rate. The time t value of the swaption, Ct,
is then given by the Q-expectation of the right-hand-side of (6), suitably deflated by the numeraire.

Black’s Formula for Swaptions

Market convention, however, is to quote swaption prices via Black’s formula which equates Ct to a
Black-Scholes-like formula so that

Ct =


δ

M+1∑

j=n+1

Z
Tj

t




[
R(t, Tn, TM )Φ

(
log(R(t, Tn, TM )/R̂) + σ2(Tn − t)/2

σ
√

Tn − t

)
−

R̂Φ

(
log(R(t, Tn, TM )/R̂)− σ2(Tn − t)/2

σ
√

Tn − t

)]
(7)

where again σ is an ‘implied’ volatility that is used to quote prices.

Note that the expression in (7) is what we would obtain for the expectation of

δ

M+1∑

j=n+1

Z
Tj

t




[
R(Tn, Tn, TM )− R̂

]+

4Note that in (5) we have implicitly assumed that the strike is k = 0.
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if dR(t, Tn, TM ) = σR(t, Tn, TM ) dWt.

It should be stated that Black’s formulae for caps and swaptions did not originally correspond to prices that arise
from the application of martingale pricing theory to some particular model. As originally conceived, they merely
provided a framework for quoting market prices. The market models of these lecture notes will provide a belated
justification for these formulae. We shall see that the justifications are mutually inconsistent, however, in that it
is impossible for both formulae to hold simultaneously within the one model.

2 The Term Structure of Volatility

The term structure of volatility5 is a graph of volatility plotted against time to maturity, τ . There are of course
many definitions of volatility and care is needed in specifying which definition is intended. Some commonly used
definitions of the term structure of volatility at time t include:

1. The volatility of spot rates Y t+τ
t as a function of τ . Depending on the model under consideration, this

volatility may be available in closed form and the model calibrated to historical or implied rates.

2. The volatilty, σ(t, t + τ), of instantaneous forward rates, f(t, t + τ).

3. The implied volatility, σ, given by Black’s formula for caplets. This will vary with time to maturity and
can be computed at any time from market prices for caplets.

4. The implied volatility, σ, given by Black’s formula for caps. Again this will vary with time to maturity and
can be computed at any time from market prices for caps.

When calibrating term structure models it is common to calibrate using both market prices and the term
structure of volatility. As a result we often want to work with models that allow for a rich variety of term
structures of volatility as well of course, as a rich variety of term structures of interest rates.

3 Numeraires and Zero-Coupon Bond Prices

While the cash account with Bt := exp
(
− ∫ t

0
rs ds

)
has been the default numeraire to date, we will not work

with the cash account as our numeraire in the context of market models. The reason is clear: in market models
we take LIBOR rates (or swap rates) with a fixed tenor, δ, in mind, as our fundamental interest rates. It would
therefore be very inconvenient (as well as defeating the purpose) if we had to determine the instantaneous short
rate at each point in time. As a result we will generally work with other numeraire-EMM pairs as described
below.

But first we will fix the maturities or tenor dates to which our market models will apply. At time t we could in
principal have LIBOR rates, L(t, T ), available for all T > t. This is unnecessary, however, as the prices of most
important securities, e.g. caps, floors, swaps, swaptions, Bermudan swaptions, etc., are determined by the rates
(LIBOR or swap) applying to only a finite set of maturities. We therefore fix in advance a set of tenor dates6

0 := T0 < T1 < T2 < . . . < TM < TM+1 with

δi := Ti+1 − Ti, i = 0, 1, . . . ,M.

While the δi’s are usually nominally equal, e.g. 1/4 or 1/2, day-count conventions will results in slightly different
values for each δi. We let Zn

t denote the time t price of a zero-coupon bond maturing at time Tn > t for

5‘Quants’ in the fixed-income industry commonly refer to the ‘term-structure of volatility’ when discussing fixed-income
derivatives and models. In this section we briefly give some possible definitions of the ‘term-structure of volatility’ but we will
not need these definitions elsewhere in the course.

6The notation and setup in this section and the next will borrow heavily from Section 3.7 in Monte Carlo Methods in
Financial Engineering by Glasserman.
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n = 1, . . . , M . Similarly, we use Ln(t) to denote the time t forward rate applying to the period [Tn, Tn+1] for
n = 0, 1, . . . ,M . In particular, a simple arbitrage argument then implies

Ln(t) =
Zn

t − Zn+1
t

δnZn+1
t

, for 0 ≤ t ≤ Tn, n = 0, 1, . . . , M. (8)

With some work we can invert (8) to obtain an expression for bond prices in terms of LIBOR rates. We find

Zn
Ti

=
n−1∏

j=i

1
1 + δjLj(Ti)

for n = i + 1, . . . , M + 1. (9)

Equation (9) only determines the bonds prices at the fixed maturity dates. However, for an arbitrary date t we
can easily check that

Zn
t = Z

φ(t)
t

n−1∏

j=φ(t)

1
1 + δjLj(t)

for 0 ≤ t ≤ Tn. (10)

where we define φ(t) to be next tenor date after time t. That is,

φ(t) := min
i=1,...,M+1

{i : t < Ti}.

Remark 2 The presence of Z
φ(t)
t in (10) suggests that it may not be sufficient to model only the dynamics of

the forward LIBOR rates, Ln(t), when we specify a market model since they are not sufficient to determine

Z
φ(t)
t at an arbitrary time t. However, as we shall see below, this will not prove to be a problem as the φ(t)

factor vanishes upon deflating by the numeraire.

Exercise 1 Prove equations (9) and (10).

Numeraire-EMM Pairs

The following numeraire-EMM pairs are commonly used in market models:

1. The spot measure, Q, assumes that B∗
t is the numeraire where B∗

t is defined as follows.

• start with $1 at t = 0 and then purchase 1/Z1
0 of the zero-coupon bonds maturing at time T1

• at time T1 reinvest the funds in the zero-coupon bond maturing at time T2

• by continuing in this way, we see that at time t the spot numeraire will be worth

B∗
t = Z

φ(t)
t

φ(t)−1∏

j=0

[1 + δjLj(Tj)]. (11)

2. The forward measure, PT , takes the zero-coupon bond maturing at time T as numeraire. We have seen
this numeraire-EMM pair already.

3. The swap measure, PX , is useful for pricing swaptions analytically. It takes the numeraire to be
Xt = δ

∑M
k=1 Zk

t , which is indeed a positive security price process.

Deflating Zero-Coupon Bond Prices by the Spot Numeraire

Equations (10) and (11) show that deflated7 zero-coupon bond prices, Dn
t , satisfy

Dn(t) =




φ(t)−1∏

j=0

1
1 + δjLj(Tj)




n−1∏

j=φ(t)

1
1 + δjLj(t)

for 0 ≤ t ≤ Tn. (12)

In particular, we see that the factor, Z
φ(t)
t , has vanished.

7We will take the spot numeraire to be the default numeraire.
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4 Arbitrage-Free LIBOR Dynamics

Dynamics under the Spot Measure

We assume that the dynamics of the LIBOR rates satisfy

dLn(t) = µn(t)Ln(t) dt + Ln(t)σn(t)T dW (t), 0 ≤ t ≤ Tn, n = 1, . . . , M (13)

where W (t) is a d-dimensional Brownian motion, and µn(t) and σn(t) are adapted processes that may depend
on the current vector of interest rates L(t) := (L1(t), . . . , LM (t)). The assumption of no arbitrage and the
positivity of deflated bond prices implies the existence of an Rd-valued process νn(t) such that

dDn(t) = Dn(t)νT
n (t) dW (t). (14)

We could apply Itô’s Lemma directly to our expression for Dn(t) in (12) but this would be awkward. Instead we
will apply Itô’s Lemma to Yn(t) := log Dn(t). We see from (14) that

dYn(t) = −1
2
||νn(t)||2 dt + νT

n (t) dW (t) (15)

We can also find an alternative expression for dYn(t) using (12). In particular, noting that the first factor in
(12) is constant between maturities, we obtain via Itô’s Lemma

dYn(t) = −
n−1∑

j=φ(t)

d log (1 + δjLj(t))

= −
n−1∑

j=φ(t)

(
δjµj(t)Lj(t)
1 + δjLj(t)

− δ2
j Lj(t)2σT

j (t)σj(t)

2 (1 + δjLj(t))
2

)
dt −




n−1∑

j=φ(t)

δjLj(t)σT
j (t)

1 + δjLj(t)


 dW (t).(16)

Comparing the volatility terms in (15) and (16) then gives us

νn(t) = −
n−1∑

j=φ(t)

δjLj(t)σj(t)
1 + δjLj(t)

. (17)

We would now like to find an expression for the µj ’s. Towards this end, we could compare the drift terms in (15)
and (16), and this is easy to do when n = 2 and φ(t) = 1. After some straightforward algebra, we easily find8

µ1(t) = −σT
1 (t)ν2(t), 0 ≤ t ≤ T1.

More generally, we obtain

µn(t) = −σT
n (t) νn+1(t) =

n∑

j=φ(t)

δjLj(t)σT
n (t)σj(t)

1 + δjLj(t)
. (18)

We could have obtained (18) by again comparing the drift terms in (15) and (16) but this appears to be very
cumbersome. Exercise 2 instead provides a more elegant approach.

Exercise 2 Use induction to establish that the drifts, µn(t), must satisfy (18) under the no-arbitrage
assumption. In particular, first assume µ1, . . . , µn−1 have been chosen consistent with the Q-martingale
assumption on D1, . . . , Dn. Show that Dn+1 is a martingale if and only if LnDn+1 and then apply Itô’s Lemma
to obtain9 (18).

8Note that L1(t), and therefore µ1(t), do not have any meaning for t > T1.
9See Glasserman, page 170.
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We therefore obtain that the arbitrage free Q-dynamics of the forward LIBOR rates are given by

dLn(t) =




n∑

j=φ(t)

δjLj(t)σT
n (t)σj(t)

1 + δjLj(t)


 Ln(t) dt + Ln(t)σn(t)T dW (t), 0 ≤ t ≤ Tn, n = 1, . . . , M. (19)

Dynamics under the Forward Measure

Consider now the case where we use the forward measure, PM+1, and the associated numeraire, ZM+1
t . We

now find that deflated zero-coupon bond prices are given by

Dn(t) =
M∏

j=n

(1 + δjLj(t)) . (20)

We would like to find the market-price-of-risk process, ηM+1(t) ∈ Rd, that relates the Q-Brownian motion W (t)
to the the PM+1 Brownian motion, WM+1(t), so that

dW (t) = dWM+1(t)− η(t) dt. (21)

There are a number of ways to do this but perhaps the easiest is the approach we followed with the Vasicek
model when we switched to the forward measure. Equation (20) implies DM (t) = 1 + δMLM (t) so that

dDM (t) = δM dLM (t). (22)

We now substitute for dLM (t) in (22) using (19) evaluated at n = M , and then substitute for W (t) using (21).
Since DM (t) is a PM+1-martingale we find that

η(t) =
M∑

j=φ(t)

δjLj(t)σj(t)
1 + δjLj(t)

.

In particular, we obtain the arbitrage-free PM+1-dynamics of the forward LIBOR rates are given by

dLn(t) = −



M∑

j=n+1

δjLj(t)σT
n (t)σj(t)

1 + δjLj(t)


Ln(t) dt + Ln(t)σn(t)T dWM+1(t), 0 ≤ t ≤ Tn, n = 1, . . . ,M.

(23)
Black’s Formula for Caplets

We are now in a position to derive Black’s formula (see (3)) for caplet prices. If we take n = M in (23), then
we obtain

dLM (t) = LM (t)σM (t)T dWM+1(t) (24)

implying in particular10 that LM (t) is a PM+1-martingale. If we assume that σM (t) is a deterministic function,
then we easily see that LM (t) is lognormally distributed. In particular, we obtain

log LM (t) ∼ N

(
log(LM (0))− 1

2

∫ t

0

||σM (s)||2 ds ,

∫ t

0

||σM (s)||2 ds

)
.

We can now obtain (3) if we let TM = T and reinterpret σ appropriately.

Note also that there is no problem when we take σM (t) to be deterministic in (24) which contrasts with the
HJM framework. This is because while the numerators in the drift of (19) are quadratic in Lj(t), the 1 + δjLj(t)

10Subject, as usual, to technical conditions.
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term in the denominator ensures that there is no possibility of explosion in the SDE. This is a further advantage
of the market model framework where we model simple LIBOR rates rather than instantaneous forward rates.

BGM’s Approximation for Swaption Prices

In their original paper, Brace, Gatarek and Musiela (BGM) succeeded in deriving Black’s formula for caplets and
thereby demonstrated its consistency with martingale pricing. Their framework did not enable them to derive
Black’s formula for swaptions, however. Instead they provided an analytic approximation for swaption prices that
we will not describe11 here. It is worth mentioning, however, that their approximation works well in practice and
provides swaption prices that are very close to those obtained via Monte Carlo simulation.

5 A Swap Market Model for Pricing Swaptions

Consider a payer-swaption that expires at time Tn > t and with payments of the underlying swap taking place at
times Tn+1, . . . , TM+1. Assuming a fixed rate of R̂ (annualized) and a notional principle of $1, we showed in (6)
that the time Tn price of the swaption is given by

CTn
=


δ

M+1∑

j=n+1

Z
Tj

Tn




[
R(Tn, Tn, TM )− R̂

]+

. (25)

This implies that the time t price of the swaption, Ct, satisfies

Ct = Xt EPx
t




(
δ
∑M+1

j=n+1 Z
Tj

Tn

) [
R(Tn, Tn, TM )− R̂

]+

XTn


 (26)

where Xt is the time t price of the chosen numeraire security and Px is the corresponding EMM. A particularly
convenient choice of numeraire that we will adopt is the portfolio12 consisting of δ units of each of the

zero-coupon bonds maturing at times Tn+1, . . . , TM+1. Then Xt = δ
∑M+1

j=n+1 Z
Tj

t and we find

Ct =


δ

M+1∑

j=n+1

Z
Tj

t


 EPx

t

[[
R(Tn, Tn, TM )− R̂

]+
]

(27)

Jamshidian (1997) developed a term structure framework where at any time t the current term structure was
given in terms of the forward swap rates, R(t, Ti, TM ) for i = φ(t), . . . ,M . In particular, he showed that it was
possible to assume that the Px-dynamics of R(t, Tn, TM ) satisfy

dR(t, Tn, TM ) = R(t, Tn, TM )σ(t)T dW x(t) (28)

where σ(t) is a deterministic vector of volatilities. This implies that the forward swap rate is lognormally
distributed so we can obtain13 Black’s formula for swaption prices (7).

Remark 3 When we model swap rates directly as in (28) we say that we have a swap market model. This
contrasts with the LIBOR market models of Section 4.

11See Chapter 9 of Cairns for a derivation.
12There is no difficulty taking a portfolio of securities rather than a fixed individual security as the numeraire. More generally

in fact, we could take a dynamic self-financed portfolio as the numeraire security, assuming of course that it has strictly positive
value at all times.

13Of course we need to reinterpret σ in (7) in terms of the deterministic function σ(t) in (28).
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Remark 4 The advantage of Black’s swaption formula is that it is elegant and exact, whereas the BGM
formula is cumbersome and only an approximation. However, the BGM approximation is consistent with Black’s
formulae for caplets and caps whereas Black’s swaption formula is not. Indeed, it may be shown14 that if
forward LIBOR rates have deterministic volatilities then it it is not possible for swap rates to also have
deterministic volatilities. Therefore Black’s formulae for caplets and swaptions cannot both hold within the same
model. That said, within the LIBOR market framework with deterministic volatilities, it can be argued that
forward swap rates are approximately lognormally distributed.

6 Monte-Carlo Simulation

While it is possible to price many commonly traded derivative securities such as caps, floors and swaptions in
the market model framework, it is in general necessary to use Monte Carlo methods to price other securities.
Indeed, if our market model has stochastic volatility functions then it will typically be necessary to also use
Monte Carlo methods to price even caps, floors and swaptions.

The typical approach is to use some discretization scheme such as the Euler scheme when performing the Monte
Carlo simulation. This does not create too much of a computational burden as we will only need to simulate the
SDE’s describing the forward LIBOR dynamics for a finite number of maturities. This contrasts with the HJM
framework where we had infinitely many maturities which meant it was practically infeasible to use a very fine
discretization. This in turn prompted the development of the discrete-time HJM framework with the resulting
discrete-time arbitrage-free restriction on the drift.

It is also possible to develop discrete-time arbitrage-free market models in a manner that is analogous to our
discrete-time HJM development. As described above, however, the need to do so is not as urgent as it is
practically feasible to simulate the market model SDE’s on a sufficiently fine grid and this is what is typically
done in practice.

Nonetheless, Glasserman’s Monte Carlo Methods for Financial Engineering describes how to build discrete-time
arbitrage-free market models. It turns out to be inconvenient to choose the LIBOR rates as the fundamental
variables that we choose to discretize. Instead it is more convenient to directly model deflated bond prices as
discrete-time Q-martingales15 and to define LIBOR rates in terms of these bond prices. Other choices of
discretization variable are also possible. As usual, we can choose to simulate under any EMM that we prefer and
all of the usual variance reduction techniques may be employed.

14This is done by applying Itô’s Lemma to the forward swap rate given in (4).
15This ensures the discrete-time model is arbitrage-free.


