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Monte-Carlo Methods for Single- and
Multi-Factor Models

Many term-structure models do not have analytic solutions available for security prices. These prices therefore
need to be computed using numerical techniques. Examples of the latter include Monte-Carlo simulation, lattice
approximations, finite-difference methods and transform methods. In these notes, we will concentrate on
Monte-Carlo methods.

It is not surprising that Monte-Carlo methods may be related to the finite-difference schemes for solving PDE’s
through the Feynmac-Kac characterization. However, while finite difference methods tend to be quicker than
Monte-Carlo methods for low dimensional problems they suffer from the curse of dimensionality and quickly
become impractical as the number of dimensions grow. Monte-Carlo simulation does not suffer from this
drawback and is not limited to Markovian frameworks as PDE methods are. In the context of term structure
models, Monte-Carlo simulation appears to be the computational tool of choice for HJM and LIBOR market
models. It is also ubiquitous1 in the related fields of credit risk, mortgage-backed securities and
risk-management generally.

We mention in passing that computing security prices through lattice approximations is equivalent to using an
explicit finite-difference scheme for solving the pricing PDE. The above discussion of finite-difference methods
therefore also applies to lattice methods.

1 Simulating Stochastic Differential Equations

The following three examples will motivate why we often need to simulate stochastic differential equations in
order to estimate quantities of interest.

Example 1 (Geometric Brownian Motion)

We want to compute θ := E[f(XT )] where Xt satisfies

dXt = µXt dt + σXt dWt. (1)

The solution to (1) is of course given by

XT = X0 exp
(
(µ− σ2/2)T + σWT

)
. (2)

We recognize that XT depends on the Brownian motion only through the Brownian motion’s terminal value,
WT . This implies that even if we are unable to compute θ analytically, we can estimate it by simulating WT

directly. (In this case it is also true that since the distribution of XT is known, we could also simulate XT

directly. And of course, as an alternative to simulation, we could choose to estimate θ by evaluating the
expectation numerically.)

Example 2 (OU Process)

Suppose now that we want to compute θ := E[f(XT )] where Xt satisfies

dXt = −γ(Xt − α) dt + σ dWt. (3)

1See Monte Carlo Methods in Financial Engineering by Glasserman for a comprehensive study of Monte-Carlo methods in
the context of financial engineering.



Monte-Carlo Methods for Single- and Multi-Factor Models 2

The solution to (3) is given by

XT = α + exp(−γT )[X0 − α] + σ exp(−γT )
∫ T

0

exp(−γs) dWs (4)

Note that unlike the previous example, XT now depends on the entire path of the Brownian motion. This
means that we cannot compute an unbiased estimate of θ by first simulating the entire path of the Brownian
motion since it is only possible to simulate the latter at discrete intervals of time. It so happens, however, that
we know the distribution of XT : it is normal. In particular, this places us back in the context of Example 1
where, if θ cannot be computed analytically, we can estimate it by either simulating XT directly or by evaluating
the expectation numerically.

Example 3 (CIR Model with Time Varying Parameters)

Again we want to compute θ := E[f(XT )] where Xt satisfies

dXt = α(µ(t)−Xt) dt + σ
√

Xt dWt. (5)

and where µ(t) is a deterministic function of time. While it is clear that Xt follows a CIR process with time
varying parameters, we do not know how to find an explicit solution2 to the SDE in (5). Of course we do not
necessarily need an explicit solution to (5) to determine the distribution of XT (which is what we need to
evaluate θ). For example, in the CIR model with constant parameters, we still do not have an explicit solution
to the SDE yet it is known that XT has a non-central χ2 distribution from which we can easily simulate.
Unfortunately, however, once we move to a CIR model with time-varying parameters as in (5), the distribution
of XT is, in general, no longer available. This then complicates the task of computing θ (either analytically or
by estimating it by simulating XT directly).

One solution to this problem is to simulate XT indirectly by simulating the SDE in (5).

Exercise 1 Suppose we assume that the short-rate, rt, has dynamics given by (5). What do the comments in
the above example then imply about the difficulty of computing the term-structure?

Exercise 2 Suppose you wish to estimate θ := E[f({Xt}0≤t≤T )] so that f(·) now depends on the entire path
of the process, Xt. Comment on whether or not this can be reduced to the problem of estimating θ = E[f(YT )]
for some process, YT .

Remark 1 The situation of Example 3 where we do not know the distribution of XT is typical. As a result, it
is often necessary to simulate a stochastic differential equation if we wish to estimate some associated quantity,
e.g. θ = E[f(XT )]. We describe how to do this below, beginning with the one-dimensional case.

Simulating a 1-Dimensional SDE: The Euler Scheme

Let us assume that we are faced with an SDE of the form

dXt = µ(t,Xt) dt + σ(t,Xt) dWt (6)

and that we wish to simulate values of XT but do not know its distribution. (This could be due to the fact that
we cannot solve (6) to obtain an explicit solution for XT , or because we simply cannot determine the
distribution of XT even though we do know how to solve (6)).

When we simulate an SDE, what we mean is that we simulate a discretized version of the SDE. In particular, we
simulate a discretized process, {X̂h, X̂2h, . . . , X̂mh}, where m is the number of time steps, h is a constant and
mh = T . The smaller the value of h, the closer our discretized path will be to the continuous-time path we wish

2As we did in Examples 1 and 2
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to simulate. Of course this will be at the expense of greater computational effort. While there are a number of
discretization schemes available, we will focus on the simplest and perhaps most common scheme, the Euler
scheme.

The Euler scheme is intuitive, easy to implement and satisfies

X̂kh = X̂(k−1)h + µ
(
(k − 1)h, X̂(k−1)h

)
h + σ

(
(k − 1)h, X̂(k−1)h

) √
h Zk (7)

where the Zk’s are IID N(0, 1). If we want to estimate θ := E[f(XT )] using the Euler scheme, then for a fixed
number of paths, n, and discretization interval, h, we have the following algorithm.

Using the Euler Scheme to Estimate θ = E[f(XT )]
When Xt Follows a 1-Dimensional SDE

for j = 1 to n

t = 0; X̂ = X0

for k = 1 to T/h = m

generate Z ∼ N(0, 1)
set X̂ = X̂ + µ(t, X̂)h + σ(t, X̂)

√
h Z

set t = t + h
end for
set fj = f(X̂)

end for
set θ̂n = (f1 + . . . + fn))/n

set σ̂2
n =

∑n
j=1(fj − θ̂n)2/(n− 1)

set approx. 100(1− α) % CI = θ̂n ± z1−α/2
σ̂n√

n

Remark 2 Observe that even though we only care about XT , we still need to generate intermediate values,
Xih, if we are to minimize the discretization error. Because of this discretization error, θ̂n is no longer an
unbiased estimator of θ.

Remark 3 If we wished to estimate θ = E[f(Xt1 , . . . , Xtp)] then in general we would need to keep track of
(Xt1 , . . . , Xtp) inside the inner for-loop of the algorithm.

Exercise 3 Can you think of a derivative where the payoff depends on (Xt1 , . . . , Xtp), but where it would not
be necessary to keep track of (Xt1 , . . . , Xtp) on each sample path?

Simulating a Multidimensional SDE

In the multidimensional case, Xt, Wt and µ(t,Xt) in (6) are now vectors, and σ(t,Xt) is a matrix. This
situation arises when we have a series of SDE’s in our model. This could occur in a number of financial
engineering contexts. Some examples include:
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(1) Modelling the evolution of multiple stocks. This might be necessary if we are trying to price
derivatives whose values depend on multiple stocks or state variables, or if we are studying the properties
of some portfolio strategy with multiple assets.

(2) Modelling the evolution of a single stock where we assume that the volatility of the stock is itself
stochastic. Such a model is termed a stochastic volatility model.

(3) Modelling the evolution of interest rates. For example, if we assume that the short rate, rt, is
driven by a number of factors which themselves are stochastic and satisfy SDE’s, then simulating rt

amounts to simulating the SDE’s that drive the factors. Such models occur in short-rate models as
well as HJM and LIBOR market models.

In all of these cases, whether or not we will have to simulate the SDE’s will depend on the model in question
and on the particular quantity that we wish to compute. If we do need to discretize the SDE’s and simulate
their discretized versions, then it is very straightforward. If there are n correlated Brownian motions driving the
SDE’s, then at each time step, ti, we must generate n IID N(0, 1) random variables. We would then use the
Cholesky Decomposition to generate Xti+1 . This is exactly analogous to our method of generating correlated
geometric Brownian motions. In the context of simulating multidimensional SDE’s, however, it is more common
to use independent Brownian motions as any correlations between components of the vector, Xt, can be
induced through the matrix, σ(t,Xt).

Allocation of Computational Resources

An important issue that arises when simulating SDE’s is the allocation of computational resources. In particular,
we need to determine how many sample paths, n, to generate and how many steps, m, to simulate on each
sample path. A smaller value of m will result in greater bias and numerical error, whereas a smaller value of n
will result in greater statistical noise. If there is a fixed computational budget then it is important to choose n
and m in an optimal manner. We now discuss this issue.

Suppose dXt = µ(t,Xt) dt + σ(t,Xt) dBt and that we wish to estimate θ := E[f(XT )] using an Euler

approximation scheme. Let θ̂h
n be an estimate of θ based upon simulating n sample paths using a total of

m = T/h discretization points per path. In particular, we have

θ̂h
n =

f(X̂h
1 ) + . . . + f(X̂h

n)
n

where X̂h
i is the value of X̂h

T on the ith path. Under some technical conditions on the process, Xt, it is known
that the Euler scheme has a weak order of convergence equal to 1 so that

|E[f(XT )] − E[f(X̂h
T )]| ≤ am−1 (8)

for some constant a and all m greater than some fixed m0.

Suppose now that we have a fixed computational budget, C, and that each simulation step costs c. We must
therefore have n = C/mc. We would like to choose the optimal values of m (and therefore n) as a function of
C. We do this by minimizing the mean squared error (MSE), which is the sum of the bias squared and the
variance, v. In particular, (8) implies

MSE ≈ a2

m2
+

v

n
(9)

for sufficiently large m. Substituting for n in (9), it is easy to see that it is optimal (for sufficiently large C) to
take

m ∝ C1/3 (10)
n ∝ C2/3. (11)

When it comes to estimating θ, (10) and (11) provide guidance as follows. We begin by using n0 paths and m0

discretization points per path to compute an initial estimate, θ̂0, of θ. If we then compute a new estimate, θ̂1,
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by setting m1 = 2m0, then (10) and (11) suggest we should set n1 = 4n0. We may then continue to compute

new estimates, θ̂i, in this manner until the estimates and their associated confidence intervals converge. In
general, if we increase m by a factor of 2 then we should increase n by a factor of 4. Although estimating θ in
this way requires additional computational resources, it is not usually necessary to perform more than two or
three iterations, provided we begin with sufficiently large values of m0 and n0.

Remark 4 There are other important issues that arise when simulating SDE’s. For example, while we have
only described the Euler scheme, there are other more sophisticated discretization schemes that can also be
used. In a sense that we will not define, these schemes have superior convergence properties than the Euler
scheme. However, they are sometimes more difficult to implement, particularly in the multi-dimensional setting.

2 Applications to Financial Engineering

Example 4 (Option Pricing Under Stochastic Volatility)

Suppose the evolution of the stock price, St, under the risk-neutral probability measure is given by

dSt = rSt dt +
√

VtSt dW
(1)
t (12)

dVt = α (b− Vt) dt + σ
√

Vt dW
(2)
t . (13)

If we want to price a European call option on the stock with expiration, T , and strike K, then the price is given
by

C0 = exp(−rT )E[max(ST −K, 0)].

We could estimate C0 by simulating n sample paths of {St, Vt} up to time T , and taking the average of

exp(−rT )max(ST −K, 0) over the n paths as our estimated call option price, Ĉ0.

Exercise 4 Write out the details of the algorithm that you would use to estimate C0 in Example 4.

Example 5 (Portfolio Evaluation)

Suppose an investor trades continuously in a particular fund whose time t value is denoted by Pt. Any cash that
is not invested in the the fund earns interest in a cash account at the risk-free rate, rt. Assume that the
dynamics of Pt are given by

dPt = Pt

[
(µ + λXt) dt + σ1 dW

(1)
t + σ2 dW

(2)
t

]

dXt = −kXt dt + σx,1 dW
(1)
t + σx,2 dW

(2)
t

drt = α(t, rt) dt + β(t, rt) dW
(3)
t

where Xt is a state variable that possibly represents the time t value of some relevant economic variable. Let θt

be an adapted process that denotes the fraction of the investor’s wealth that is invested3 in the fund at time t,
and let Yt denote the investor’s wealth at time t. We then see that Yt satisfies

dYt = [rt + θt(µ + λXt − r)]Yt dt + θtYt[σ1 dW
(1)
t + σ2 dW

(2)
t ]. (14)

Now it may be the case that the investor wishes to compute E[u(YT )] where u(·) is his utility function, or that
he wishes to compute P(YT ≤ a) for some fixed value, a. In general, however, it is not possible to perform
these computations explicitly. As a result, we could instead use simulation. Noting that we will not in general be
able to solve (14) for YT and its distribution, this means that we would have to simulate the multivariate SDE
satisfied by (Pt, Xt, rt, Yt) in order to answer these questions.

3This means that 1− θt is invested in the cash account at time t.
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Exercise 5 Write out the details of the algorithm that you would use to estimate θ = P(YT ≤ a) in Example 5.

Example 6 (The CIR Model with Time-Dependent Parameters)

We assume the Q-dynamics of the short-rate, rt, are given by

drt = α[µ(t)− rt] dt + σ
√

rt dWt (15)

where µ(t) is a deterministic function of time. This generalized CIR model is used when we want to fit a
CIR-type model to the initial term-structure. (We will see later that a CIR model with constant parameters
when modelled under Q becomes a CIR model with time-varying parameters under the forward measure, P τ .)

Suppose now that we wish to price a derivative security maturing at time T with payoff CT (rT ). Then its time
0 price, C0, is given by

C0 = E0

[
e
−

∫ T

0
rs ds

CT (rT )
]

. (16)

The distribution of rt is not available in an easy-to-use closed form so perhaps the easiest way to estimate C0 is
by simulating the dynamics of rt. Towards this end, we could either use (15) and simulate rt directly or
alternatively, we could simulate Xt := f(rt) where f(·) is an invertible transformation. Note that because of the
discount factor in (16), it is also necessary to simulate the process, Yt, given by

Yt = exp(−
∫ t

0

rs ds).

Exercise 6 Describe in detail how you would you would estimate C0 in Example 6. Note that there are
alternative ways to do this. What way do you prefer?

Exercise 7 Suppose we wish to simulate the known dynamics of a zero-coupon bond. How would you ensure
that the simulated process satisfies 0 < ZT

t < 1 ?

Bias and Jensen’s Inequality

We first state Jensen’s Inequality.

Theorem 1 (Jensen’s Inequality) Suppose f(·) is a concave4 function on R, E[X] < ∞ and
E[f(X)] < ∞. Then E[f(X)] ≤ f(E[X]).

Returning to Example 6, we assumed there that the payoff function, CT (rT ), was easy to evaluate. This is true
for example, if CT (rT ) = (ZU

T −K)+ in the Vasicek or CIR model, among others. However, in many
circumstances CT (rT ) will not be easy to evaluate. This is true, for example, when CT (rT ) = f(ZU

T ) in models
where zero-coupon bond prices are not available in closed form. In such circumstances it may be necessary to
estimate f(ZU

T ) using an additional simulation. Staying with the call option example, we see that its price, C0,
may be written as

C0 = E0

[
e
−

∫ T

0
rs ds (ZU

T −K)+
]

= E0

[
e
−

∫ T

0
rs ds

(
ET

[
e
−

∫ U

T
rv dv

]
−K

)+
]

. (17)

To estimate ZU
T along a given sample path we see from (17) that it will therefore be necessary to perform an

additional simulation, or a “simulation within a simulation”.

4A function f(·) is concave on R if f(αx + (1− α)y) ≥ αf(x) + (1− α)f(y) for all α ∈ [0, 1].
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Exercise 8 Use Jensen’s Inequality and (17) to show that the estimate of C0 will be biased away from the true
value. In what direction will the bias be?

The extent of the bias will depend on how accurately we can estimate ZU
T along each simulated sample path.

Accuracy can be improved by conducting a large number of “simulations within the simulation” but this is at a
cost of requiring more computational resources. For reasons that will be clear later, HJM and Market LIBOR
models do not not suffer from this bias problem.

3 Variance Reduction Techniques

Simulating SDE’s is a computationally intensive task as we need to do a lot of work for each sample that we
generate. As a result, variance reduction techniques are often very useful in such contexts. We give some
examples.

Example 7 (Bond Prices as Control Variates)

In term-structure models we usually taken the prices of zero-coupon bonds as primitives. Indeed, a term
structure model is often constructed in such a way that zero prices in the model coincide with observed zero
prices in the market place. As a by-product of this, it means that zero prices are also often available to be used
as control variates. Recalling that ZT

0 is given by

ZT
0 = EQ

0

[
exp

(
−

∫ T

0

rs ds

)]

we identify two situations that may occur:

1. Due to discretization, we need to use

exp

(
−T

n

n∑

i=1

rti

)
− ZT

0 (18)

as our control variate. In this situation the expression in (18) may not have mean 0 due to discretization
error. However, this bias can be made arbitrarily small by taking a sufficiently fine partition of [0, T ].

2. It is possible to simulate exp
(
− ∫ T

0
rs ds

)
exactly while at the same time, simulating the SDE for rt.

This is possible, for example, in the Vasicek model where the joint distribution of
(
− ∫ ti

0
rs ds, rti

)
is

known to be bivariate normal.

Remark 5 When continuous-time term-structure models are implemented numerically, it is necessary to
discretize time as we have been doing when simulating SDE’s. In such circumstances, however, it is sometimes
desirable to insist that the discretized model is also arbitrage free. When we do this we can ensure that we
obtain unbiased estimates of bond prices so that the control variate of (1) above is also unbiased. This is quite
common in implementations of HJM and LIBOR market models.

For an example based on conditional Monte-Carlo, consider again the stochastic volatility model of Example 4.
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Example 8 (Conditional Monte-Carlo for the Stochastic Volatility Model)

As before, we will use c(x, t,K, r, σ) to denote the Black-Scholes price of a European call option when the
current stock price is x, the time to maturity is t, the strike is K, the risk-free interest rate is r and the volatility
is σ.

We will also use the following fact regarding Gaussian processes: if vt is a deterministic function of time, then

∫ T

0

vt dWt ∼ N

(
0,

∫ T

0

v2
t dt

)
.

Suppose now that the Brownian motions, W
(1)
t and W

(2)
t in (12) and (13), are independent. Then

C0 = e−rT E[max(ST −K, 0)] = e−rT E [E[ max(ST −K, 0) | Vt, 0 ≤ t ≤ T ] ] .

But it can be shown using the independence of W
(1)
t and W

(2)
t that

e−rT E[ max(ST −K, 0) | Vt, 0 ≤ t ≤ T ] = c(S0, T, K, r, V )

where V :=
√∫ T

0
Vt dt/T . In particular, this means that we can estimate C0 by using conditional Monte-Carlo

method.

Exercise 9 Write out the details of the conditional Monte-Carlo algorithm that you would use to estimate C0.

Remark 6 The above example may be generalized in certain circumstances to accommodate dependence

between W
(1)
t and W

(2)
t .

Example 9 (Antithetic Variates)

Suppose we wish to estimate θ = EQ
0 [CT ] using an Euler scheme. (Note that we assume the discount factor is

accounted for in CT .) Let ε+ denote the sequence of IID N(0, 1) random variables used to generate the path of
the short rate, rt, in the interval [0, T ]. Likewise let C+

T be the payoff along this path. Setting ε− = −ε+, we
can then use ε− to construct another sample payoff, C−T . We then obtain an antithetic estimator by setting

CT =
C+

T + C−T
2

.

An antithetic estimator will often provide a significant variance reduction over the naive estimator. The
magnitude of the variance reduction, however, will depend on Cov(C+

T , C−T ) with a positive covariance resulting
in a variance increase.

Exercise 10 Would the method of antithetic variates be guaranteed (by the monotonicity theorem for
antithetic variates) to provide a variance reduction when estimating the value of a derivative security with date
T payoff given by |rT − r̄|? (To be precise, we should first specify a model but the answer should be the same
for most reasonable models.)

Remark 7 The antithetic method obviously extends to multi-factor models, as do all of the variance reduction
methods.

Example 10 (The Brownian Bridge and Stratified Sampling)

Consider a short rate model of the form

drt = µ(t, rt) dt + σ(t, rt) dWt.

When pricing a derivative that matures at time T using an Euler scheme it is necessary to generate the path
(Wh,W2h, . . . ,Wmh = WT ). It will often be the case, however, that the value of WT will be particularly
significant in determining the payoff. As a result, we might want to stratify using the random variable, WT .
This is easy to do for the following two reasons.
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(i) WT ∼ N(0, T ) so we can easily generate a sample of WT and

(ii) We can easily generate (Wh,W2h, . . . ,WT−h | WT ) by computing the relevant conditional distributions
and then simulating from them. For example, it is straightforward to see that

(Wt | Ws = x,Wv = y) ∼ N

(
(v − t)x + (t− s)y

v − s
,

(v − t)(t− s)
v − s

)
for s < t < v (19)

and we can use this result to generate (Wh|W0,WT ). More generally, we can use (19) to successively
simulate (Wh|W0,WT ), (W2h|Wh,WT ), . . . , (WT−h|WT−2h,WT ).

We can in fact simulate the points on the sample path in any order we like. In particular, to simulate Wv we use
(19) and condition on the two closest sample points before and after v, respectively, that have already been
sampled. This method of pinning the beginning and end points of the Brownian motion is known5 as the
Brownian bridge.

Exercise 11 If we are working with a multi-dimensional correlated Brownian motion, Wt, (e.g. in the context
of a multi-factor model of the short rate) is it still easy to use the Brownian bridge construction where we first
generate the random vector, WT ?

Remark 8 It is clear, but perhaps worth mentioning nonetheless, that the Brownian bridge / stratification
technique is not restricted to term structure applications.

We will delay a discussion of importance sampling until the next section when we talk about changing the
numeraire. This makes sense as the two concepts are clearly related.

Change of Numeraire and Importance Sampling

Let πt denote the time t price of a contingent claim that expires at time τ > t. We saw in the Overview of
Stochastic Calculus lecture notes that we can then write

πt = BtE
Q
t

[
πτ

Bτ

]
= Zτ

t EP τ

t [πτ ] (20)

where P τ is the forward measure6 that corresponds to taking Zτ
t as the numeraire security. We then saw in

Example 1 of the Continuous-Time Short-Rate Models lecture notes how this change of numeraire technique
can be useful for obtaining analytic expressions for derivative security prices in the Vasicek and Hull-White
models. More generally, this change of numeraire technique can also be advantageous when using simulation to
estimate security prices.

Example 11 (Pricing a European Option on a Zero-Coupon Bond)

Suppose we wish to price a European call option that expires at time T with payoff given by max(ZU
T − k, 0)

where U > T . Then (20) implies that its time 0 price, C0, is given by

C0 = EQ
0

[
e
−

∫ T

0
rs ds max(ZU

T − k, 0)
]

(21)

= Zτ
0 EP τ

0 [max(ZU
T − k, 0)]. (22)

Note that if we estimate C0 by simulating then there are at least two advantages that arise from using the
expression in (22) rather than the expression in (21):

1. We do not need to keep track of the process Xt :=
∫ t

0
rs ds

5See Glasserman for further details.
6Recall also that dP τ /dQ = 1/(Bτ Zτ

0 ).
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2. We avoid the discretization error associated with our general inability to simulate the discount factor
exactly. (Note that we might still incur some discretization error in simulating ZU

T .)

Remark 9 In the Vasicek and Hull-White models we know that ZU
T has a log-normal distribution so there is

no need to use simulation to price the option in Example 11. In general, however, we will not know the
distribution for ZU

T and so simulating its SDE will be necessary.

Exercise 12 Can you think of any other advantage that might result from simulating under the forward
measure? (Depending on the context, this might also be a disadvantage.)

Exercise 13 Check that a Vasicek model under Q becomes a Vasicek model with time varying parameters (i.e.
a Hull-White model) under P τ . Does a similar result hold for the CIR model?

Relation to Importance Sampling

By necessity, a change in the martingale measure must accompany a change in the numeraire security. It is
therefore clear that the change of numeraire technique is related to importance sampling. However, the
motivation for changing numeraire is generally different to the motivation for using importance sampling.
Possible reasons for changing the numeraire include:

1. Facilitating analytic computations (e.g. derivatives pricing in Gaussian models)

2. It might be preferable to model dynamics under a particular numeraire-EMM pair (e.g. certain LIBOR
market models)

3. When using Monte-Carlo simulations, workload and / or discretization bias can be reduced.

In contrast, the motivation for changing the probability measure when we use importance sampling is to reduce
the variance of a particular estimator. In fact, even when the numeraire-EMM pair is changed with a view to
simulating the corresponding SDE’s, it might be the case that estimator variances increase.

Exercise 14 Consider pricing an out-of-the-money European option with payoff max(ZU
T − k, 0) where we

need to simulate an SDE to generate samples of ZU
T . Do you think working under the forward measure would

tend to increase or decrease the variance of your estimator? What if you wanted to price a put option?

Exercise 15 Is it possible to work with
(
ZT

t , PT
)

as the numeraire-EMM pair and then use importance
sampling without foregoing the advantages of working under the forward measure if we wish to price a security
using simulation?

4 Exact Simulation of Term Structure Models

Suppose the short-rate, rt, satisfies

drt = α(t, rt) dt + β(t, rt) dWt

where Wt is a Q-Brownian motion. Then a derivative security with payoff at time T given by C(rT ) has time 0
price, C0, given by

C0 = EQ
0

[
e
−

∫ T

0
rs ds

C(rT )
]

.

In general, if we are to estimate C0 using simulation then it will be necessary to simulate the SDE’s satisfied by
rt and Yt :=

∫ t

0
rs ds. However, it is worth mentioning that in some circumstances it is possible to simulate

without bias from the joint distribution of (YT , rT ). This would then imply that we could estimate C0 without
any statistical bias.
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Example 12 (Gaussian Models)

The joint distribution of (YT , rT ) in the Vasicek model is a bivariate normal distribution from which we can
easily simulate. This result holds more generally7 for other Gaussian processes whether they are univariate or
multivariate, or whether they have constant or time-varying parameters. In particular for the Vasicek model
where the Q-dynamics of the short rate satisfy

drt = α(µ− rt) dt + σ dWt

it may be seen8 that

EQ [rT | rt] = µ + (rt − µ)e−ατ

EQ

[∫ T

t

rs ds | rt

]
= µτ + (rt − µ)

(1− e−ατ )
α

VarQ(rT | rt) = σ2 (1− e−2ατ )
2α

VarQ

(∫ T

t

rs ds | rt

)
=

σ2

2α3

[
2ατ − 3 + 4e−ατ − e−2ατ

]

CovQ

(
RT ,

∫ T

t

rs ds | rt

)
=

σ2

2α2
(1− e−ατ )2

where τ := T − t.

Example 13 (CIR Models)

It is also possible to simulate (YT , rT ) without bias in the CIR model but this is considerably more complicated
than the Gaussian case. This is due to the fact that the distribution of (YT , rT ) is not explicitly available and
generating a sample of (YT , rT ) is therefore more difficult (though it is possible). Generating a sample of rt on
the other hand is straightforward as it is known to have a non-central χ2 distribution from which it is easy to
simulate.

When we move to a CIR model with time-varying coefficients, however, it is no longer possible to simulate
(YT , rT ) directly without bias and it becomes necessary to simulate the SDE’s using, for example, the Euler
scheme.

7See Monte Carlo Methods in Financial Engineering by Glasserman.
8See Cairns for a derivation based on computing the joint moment generating function.


