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4.3 Random Time Change and Uniqueness in

One Dimension.

One of the properties of Martingales is Doob’s stopping theorem. If M(t) is a
Martingale with respect to (Ω ,Ft , P ) and 0 ≤ τ1 ≤ τ2 ≤ C are two bounded
stopping times, with the correspnding σ-fields Fτ1 ⊂ Fτ2 , then

EP [M(τ2)|Fτ1 ] = M(τ1) a.e.

In particular if τt is a family of bounded stopping times with τs ≤ τt for s ≤ t,
then with

N(t) = M(τt) and Gt = Fτt

N(t) is a martingale with respect to (Ω ,Gt , P ). If P is any Martingale solution
on Ω = C[[0 ,∞) , X ] that corresponds to some L, then

f(x(t)) − f(x(0))−
∫ t

0

(Lf)(x(s))ds

is a martingale with respect to (Ω ,Ft , P ). We consider the stopping times {τt},
defined by, ∫ τt(ω)

0

ds

V (x(s , ω))
= t

where V (·) is a positive measurable function on X , satisfying

0 < c ≤ V (x) ≤ C <∞ (4.6)

Then it is clear that τt is well defined for t ≥ 0 with τ0 = 0 and τs < τt for s < t
and τt is almost surely continuous in t. We can use τt to define a map ΦV of
Ω → Ω by

(ΦV ω)(t) = x(τt(ω) , ω)

Lemma 4.2. For any two functions U and V , satisfying the bound (4.6),

ΦU ΦV = ΦUV

Proof. The proof depends on the simple calculation

dτt(ω)
dt

= V (x(τt(ω))) = V (y(t))

where y(t) = x(τt(ω)) = (ΦV ω)(t). If σt solves∫ σt(ω)

0

ds

U(y(s))
= t

or
dτσt

dt
=
dτσ
ds
|s=σt ·

dσt

dt
= (V U)(y(σt)) = (V U)(x(τσt ))

proving the composition rule.
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In particular ΦV is invertible with Φ 1
V

= [ΦV ]−1. The σ-field σ{y(s) : 0 ≤ s ≤
t} ⊂ Fτt , and

f(y(t))− f(y(0))−
∫ τt

0

(Lf)(x(s))ds

is an (Ω ,Fτt , P ) martingale. By change of variables∫ τt

0

(Lf)(x(s))ds =
∫ t

0

V (y(s))(Lf)(y(s))ds

Therefore

f(y(t))− f(y(0))−
∫ t

0

V (y(s))(Lf)(y(s))ds

is a martingale with respect to (Ω ,Fτt , P ). In particular Q = Φ−1
V P is a

Martingale solution for L̃ defined as

(L̃f)(x) = V (x)(Lf)(x)

The steps are reversible so that existence or uniqueness for a Martingale solution
for L and L̃ are equivalent so long as V satisfies the bounds (4.6).

Now when d = 1 we can prove existence and uniqueness of Martingale Solu-
tions to

L =
a(x)

2
D2

x + b(x)Dx

so long as a , b are bounded measurable with 0 < c ≤ a(x) ≤ C < ∞. From
Girsanov Formula we can assume without loss of generality that b ≡ 0. By
random time change we can assume that a(x) ≡ 1. Now we are in the Brownian
motion case, and we have existence and uniqueness. Of course once we have
existence and uniqueness the Markov Property as well as the Strong Markov
Property follow.

In the time dependent case it is more complicated. In one dimension we can
improve the Lipschitz assumption on σ to a Hölder condition with exponent 1

2 .

Theorem 4.3. Assume that b is Lipschitz but σ satifies

|σ(t , x) − σ(t, y)| ≤ C|x − y|
1
2

Then any two solutions

xi(t) = x0 +
∫ t

0

σ(s , xi(s))dβ(s) +
∫ t

0

b(s , xi(s))ds

are identical.

Proof. The proof involves the application of Ito’s formula for the function

f(x1(t) , x2(t)) = |x1(t)− x2(t)|.
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Formally

df(x1(t) , x2(t)) = [sig(x1(t)− x2(t))](σ(t , x1(t)) − σ(t , x2(t)))dβ(t)

+ δ(x1(t)− x2(t))|σ(t , x1(t)) − σ(t , x2(t))|2dt
+ [sig(x1(t)− x2(t))][b(t , x1(t))− b(t , x2(t))]dt

We will give an argument as to why the term with the delta-function δ is zero.
Granting that, we have by the Lipschitz condition on b,

E[|x1(t)− x2(t)|] ≤ C

∫ t

0

E[|x1(s)− x2(s)|]ds

and this implies uniqueness. Let us approximate |x| by fε(x) =
√

(ε2 + x2).
Then

f ′′ε (x) =
ε2

(ε2 + x2)
3
2

and

|f ′′ε (x1 − x2)|σ(t , x1)− σ(t , x2)|2 ≤ Cε2|x1 − x2|
(ε2 + (x1 − x2)2)

3
2

≤ C sup
u

[
u

(1 + u2)
3
2

]
≤ C′

We can now let ε→ 0, use the dominated convergence theorem and pass to the
limit to show that there is no contribution from the term involving δ.

4.4 General comments on existence and unique-

ness of the martingale solutions.

If we are given a a(t , x) = {ai,j(t , x)} and b(t , x) = {bj(t , x)} and are interested
in proving existence and uniqueness of martingale solutions, we specifically wish
to show that the set Cs,x of probability measures P on Ωs = C[[s ,∞) ;Rd ] such
that

P [x(s) = x] = 1

and

Zf (t) = f(x(t))− f(x(s)) −
∫ t

s

(Lsf)(x(s)ds (4.7)

are martingales with respect to (Ωs ,Fs
t , P ) for all smooth f , consists of exactly

one probability measure.
The existence part is simple under fairly general conditions. If a and b are

smooth we can have Lipschitz σ and b and Ito’s theory of SDE provides us, as
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we saw, both existence and uniqueness. If we only assume that a and b are just
bounded and continuous we can prove existence along the following lines. We
take s = 0 with out loss of generality and approximate a, b by smoother an, bn
that converge as n→∞ to a, b. The convergence can be assumed to be uniform
over compact subsets of Rd, and we can also assume that an as well as bn are
uniformly bounded by some constant M . For some x, let Pn,x be the unique
solution starting at time 0 from the point x, corresponing to an, bn. We will
prove that Pn,x is a totally bounded sequence of probability measures on Ω, and
that if P is any weak limit, then P is a solution starting at time 0 from x for
the limiting coefficients and therefore we have existence.

Lemma 4.4. The sequence Pn satisfies the following. For any T <∞ and any
ε > 0, there exists A(T , ε) depending only on the bound M such that

Pn

[
ω : sup

0≤s≤t

|x(s)− x(t)|
|t− s| 14 ≤ A(T , ε)

]
≥ 1− ε

In particular the sequence is totally boundeded.

Proof. Let P be a diffusion corresponding to some a, b that are bounded by M .
We remark that we can write

x(t) = y(t) +
∫ t

0

b(x(s))ds

Clearly the difference |x(t)− y(t)| is uniformly Lipschitz with a bound of M for
the Lipschitz constant and y(t) is such that

exp
[
< θ , y(t)− y(0) > −1

2

∫ t

0

< θ , a(s , ω)θ > ds

]
is a martingale with respect to (Ω ,Ft , P ). From this we deduce the following
bound

EP [exp[< θ , y(t)− y(s) >]] ≤ exp[
M(t− s)

2
‖θ‖2]

or

EP

[
exp[< θ ,

y(t)− y(s)√
t− s

>]
]
≤ exp[

M

2
‖θ‖2].

It is easy to conclude now that

EP

[ |y(t)− y(s)|4
|t− s|2

]
≤ CM2

for a universal constant C. From Garsia-Rodemich-Rumsey lemma we get our
estimte and by Prohorov’s theorem we get the total boundedness of the sequence
Pn of probability measures.

We take a weak limit along a subsequence and call it P . We might as well
assume that Pn → P weakly.
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Lemma 4.5. The limit P is a martingale solution for a, b.

Proof. With Zf (t) as in the expression (4.7) we need to establish∫
A

Zf(t)dP =
∫

A

Zf(s)dP

for A ∈ Fs. It is sufficient to prove∫
Φ(ω)Zf (t)dP =

∫
Φ(ω)Zf (s)dP (4.8)

for bounded continuous (in the topology of uniform convergence on bounded
time intervals) functions Φ that are Fs measurable. For such a Φ clearly∫

Φ(ω)Zn
f (t)dPn =

∫
Φ(ω)Zn

f (s)dPn (4.9)

where

Zn
f (t) = f(x(t))− f(x(s))−

∫ t

s

(Ln
s f)(x(s))ds

and

Ln
s =

1
2

∑
i,j

an
i,j(s , x)

∂2

∂xi∂xj
+

∑
j

bnj (s , x)
∂

∂xj

We can let n→∞ and from the weak convergence of Pn to P , the convergence
of Zn

f (t) to Zf (t), ( uniformly on compact subsets of Ω ), and the uniform
boundedness of Zn

f (t) we can let n → ∞ in equation (4.9) to conclude that
equation (4.8) holds. We are done.

Uniqueness is a much harder issue. Clearly we have it in the Lipschitz case.
But the uniqueness cannot be done by approximation. The following general
Markovian Principle works. Assume existence.

Lemma 4.6. If there exists a family µs,x,t(·) of probability measures such that,
for any P ∈ Cs,x,

P [x(t) ∈ A] = µs,x,t(A)

then P is a Markov Process with µs,x,t(A) as transition probabilities and is
therefore unique.

Proof. We proved a general princilpe that the conditional probabilty distribu-
tion Pt,ω of any solution P ∈ Cs,x give Ft is in Ct,x(t) almost surely. Therefore
for s < t < u

P [x(u) ∈ A|Ft] = µt,x(t),u(A)

a.e. P , proving the Markov property and the lemma.
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Determining P [x(t) ∈ A] for P ∈ Cs,x can be done through solving certain
partial differential equations. We know that

u(t , x(t)) − u(s , x(s))−
∫ t

s

(
∂

∂σ
+ Lσu)(σ , x(σ))dσ

is a martingale. Therefore for any smooth u and P ∈ Cs,x,

u(s , x) = EP

[
f(x(t)) +

∫ t

s

g(σ , x(σ))dσ
]

(4.10)

where

g(σ , ·) = −(
∂u

∂σ
+ Lσu)(σ , ·) (4.11)

and

u(t , ·) ≡ f(·) (4.12)

The relation holds for for every smooth u and every P ∈ Cs,x.

Lemma 4.7. If u satisfies equations (4.11) and (4.12) with g ≥ 0 and f ≥ 0,
and Cs,x is nonempty then the maximum principle holds, i.e. u(s , x) ≥ 0.

Proof. Obvious from equation (4.10).

We are actually interested in going in the converse. Suppose either

1. Suppose equation (4.11) is solvable for sufficiently many g satisfying (4.12)
with f ≡ 0
or
2. Equation (4.11) is solvable with g ≡ 0 satsfying (4.12) for sufficiently many
f , then

EP

[∫ t

s

g(σ , x(σ))dσ
]

or
EP [f(x(t))]

are determined for sufficiently many g or f as the case may be. This can then
be used to determine P [x(t) ∈ A] for P ∈ Cs,x. What we mean by sufficiently
many depends on the circumstances. We need either enough g’s to recover the
the measures {µσ} from the integrals∫ t

s

∫
Rd

f(y)µσ(dy)dσ

or enough f ’s to determine the measure from the integrals∫
Rd

f(y)µ(dy)
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If we know some thing about P ∈ Cs,x, like for instance

µs ,x(dσ, dy) = Ps,x[x(σ) ∈ dy]dσ
is always in some Lp([s , t]× Rd), then sufficiently many can be just any dense
set in Lq([s , t] × Rd), where 1

p + 1
q = 1. Similarly if we know that for any

P ∈ Cs,x, the measure P [x(t) ∈ dy] is in Lp[Rd] it is enough to solve f from a
dense subset of Lq[Rd]. These remarks are quite pertinent especially when the
coefficients are discontinuous.

4.5 Time dependent diffusions in one dimension.

Let us look at d = 1 and consider the equation

∂u

∂σ
+

1
2
a(σ , y)

∂2u

∂y2
= g(σ , y)

Suppose a is just measurable. If we insist on u being C1,2, and g being contin-
uous ut , uyy and g are continuous and unless u ≡ c, there will be no solutions.
For nonsmooth coefficients we have to deal with non-classical solutions.

Let us now illustrate the method with the problem of constructing solutions
for the one dimensional problem with 0 < c ≤ a(t , x) ≤ C <∞ and b ≡ 0. We
start with

Theorem 4.8. Let us consider a stochastic integral with repect to the Brownian
Motion on some probability space

ξ(t) = x0 +
∫ t

0

k(s , ω)dβ(s)

for some k(s , ω) satisfying

0 < c ≤ |k(s , ω)|2 ≤ C <∞
Then there is a constant M depending only on c, C and T such that∣∣∣∣∣E

[∫ T

0

g(s , ξ(s))ds

]∣∣∣∣∣ ≤M‖g‖L2([0,T ]×R)

Proof. The key estimate is the following: Consider a function g with compact
support on (−∞ ,∞)×R. Define

u(s, x) =
∫ ∞

s

∫
R

1√
2Cπ(t− s)

g(t , y) exp[− (x− y)2

2C(t− s)
]dtdy (4.13)

If g is smooth it is easy to verify that

∂u

∂s
+
C

2
uxx = −g(s , x)
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Taking Fourier transform û of u in x and s,

iτ û(τ , η)− Cη2

2
û(τ , η) = −ĝ(τ , η)

or
û(τ , η) =

1
Cη2

2 − iτ
ĝ(τ , η)

and

ûxx(τ , η) =
η2

iτ − C
2 η

2
ĝ(τ , η)

Therefore using the isometry of the Fourier transform

‖uxx‖L2 ≤
2
C
‖g‖L2

Now to prove the theorem there is no loss of generality in assuming that k is
simple. With uniform bounds we can pass to the limit. We define the linear
functional

Λ(g) = E

[∫ T

0

g(s , ξ(s))ds

]
Clearly if k is simple, then ξ is piecewise Brownian Motion and the transition
probability pσ2(s , x , t , y) of the Brownian motion is in L2[[0 , T ]×R] uniformly
in s and x provided 0 < c ≤ σ2 ≤ C <∞. It is now easy to get a bound

|Λ(g)| ≤M‖g‖L−2

with a constant M that depends on the number of intervals over which k is
constant. We want to improve our bound to make it depend only on c, C and
T . If we take g that vanishes for t ≥ T , construct u as in equation (4.13), then
u(T , ·) ≡ 0 and by Ito’s formula

u(0 , x) = −EP

[∫ T

0

us +
k2(s , ω)

2
uxx(s , ξ(s))ds

]

= −EP

[∫ T

0

(us +
C

2
uxx)(s , ξ(s))ds

]

+ EP

[∫ T

0

C − k2(s , ω)
2

uxx(s , ξ(s))ds

]

= EP

[∫ T

0

g(s , ξ(s))ds

]
+ EP

[∫ T

0

C − k2(s , ω)
2

uxx(s , ξ(s))ds

]
or

EP

[∫ T

0

g(s , ξ(s))ds

]
= u(0 , x)− EP

[∫ T

0

C − k2(s , ω)
2

uxx(s , ξ(s))ds

]
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and therefore

EP

[∫ T

0

g(s , ξ(s))ds

]
≤ |u(0 , x)|+ C − c

2
EP

[∫ T

0

|uxx(s , ξ(s))|ds
]

In other words

|Λ(g)| ≤ |u(0 , x)|+ Λ(|uxx|) (4.14)

Taking supremum in equation (4.14) over g with ‖g‖L2 ≤ 1, and denoting it by
M , we get

M ≤ sup
g:‖g‖≤1

|u(0 , x)|+ C − c

2
2
C
M = sup

g:‖g‖≤1

|u(0 , x)|+ (1− c

C
)M

Since

sup
g:‖g‖≤1

|u(0 , x)| =
[∫ T

0

∫
R

[
1√

2πCt
exp[− y2

2Ct
]
]2

dydt

] 1
2

= A(T ,C) <∞

we have

M ≤ C

c
A(T ,C) = A(T ,C , c)

and the theorem is proved.

Remark 4.11. An immediate consequence of the estimate is that any stochastic
integral of the form

ξ(t) =
∫ t

0

k(s , ω)dβ(s)

with
0 < c ≤ |k(s , ω)|2 ≤ C <∞

has a distribution q(t , dy) that has a density q(t , y)dy in y for almost all t, with
the bound ∫ T

0

∫
R

|q(t , y)|2dtdy ≤ [A(T ,C , c)]2

Remark 4.12. In particular if p(s , x , t , dy) is the transition probability for a
diffusion with smooth coefficients a = a(t , x), and b = 0, with

0 < c ≤ a(t , x) ≤ C <∞

it has a density p(s , x , t , y) for almost all t and,

sup
x

s≤t

∫ T

t

|p(s , x , t , y)|2dtdy ≤ [A(T − t , C , c)]2
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We will now use the above theorem to prove existence as well as uniqueness of
martingale solutions. We assume 0 < c ≤ a(t , x) ≤ C < ∞. We can construct
an satisfying the same bounds that are smooth and we can have an → a almost
everywhere in t and x. We have from Lemma 4.4, the total boundeness of the
measures Pn for the approximating smooth coefficients. But now the expressions

Zn
f (t) = f(x(t)) − f(x(0))−

∫ t

0

an(s , x(s))
2

fxx(x(s))ds

do not converge uniformly on compact subsets of Ω to

Zf (t) = f(x(t)) − f(x(0))− 1
2

∫ t

0

a(s , x(s))fxx(x(s))ds

But, given any ε > 0, we can find aε
n and aε such that aε

n → aε uniformly on
compact subsets of [0 ,∞)×R and∫ T

0

∫
|x|≤`

[|aε
n − an|2 + |aε − a|2]dx dt ≤ δε(T , `)

for some δε(T , `) such that δε(T , `) → 0 as ε→ 0 for each T and `. Now

Zn,ε
f (t) = f(x(t)) − f(x(0))− 1

2

∫ t

0

aε
n(s , x(s))fxx(x(s))ds

converges nicely to

Zε
f (t) = f(x(t)) − f(x(0))− 1

2

∫ t

0

aε(s , x(s))fxx(x(s))ds

and ∫
Φ(ω)Zn,ε

f (t)dPn →
∫

Φ(ω)Zε
f (t)dPn

for for smooth f and bounded continuous Fs measurable functons Φ. Since we
now have a bound of the form

sup
n
|
∫

Φ(ω)[Zn,ε
f (t)− Zn

f (t)]dPn |

≤ C1 sup
n
EPn

[∫ T

0

|aε
n(t , x(s))− an(t , x(t))|dt

]

≤ 2CC1 sup
n
Pn

[
sup

0≤t≤T
|x(t)| ≥ `

]
+ C1

∫ T

0

∫ `

−`

|aε
n(t , x)− aε(t , x)|pn(0 , x , t , y)dy

≤ CC1∆(`) + C1

√
δε(T , `)A(T ,C , c)
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with the a similar estimate for Zε
f − Zf

|
∫

Φ(ω)[Zε
f (t)− Zf (t)]dP | ≤ CC1∆(`) + C1

√
δε(T , `)A(T ,C , c)

We can now interchange n→∞ limit and ε→ 0 limit and we can conclude that

lim
n→∞

∫
Φ(ω)Zn

f (t)dPn =
∫

Φ(ω)Zf (t)dP

for all t ≥ s, and therefore, from∫
Φ(ω)Zn

f (t)dPn =
∫

Φ(ω)Zn
f (s)dPn

it follows that ∫
Φ(ω)Zf (t)dP =

∫
Φ(ω)Zf (s)dP

proving that P is a martingale solution for [a(· , ·), 0 ]
Now we turn to proving uniqueness. We will attempt to solve the equations

(4.11) and (4.12) with a function u of the form

u(s , x) =
∫ T

s

∫
R

h(t , y) pC(s , x , t , y)dy

Then as we saw earlier

us(s , x) +
a(s , x)

2
uxx(s , x) = us(s , x) +

C

2
uxx(s , x) +

a(s , x)− C

2
uxx(s , x)

= −g(s , x) + [Bg](s , x)
= −([I −B]g)(s , x)

where

Bg(s , x) =
a(s , x)− C

2
uxx(s , x)

and
‖Bg‖L2 ≤ (1− c

C
)‖g‖L2

If we have two martingale solutions P i, i = 1, 2 in Cs ,x and µi
t are their marginal

distributions at times t ≥ s, then they have densities qi(t , y) for almost all t,
and

u(s , x) =
∫ T

s

[(I −B)g](t , y) q1(t , y)dy =
∫ T

s

[(I −B)g](t , y) q2(t , y)dy

Since we know that ∫ T

0

∫
R

|qi(t , y)|2dtdy <∞

in order to establish that q1 ≡ q2, it sufficient to show that the set of functions
of the form (I −B)g as g ranges over C∞ functions is dense. Because ‖B‖ < 1
this is indeed true.


