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4.6 Example of non-uniqueness.

If we try to construct a solution to the martingale problem in 1 dimension
coresponding to a(x) = |x|α with 0 < α < 1, it is easy to show nonuniqueness,
due to the nature of the vanishing of a(x) near 0. In particular, if we start at time
0 from the point 0, because a(0) = 0, the measure P such that P [x(t) ≡ 0] = 1
is a solution. On the other hand we van try to get another solution by a random
time chane from Brownian motion. We try to define P as the distribution of
β(τt) where τt is the solution of∫ τt

0

ds

a(β(s))
= t.

To make sure that this is well defined, we must check that∫ t

0

ds

|β(s)|α <∞ a.e.

We can use Fubini’s theorem and check

E

[∫ t

0

ds

|β(s)|α
]

=
∫ t

0

∫ ∞

−∞

1√
2πs

e−
y2

2s
dy

|y|α ds <∞

Essentially the vanishing of a(0) and the integrability of 1
a(x) near 0 cause the

trouble. Compare it to the standard example of nonuniqueness for ẋ = b(x)
which arises from the vanishing, b(0) = 0 of b at 0, in such a way that

∫
dx

b(x)

remains integrable.

4.7 Higher dimensions.

The homogeneous or time independent case is special in d = 2. We want to
prove existence and uniquness for [a, 0] where

a(x, y) =
(
a11(x, y) a12(x, y)
a12(x, y) a22(x, y)

)
We can always do a random time change. If the matrix is uniformly elliptic, i.e.,
if c1I ≤ a(x, y) ≤ c2I, we can mutiply by a scalar function and normalize so that
Tracea(x, y) = a11(x, y)+a22(x, y) ≡ 2. Let us assume with out loss of generality
that this is indeed the case. Let 1 − a11(x, y) = −(1 − a22(x, y)) = ε(x, y).
Consider the solution of

λu− ∆
2
u = f

for f ∈ L2(Rd). We will estimate the difference

λu− Lu − f = g = (
∆
2
− L)u

=
1
2
[(1− a11(x, y))uxx − 2a12(x, y)uxy + (1 − a22(x, y))uyy]

=
1
2
[ε(x, y)(uxx − uyy)− 2a12(x, y)uxy]
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|g|2 ≤ 1
4
[ε2(x, y) + a2

12(x, y)][(uxx − uyy)2 + 4u2
xy]

If we denote by δ = supx,y[ε
2(x, y) + a2

12(x, y)], and f̂ , û the Fourier trans-
forms of f and u respectively

‖g‖22 ≤
δ

4
[‖(ξ2 − η2)û‖22 + 4‖ξηû‖22 =

δ

4
‖(ξ2 + η2)û‖2 ≤ δ‖f̂‖22 = δ‖f‖22

Moreover

ε2(x, y) + a2
12(x, y) = −det(a− I)

= −(λ1(x, y)− 1)(λ2(x, y)− 1)
= 1− λ1(x, y)λ2(x, y)
≤ δ < 1

because of ellipticity, where λi are the eigenvalues of a satisfying λ1(x, y) +
λ2(x, y) ≡ 2 and λi(x, y) ≥ c1.

Exercise 4.1. Now follow the same proof as in the one dimensional case, except
limit yourself to the time homogeneous case. The quantities

EPx

[∫ ∞

0

e−λtf(x(t))dt
]

are detremined uniquely and through them the solution to the martingale prob-
lem as well.

Remark 4.13. The situation of the general time dependent elliptic case in d ≥ 2
or even the time homogeneous case in d ≥ 3 is more complex. Even for Brownian
motion, objects of the form

λ(f) = Ex

[∫ T

0

f(t, x(t))dt

]
or

λ(f) = Ex

[∫ ∞

0

e−λtf(x(t))dt
]

are not bounded linear functionals of f ∈ L2([0, T ]×Rd) or L2(Rd) as the case
may be. So the perturbation theory in L2 does not work. However

λ(f) = Ex

[∫ T

0

f(t, x(t))dt

]

is a bounded linear functional on Lp([0, T ]×Rd) for some p = p(d) that dpends
on the dimension. There is a result in singular integrals that establishes that
the operators

∂2

∂xi∂xj

∫ T

s

∫
Rd

f(t, y)
1

(2πt)
d
2
e−

‖y−x‖2
2(t−s) dtdy
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are bounded by some constant C = C(p, d) from Lp([0, T ]×Rd into itself. This
allows the perturbation theory to work, but only if ‖a(t, x) − I‖ ≤ ε = ε(p, δ),
where ε depends on d and the p = p(d) that we have to use. All we can say
that ε > 0. The same applies if we try to perturb from any constant positive
definite symmetric matrix C = {ci,j}. The perturbation range depends only on
the sizes of the smallest and largest eigenvalues of C.

Remark 4.14. The previous remark will enable us to prove the existence as well
as uniqueness of solutions to the martingale problem for [a, 0] where a = a(t, x)
is uniformly close to a constant positive definite matrix C. How close will
depend on the dimension d as well as the upper and lower bounds on the eigen
values of C. This is not very satisfactory. However this is enough to show
that if a(t, x) is uniformly bounded, continuous and nondegenerate for every
(t, x) then we do have existence and uniqueness. Existence is done as usual by
approximating by smooth coefficients, observing that the measures or totally
bounded and extracting a convergent subsequence. Let us establish uniqueness.
Assume that we have two solutions for the same [a, 0] starting from (s0, x0). Let
ε be the perturbation range that will work for C = a(s, x) as (s, x) varies over
a compact set [0, T ]× {x : |x| ≤ `}. If τ1 is the exit time from the space-time
neighborhood of size ε, then the processes do not ‘know’ that the coefficients
are not with in ε of C = a(s0, x0) and therefore any two solutions P1 and P2

have to agree on Fτ1 . Then a conditioning argument can be used to prove
that the conditional distributions have to agree upto exiting from a space-time
neighborhood of size ε from the first exit point (τ1, x(τ1)). Let us call this the
second exit point (τ2, x(τ2)). Since the marginals and conditional determine the
joint distribution, we have the two measures agreeing on Fτ2 . By induction they
agree on Fτn . We let n→∞. Since we are limited to [0, T ]×{x : |x| ≤ `} we can
get P1 and P2 agreeing on Fσ`

where σ` is the exit time from [0, T ]×{x : |x| ≤ `}.
Letting ` go to infinity we are done.

Remark 4.15. No matter how existence or uniqueness is proved, so long as a
is nondegenerate with uniform upper and lower bounds on the eigenvalues we
can always go from [a, 0] to [a, b] by Girsanov’s formula provided b = b(t, x) is
bounded. Actually a stopping argument, that uses exit times from bounded sets
can be employed and we can get away with assuming uniform nondegeneracy
only on compact sets.

4.8 Convergence of Markov Chains.

Suppose for each 0 < h ≤ 1, we are given the transition probability πh(x, dy) of
a Markov Process on Rd. We think of h as the unit of time step and construct
a measure Ph,x on the space of sequences {xn} with values in Rd. The measure
Ph,x has the property that Ph,x[x0 = x] = 1 and {xn} is a Markov Process under
Ph,x with πh(x, dy) as transition probability. We can tranfer the measure to the
function space Ω = C[[0,∞);Rd] by mapping x(nh) = xn and interpolating
linearly in between to make it continuous. We will also denote by Ph,x the
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measure on Ω . We are interested in the behavior of Ph,x as h→ 0. It is natural
to assume that

lim
h→0

1
h

∫
Rd

[f(y)− f(x)]πh(x, dy) = (Af)(x)

exists uniformly for x in compact subsets K ⊂ Rd and for C∞ functions f with
compact support in Rd. The limit is of the form

(Af)(x) =
1
2

∑
ai,j(x)

∂2f

∂xi∂xj
(x) +

∑
j

bj(x)
∂f

∂xj
(x)

where a = {ai,j(x)} is a symmetric positive semidefinite matrix of diffusion
coefficients and b = bj(x) are continuous drift coefficients. Let us assume that
[a, b] are uniformy bounded. Let us suppose that the solution to the martingale
problem for A is unique for [a, b], giving us a Markov family Px of measures on
Ω for A. Our goal is to prove the theorem

Theorem 4.9. As h→ 0, the family {Ph,x} converges to {Px}.
Proof.
Step 1. Because we have uniform convergence only on compact subsets, it is
better to introduce cutoff function φ`(x) = φ(x

` ) where φ(x) is smooth 0 ≤
φ(x) ≤ 1 with φ(x) = 1 on {x : |x| ≤ 1} and φ(x) = 0 on {x : |x| ≥ 1. We then
define

π`
h(x, dy) = φ`(x)πh(x, dy) + (1− φ`(x))δ(x, dy)

and the corresponding chains and measures {P `
h,x} on Ω.

Step 2. Relative to (Ω,Fnh, P
`
h,x)

Zh
f (nh, ω) = f(x(nh))− f(x(0))−

n−1∑
j=0

∫
Rd

[f(y)− f(x)]π`
h,x(x, dy)

is a martingale. Suppose that {P `
h,x : h > 0} is totally bounded. Then it is seen

easily that

lim
h→0

nh→t

Zh
f (nh, ω) = f(x(t))− f(x(0)) −

∫ t

0

φ`(x)(Af)(x(s))ds

which implies that any limit point Q is a solution to the martingale problem for
A` where (A`f)(x) = φ`(x)(Af)(x). In particular any such Q must agree with
Px on Fτ`

. Since the set {ω : sup0≤t≤T |x(t)| ≥ ` is in Fτ`
and is closed in Ω,

lim sup
h→0

P `
h,x

[
sup

0≤t≤T
|x(t)| ≥ `

]
≤ Px

[
sup

0≤t≤T
|x(t)| ≥ `

]
Since Px is a diffusion with bounded coefficients

lim sup
`→∞

Px

[
sup

0≤t≤T
|x(t)| ≥ `

]
= 0
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Therefore the difference between P `
h,x and Ph,x on FT goes to 0 as h→ 0. This

proves the convergence of {Ph,x} to {Px} as h→ 0.

Step 3. We now show that, for fixed ` and x, the family {P `
h,x : h > 0} is

totally bounded. The basic estimate is on the following quantity:

ψ(t, δ) = sup
h>0

sup
x∈Rd

P `
h,x

[
sup

1≤j≤ t
h

|x(jh)− x(0)| ≥ δ

]
So long as t is a mutiple of h, this is the same as

ψ(t, δ) = sup
h>0

sup
x∈Rd

P `
h,x

[
sup

1≤s≤t
|x(s)− x(0)| ≥ δ

]
Note that if |x| ≥ 2` then

P `
h,x

[
sup

1≤j≤ t
h

|x(jh) − x(0)| ≥ δ

]
= 0

Let f be a smooth function which is 1 on a ball of radius δ around some point
x0 and 0 outside a ball of radius 2δ. Denote by

Cf = sup
h>0

sup
x

1
h

∫
[f(y)− f(x)]π`

h(x, dy)

which is finite because of our assumption. Then with respect to any P `
h,x,

Af (nh) = f(x(nh))− f(x(0)) + nhCf

is a submartingale. Clearly A(0) = 0, and if |x − x0| ≤ δ for the stopping time
τ = inf{j : |x(jh)| ≥ 2δ},

P `
h,x[τ ≤ nh] ≤ P `

h,x[f(x(τ ∧ nh)) = 0]

≤ P `
h,x[f(x(0))− f(x(τ ∧ nh)) = 1]

≤ EP `
h,x [f(x(0))− f(x(τ ∧ nh))]

≤ EP `
h,x [Cfτ ∧ nh−A(τ ∧ nh)]

≤ EP `
h,x [Cfτ ∧ nh]

≤ Cfnh

Since the ball |x| ≤ 2` can be covered by a finite number of such balls, we
need only a finite number of functions f . There is therefore a finite constant
Cδ,` such that ψ(t, δ) ≤ Cδ,`t.

In order to prove the total boundedness we need to estimate the modulus of
continuity ∆(ω) of the path ω = x(·) in [0, T ].

∆(ω, δ) = sup
0≤s≤t≤T
|s−t|≤δ

|x(t)− x(s)|
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Let us define k1 = inf{j : |x(jh) − x(0)| ≥ δ}, k2 = inf{j : |x((k1 + j)h) −
x(k1h)| ≥ δ} and so on. Let us consider for an integer N , the sum kN =
k1 + k2 + · · · + kN and mN = min(k1, k2, . . . , kN ). Suppose 0 ≤ j1 ≤ j2 ≤
kN , j2 − j1 ≤ mN and kN ≥ k where kh = T . There can be atmost one
partial sum k1 + k2 + · · · + kr between j1 and j2. Moreover if we denote by
η = sup0≤j≤k−1 |x(jh)− x((j + 1)h)|, then

|x(j1h)− x(j2h)| ≤ 4δ + η

and hence
∆(ω, hmN ) ≤ 4δ + η

We are almost done. We have uniform conditional estimates on k1, k2, . . . of
the type

P [hki+1 ≤ t|k1, . . . , ki] ≤ Ct

which implies that
E[e−hki+1 |k1, k2 . . . , ki] ≤ ρ < 1

Therefore
E[e−h(k1+k2+···+kN )] ≤ ρN

and
P [h(k1 + k2 + · · ·+ kN ) ≤ T ] ≤ eTρN

On the other hand
P [hmN ≤ ε] ≤ NCε

Finally,
P [∆(ω, ε) ≥ 5δ] ≤ P [η ≥ δ] +NCε+ eTρN

We can pick N and then ε to control it provided we control

P [η ≥ δ] ≤ [
T

h
] π`

h,x(x,B(x, δ)c)

The locality of the operator A gaurantees that the limit

lim
h→0

sup
|x−x0|≤δ

1
h
π`

h,x(x,B(x, 3δ)c)

≤ lim
h→0

sup
|x−x0|≤δ

1
h
π`

h,x(x,B(x0, 2δ)c)

≤ lim
h→0

sup
|x−x0|≤δ

1
h

∫
[f(y)− f(x)]π`

h,x(x, dy)

= 0
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4.9 Explosion.

Just as a solution to the ODE ẋ = b(x) can explode at a finite time, diffusion
processes with unbounded coffecients can explode as well at a finite random
time. In order to define and study explosion, we need the notion of a local
solution, since global solutions by definition are defined for all t ≥ 0 and cannot
explode. We have the natural stopping time τ` = inf{t : |x(t)| ≥ `} and the
corresponding σ-field Fτ`

. A local solution for A is a family of measures P` on
Fτ`

that are consistent, i.e. P`+1 = P` on Fτ`
. We can abuse notation and

denote all of them by P . Although P is well defined on the field F̂ = ∪`Fτ`
it

may not be countably additive on F̂ . It is not hard to check that in order that
P be countably additive on F̂ it is necessary and sufficient that

lim
`→∞

P [τ` ≤ T ] = 0

for every T < ∞. This is seen to be equivalent to τ` → ∞ in probability as
`→∞. The quantity

lim
`→∞

P [τ` ≤ t] = F (t)

defines the distribution function of the ‘explosion’ time, and we need to show
that F (t) ≡ 0 to avoid explosion in a finite time with positive probability. If the
explosion has probability 0, then P extends uniquely as a countably additive
measure on (Ω,F). After all the field F̂ generates the σ-field F . We need
conditions for nonexplosions.

Theorem 4.10. Suppose there exists a smooth function u(x) such that u(x) ≥
0, u(x) → ∞ as |x| → ∞ and (Au)(x) ≤ Cu(x) for some C < ∞. Then any
local solution for A cannot explode.

Proof. We consider
Zt = e−Ctu(x(t))

By Itô’s formula or the martingale formulation, Zt is a supermartingale upto
any stopping time τ` = inf{t : |x(t)| ≥ `}. In particular E[Zτ`

] ≤ E[Z0] = u(x).
On the other hand

Zτ`
= e−Cτ`u(x(τ`)) ≥ e−Cτ` inf

|y|≥`
u(y) = e−Cτ`c`

where c` →∞ as `→∞. This means

E[e−Cτ` ] ≤ u(x)
c`

From the simple bound

P [τ` ≤ T ] ≤ eCTE[e−Cτ` ]

it folows that there cannot be an explosion.
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Corollary 4.11. If ‖a(x)‖ ≤ C(1 + |x|2) and ‖b(x)‖ ≤ C(1 + |x|) there cannot
be an explosion.

Proof. Let us try U(x) = (1 + |x|2). Each derivative lowers the power by 1 and
therfore AU again has atmot quadratic growth. We are done.

Remark 4.16. We can deal with time dependent coefficients with no additional
work. We can apply the same method or think of time as an extra space
coordinate (with index 0), with the corresponding a0,j ≡ 0 and b0 = 1.

Remark 4.17. In Theorem 4.9 it is enough to assume that the process corre-
sponding to the limiting A does not explode. Bounded is really not needed.

Remark 4.18. Uniqueness is a local issue. If in some neighborhood of each
point the given coefficients are the restrictions of other coefficients for which
uniqueness holds, then uniqueness is valid for the given set of coefficients.

Exercise 4.2. We can provide conditions for explosion. If U(x) > 0 and is
bounded on Rn and satisfies (AU)(x) ≥ cU(x) for some c > 0, then the process
explodes with positive probability. Use the reverse inequalities in the proof of
nonexplosion to get a uniform lower bound on E[e−cτ` ].

Exercise 4.3. Show that the process in 1 dimension corresponding to 1
2

d2

dx2 +
x2 d

dx explodes.

Exercise 4.4. Does the process corresponding to ex2

2 ∆ explode in dimension
d = 2? How about d ≥ 3? (Hint: use random time change). Can any process
corresponding to [a, 0] with continuous positive a explode in d = 1 or 2?


