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CHAPTER 7PRIVATE 


BOND RISK
7.1 INTRODUCTION
Investment risk is the uncertainty that the actual rate of return realized from a security will differ from the expected rate.   In the case of bonds and fixed income securities, there are three types of risk:  (1) Default risk: the uncertainty that the issuer/borrower will fail to meet his contractual obligations to pay interest and principal, as well as other obligations specified in the indenture; (2) Call risk: the uncertainty that the issuer/borrower will buy back the bond, forcing the investor to reinvest in a market with lower interest rates; (3) Market risk: the uncertainty that interest rates will change, changing the price of the bond and the return earned from reinvesting coupons.  In this chapter, we examine these three types of risk and introduce two measures of bond volatility: duration and convexity.  Before examining the nature of bond risk, we look at how investors’ attitudes toward risk affect a security’s risk premium - the additional return above or below the risk- free rate. 

7.2 RETURN-RISK PREFERENCES

To see how risk-attitudes affect a risk premium, suppose there are only two securities available in the market: a risk-free security and a risky bond.  Suppose the risk-free security is a pure discount bond promising to pay $1,000 at the end of one year and that it currently is trading for $909.09 to yield a one year risk-free rate of 10%:
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Suppose the risky bond is also a one-year pure discount bond with a principal of $1,000, but there is a chance it could default and pay nothing.  In particular, suppose there is a .8 probability the bond will pay its principal of $1,000 and a .2 probability it will pay nothing.  The expected dollar return from the risky bond is therefore $800:
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Given the choice of two securities, suppose that the market was characterized by investors who were willing to pay $727.27 for the risky bond, in turn yielding an expected rate of return of 10%. That is:
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By paying $727.27, investors would have a .8 probability of attaining a rate of return of 37.5% ([$1,000/$727.27] -1) and a .2 probability of losing their investment. In this case, investors would be willing to receive an expected return from the risky investment that is equal to the risk-free rate of 10%, and the risk premium, E(r) - Rf, would be equal to zero.  In finance terminology, such a market is described as risk neutral.  Thus, in a risk neutral market, the required return is equal to the risk-free rate and the risk premium is equal to zero. 

Instead of paying $727.27, suppose investors like the chance of obtaining returns greater than 10% (even though there is a chance of losing their investment), and as a result are willing to pay $750 for the risky bond.  In this case, the expected return on the bond would be 6.67% and the risk premium would be negative:
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By definition, markets in which the risk premium is negative are called risk loving.  Risk loving markets can be described as ones in which investors enjoy the excitement of the gamble and are willing to pay for it by accepting an expected return from the risky investment that is less than the risk-free rate.  Even though there are some investors who are risk loving, a risk loving market is an aberration, with the exceptions being casinos, sports gambling markets, and race tracks.  

While risk-loving and risk-neutral markets are rare, they do serve as a reference for defining the more normal behavior towards risk -- risk aversion. In a risk averse market, investors require compensation in the form of a positive risk premium to pay them for the risk they are assuming.  Risk averse investors view risk as a disutility, not a utility as risk loving investors do.  In terms of our example, suppose most of the investors making up our market were risk averse and as a result were unwilling to pay $727.27 or more for the risky bond. In this case, if the price of the risky bond were $727.27 and the price of the risk-free were $909.09, then there would be little demand for the risky bond and a high demand for the risk-free one.  Holders of the risky bonds who wanted to sell would therefore have to lower their price, increasing the expected return.  On the other hand, the high demand for the risk-free bond would tend to increase its price and lower its rate. For example, suppose the markets cleared when the price of the risky bond dropped to $701.75 to yield 14%, and the price of the risk-free bond increased to $917.43 to yield 9%:
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In this case, the risk premium would be 5% and the market could be described as being risk averse.  

Historically, security markets such as the stock and corporate bond markets have generated rates of return which on average have exceeded the rates on Treasury securities.  This would suggest that such markets are risk averse.  Since most markets are risk averse, a relevant question is the degree of risk aversion.  The degree of risk aversion can be measured in terms of the size of the risk premium.   The greater investors’ risk aversion, the greater the demand for risk-free securities and the lower the demand for risky ones, and thus the larger the risk premium.   As we will see in our discussion of default, call, and market risk, the size of the risk premiums do changes as a result of changing economic conditions and interest rates.

7.3 DEFAULT RISK
Default risk (or credit risk) is the risk that the borrower/issuer will not meet all promises at the agreed-upon times.  A failure to meet any of the interest payments, principal obligation, or other terms specified in the indentures (e.g., sinking fund arrangements, collateral requirements, or other protective covenants) places the borrower/issuer in default.  As noted in Chapter 2, when issuers default they can file for bankruptcy, their bondholders/creditors can sue for bankruptcy, or both parties can work out an agreement.  Most investors do not directly assess the chances of a bond defaulting, instead evaluating risk indirectly through quality ratings assigned to bonds by investment agencies like Moody's and Standard and Poor's.

7.3.1 Historical Default Rates 
Since World War II, the percentage of the dollar value of bonds defaulting has been quite low, averaging .12% per year.  During the 1980s, the default rate became relatively high for junk bonds (3.27%); bonds with Moody's ratings of BA or less (or Standard and Poor's BB).
  During that decade, there was particularly rapid growth in low-rated debt issues, with much of the growth due to their use in financing hostile takeovers in which many companies sold high-yielding, low-quality bonds to finance their acquisitions of other companies.  As a result of this financing, many newly structured companies with high debt-to-equity ratios emerged.  Because debt is tax deductible, the potential return to investors was augmented by this increase in leverage, but so also was their exposure to default risk.


Trading at yields 4% to 5% over comparable U.S. government securities, junk bonds were attractive investments to many institutional investors, including many savings and loans (at least until 1989 when Congress passed the Financial Institutions Reform, Recovery, and Enforcement Act outlawing the purchase of low quality bonds by federally-sponsored deposit institutions).  In the early 1980s, the default experience for such bonds was relatively low.  However, slower economic growth in 1990 and the recession in 1991 resulted in a high incidence of defaults by many companies that had issued junk bonds in the 1980s.  As shown in Table 7.3-1, the default rate was 8.74% in 1990 and 9% in 1991.  Since then the growth of the junk bond market has declined.

7.3.2 Default Risk Premium
Because there is a default risk on corporate, municipal, and other non-Treasury bonds, they trade with a default risk premium.  This premium is the spread between the rates on a non-Treasury security and a Treasury security that are the same in all respects except for their default (or quality) risk:
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This default risk premium, also called a quality or credit spread, is different than the liquidity premium (described in the last chapter), which is the premium of long-term bond rates over short-term rates.


Usually adverse economic conditions result in a greater default risk premium.  For corporate issues, such developments could be aggregate economic factors such as a recession; industry factors like declining sales due to competition; or firm factors related to company investment or financing decisions.
  For municipal issues, adverse economic developments include declining property values, municipal government deficits, increasing regional unemployment, or increased use of debt reserves.

7.3.3 Studies on Default Risk Premiums
A number of empirical studies have examined the factors that determine default risk premiums.  Studies by Salomon Brothers and Hutzler looked at the relationship between default risk premiums and the state of the economy; a study by R. E. Johnston examined yield curves for different quality bonds.  In both the Salomon Brothers and the Hutzler studies, a moderate widening in the yield spread between moderate (BB) and high grade bonds was observed during recession, while the spread narrowed during economic growth.  These studies suggest that during recessions investors are more concerned with safety than during expansionary times.  As a result, a relatively low demand for low grade bonds occurs, leading to lower prices for the lower grade bonds and thus a higher interest premium.  On the other hand, during periods of economic expansion there seems to be less concern about default.  This tends to increase the demand for low grade bonds relative to high grade, causing a smaller premium.  It should be noted that these studies suggest that speculators could profit from a strategy of investing in low-grade bonds at the trough of a cycle, when demand and prices are low, and selling at the peak of the cycle, when demand and prices are high.  In contrast, speculators would find it more profitable to buy high grade bonds at the peak of the cycle, when their demands are relatively low, and then sell at the trough of the cycle.  This, of course, assumes that a speculator can reasonably forecast the troughs and peaks of economic cycles.


In the Johnston study, the spread between moderate and high grade bonds was found to increase as maturity increased, while the spread between low and moderate or high grade bonds was found decreasing as maturity increased.  Johnston's results are illustrated in Figure 7.3-1, where a hypothetical flat yield curve for a high grade bond is shown along with a positively-sloped yield curve for the A-grade bond (moderate) and a negatively-sloped yield curve for the CCC-grade bond (low).  The negatively-sloped yield curve for low grade bonds suggests that investors have more concern over the repayment of principal (or the issuer's ability to refinance at favorable rates) than they do about the issuer meeting interest payments.  This concern would explain the low demand and higher yields for short-term bonds, in which principal payment is due relatively soon compared to long-term bonds.

7.3.4 Bond Diversification and Quality Ratings
In a 1979 study, McEnnally and Boardman examined the relationship between portfolio risk and size for bonds grouped in terms of their quality ratings.  Using the same methodology employed by Evan and Archer in their portfolio risk and size study on stocks, McEnnally and Boardman collected monthly rates of return for over 500 corporate and municipal bonds with quality ratings of Baa or greater.  For each quality group (Aaa, Aa, A, and Baa), they randomly selected portfolios with n-bonds (n=2,3,4,...40) and calculated the n-bond portfolio's average standard deviation.  McEnnally and Boardman's findings are displayed in Figure 7.3-2.


As shown in the figure, McEnnally and Boardman found the same portfolio risk and size relationship for bonds as Evans and Archer had found for stocks.  Specifically, as the size of the bond portfolio increased, the portfolio risk decreased asymptotically, with the maximum risk reduction being realized with a portfolio size of 20.  More interestingly, though, McEnnally and Boardman also found that the portfolios consisting of the lowest-quality bonds had the lowest portfolio risk when sufficiently diversified.


This seemingly counterintuitive result can be explained in terms of the correlation between bonds in the same quality groups.  Specifically, a lower quality bond, while having a greater variance than a higher-quality bond, has lower correlations with other lower quality bonds than does a higher quality bond.  The relatively lower correlations, in turn, cause the lower-quality bond's portfolio variance to be smaller than the higher quality bond's portfolio variance.  Intuitively, higher quality bonds have very little, if any, default risk.  Consequently, such bonds are affected only by general interest rate changes and, therefore, tend to fluctuate together.  With this high correlation, such bonds do not benefit from diversification.  By contrast, lower-quality bonds are affected by default risk as well as interest rate changes.  The rates on these bonds are therefore affected by factors unique to the individual bond's company and industry.  As a result, lower quality bonds are not as highly correlated with each other, and therefore their portfolio risk can be reduced with sufficient diversification.

7.4 CALL RISK
Call risk relates to the uncertainty that the issuer will call the bond. A call feature on a bond gives the issuer the right to buy back the bond before maturity at a stated price, known as the call price.  The call price usually is set a certain percentage above the bond's par value, say 110 ($1,100, given a par value of $1,000); for some bonds the call price may decrease over time (e.g., a 20‑year bond's call price decreasing each year by 5%). Some callable bonds can be called at any time, while for others the call is deferred for a certain period, giving the investor protection during the deferment period.  Also, some bonds, as part of sinking fund arrangements, are retired over the life of the bond, usually with the issuer having the choice of purchasing the bonds directly at market prices or calling the bonds at a specified call price.


A call provision is advantageous to the issuer.  If interest rates in the market decline, an issuer can lower his interest costs by selling a new issue at a lower interest rate, then use the loan proceeds to call the outstanding issue. What is to the advantage of the issuer, though, is to the disadvantage of the investor. When a bond is called, the investor's realized rate of return is affected in two ways.  First, since the call price is typically above the bond's face value, the actual rate of return the investor earns for the period from the purchase of the bond to its call generally is greater than the yield on the bond at the time it was purchased. However, if an investor originally bought the bond because its maturity matched her horizon date, then she will be faced with the disadvantage of reinvesting the call proceeds at lower market rates. Moreover, this second effect, known as reinvestment risk, often dominates the first effect, resulting in a rate of return over the investor's horizon period that is lower than the promised YTM when the bond was bought.

7.4.1 Example of Call Risk
To illustrate the nature of call risk, consider the case of an investor with a 10-year horizon who purchases a 10-year, 10% annual coupon bond at its par value of $1,000, that is callable at a call premium of 110.  In addition, suppose that the yield curve for such bonds is flat at 10% and that it remains that way for the first three years the investor holds the bond.  At the end of year three, however, assume the yield curve shifts down to 8% and the issuer calls the bond.  The investor's annual realized return (ARR) for the three-year period would be 12.69%.  Specifically, at the end of year three the investor's cash value would be $1,431.  This would include the $1,100 call price, $300 in coupons, and $31 in interest earned from investing the coupons (see Table 7.4-1), yielding an ARR of 12.68%:
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Thus, for the call period, the investor earns a rate of return higher than the initial YTM.  However, with a horizon date of 10 years, the investor must reinvest the $1,431 cash for seven more years at the lower market rate.  If we assume she reinvests all coupons to the horizon date at 8%, then the $1,431 will grow at an 8% annual rate to equal $2,452.48 = $1,431(1.08)7 at the end of the tenth year, yielding an ARR for the ten-year period of 9.38%.  That is:
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Note, the 9.38% rate is also equal to the geometric average of the 12.68% annual rate earned for the three years and the 8% annual rate earned for seven years:
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With the ARR of 9.36% less than the initial YTM of 10%, the second effect of reinvesting in a market with lower rates dominates the first effect of a call price greater than the bond's face value.  This example shows that bonds that are callable are subject to the uncertainty that the actual rate will be less than the investor's expected YTM.  Because of this call risk, there is usually a lower market demand and price for callable bonds than noncallable bonds, resulting in a higher rate of return or interest premium on callable over noncallable bonds.  The size of this interest premium, in turn, depends on investors' and borrowers' expectations concerning interest rates.  When interest rates are high and expected to fall, bonds are more likely to be called; thus, in a period of high interest rates, a relatively low demand and higher rate on callable over noncallable bonds would occur.  In contrast, when interest rates are low and expected to rise, we expect the effect of call provisions on interest rates to be negligible.  Moreover, several empirical studies tend to support these observations.  For example, Jen and Wert examined interest premiums on immediately callable corporate bonds and deferred callable bonds (noncallable were not considered since most corporate bonds are callable) and found the interest premium increased during high interest rate periods and decreased during low interest rate periods.

7.4.2 Price Compression
In addition to reinvestment risk, callable bonds are also subject to price compression: limitations in a bond's price.  As we discussed in Chapter 5, there is an inverse relationship between interest rates and bond prices.  For callable bonds, though, the percentage increases in their prices may be limited when interest rates decrease, given that the market expects the bonds to be redeemed at the call price.  This limitation is illustrated in Figure 7.4-1.  In the figure, the price-yield curve AA is shown for a noncallable bond.  This curve is negatively sloped and convex from below.  The curve AA( represents the price-yield curve for a comparable callable bond.  As shown, this curve flattens out and becomes concave (negative convexity) at rate YTM*, where YTM* represents a threshold rate that corresponds to a bond price equal, or approximately equal, to the call price.  Since the callable bond would likely be called if rates are at YTM* or less, we would not expect investors to pay a price for such bond greater than the call price.  Thus, the price-yield curve for the callable bond would tend to flatten out  at  YTM*, as shown in Figure 7.4-1.

7.4.3 Valuation of Callable Bond

When valuing a callable bond, one needs to take into account the possibility that interest rates could decrease, leading to the bond being called.  If called, the bond's cash flow patterns would be different than if rates increased and the bond was not called.  Given the uncertainty of the bond's cash flows, valuing callable bonds and other bonds with embedded option features is more difficult than valuing option-free bonds.  One approach to valuing callable bonds is to incorporate interest rate volatility by using a binomial interest rate tree. Another is to determine the value of the call feature.  Conceptually, when an investor buys a callable bond, she implicitly sells a call option to the bond issuer, giving the issuer the right to buy the bond from the bondholder at a specified price before maturity.  Theoretically, the price of a callable bond should therefore be equal to the price of an identical, but noncallable, bond minus the value of the call feature or call premium:
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The value of the call feature can be estimated using the option pricing model developed by Black and Scholes or Cox, Ross, and Rubinstein.  These models are examined  in Chapter 13, and the applications of binomial interest rates trees to valuing callable bonds and other option features (put options, conversions, etc.) embedded in bonds are described in Chapters 9 and 10 .

7.5 MARKET RISK
Market risk is the uncertainty that interest rates in the market will change, causing the actual rate of return earned on the bond to differ from the expected return.  As noted in our discussion of the ARR in Chapter 5, a change in interest rates has two effects on a bond's return.  First, interest rate changes affect the price of a bond; this is referred to as price risk.  If the investor's horizon date is different from the bond's maturity date, then the investor will be uncertain about the price he will receive from selling the bond (HD < M), or the price he will have to pay for a new bond (HD > M).  Secondly, interest rate changes affect the return the investor expects from reinvesting the coupon; this is known as reinvestment risk.  Thus, if an investor buys a coupon bond, he automatically is subject to market risk.  One obvious way an investor can eliminate market risk is to purchase a pure discount bond with a maturity equal to the investor's horizon date.  If such a bond does not exist (or does, but does not yield an adequate rate), a bondholder will be subject, in most cases, to market risk.

7.5.1 Example of Market Risk
To illustrate market risk, consider the case of an investor with an horizon date of 3.5 years who buys a 10-year, 10% annual coupon bond at its par value of $1,000 to yield 10%.  If the yield curve were initially flat at 10% and if there were no changes in the yield curve in the ensuing years, then the investor would realize a rate of return (as measured by her ARR) of 10% (see Exhibit 7.5-1a).  That is, with no change in the flat yield curve, the investor would be able to reinvest each of her coupons at a rate of 10%, yielding a coupon value of $347.16 at year 3.5.  The $347.16 coupon value consists of $300 in coupons and $47.16 in interest earned from reinvesting the coupon; that is, interest on interest of $47.16.  In addition, with no change in the yield curve, the investor would be able to sell the original 10-year bond (now with a maturity of 6.5 years) for $1,048.81 at the end of 3.5 years.  Note, since this bond is being sold at a noncoupon date, its price is determined by discounting the value of the bond at the next coupon date when the bond has six years left to [image: image12.wmf]ARR
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maturity (P6) plus the $100 coupon received on that date back .5 years to the HD.  That is:

Combined, the selling price of $1,048.81 and the coupon value of 347.16 yield an HD value of $1,395.97, which equates to an ARR of 10% for the 3.5 years.  This is the same rate as the initial YTM.


As we first discussed in Chapter 5, the ARR will equal the initial YTM if the yield curve is flat and remains that way for the horizon period.  Suppose that shortly after the investor purchased the bond, though, the flat 10% yield curve shifted up to 12% and remained there for the 3.5 years.  As shown in Exhibit 7.5-1b, at her HD the investor would be able to sell the bond for only $961.70, resulting in a capital loss of $38.30.  This loss would be partly offset, though, by the gains realized from reinvesting the coupons at 12%.  Combined, the investor's HD value would be $1,319, $76.97 less the HD value of $1,395.97 realized if rates had remained constant at 10%.  As shown in Exhibit 7.5-1b, the ARR would be only 8.23%.  In contrast, if the yield curve had shifted down from 10% to 8% and remain there, then the investor would have gained on the sale of the bond (selling it at a price of $1,147.44) but would have earned less interest from reinvesting the coupons.  In this case, the HD value increases to $1,484.82 to yield an ARR of 11.96% (see Exhibit 7.5-1c).


In these examples, note that interest rate changes have two opposite effects on the ARR.  First, there is a direct interest-on-interest effect in which an interest rate increase (decrease) causes the interest earned from reinvesting coupons to be greater (less), augmenting (decreasing) the ARR.  Second, there is a negative price effect, in which an interest rate increase (decrease) lowers (augments) the price of the bond, causing the ARR to decrease (increase).  Whether the ARR varies directly or indirectly with interest rate changes depends on which effect dominates.  If the price effect dominates, as was the case described above (summarized in Exhibit 7.5-1d), then the ARR will vary inversely with interest rates.  If the interest-on-interest effect dominates, though, the ARR will vary directly with the interest rate changes.  For example, suppose our investor had purchased a four-year, 20% annual coupon bond when the yield curve was flat at 10% (price of $1,317).  As shown in Exhibit 7.5-2a, if the yield curve shifted up to 12% shortly after the purchase and remained there, then the investor would have realized an ARR of 10.16%.  In this case, the additional interest earned from reinvesting coupons more than offsets the capital loss.  But if the yield curve had shifted down to 8%, the investor would have realized a lower ARR of 9.845%.  With an HD of 3.5 years, the four-year, 20% bond has an interest-on-interest effect that dominates the price effect, resulting in the direct relationship between the ARR and interest rate changes.


Finally, it is possible to select a bond in which the two effects exactly offset each other.  When this occurs, the ARR will not change as rates change, and the investor will not be subject to market risk.  For example, suppose our investor had purchased a four-year, 9% annual coupon for $938.59 to yield 10%.  As shown in Exhibit 7.5-3, if the flat yield curve shifted to 12%, 8%, or any other rate, the ARR would remain at 10%.  To reiterate, what is occurring in this case is that we have a bond with price and interest-on-interest effects that are of the same magnitude in absolute value; thus, when rates change the two effects cancel each other out.

7.5.2 Duration and Bond Immunization
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The last example illustrates how an investor with an HD = 3.5 years can eliminate market risk by buying a four-year, 9% annual coupon bond.  Note, the investor can do this by buying a bond that pays a coupon and has a maturity different than her HD (i.e., it is not a pure discount bond with a maturity equal to the HD).  What is distinctive about this four-year, 9% coupon bond is that it has a duration equal to 3.5 years - the same as the HD.  A bond's duration (D) can be defined as the weighted average of the bond's time periods, with the weights being each time period's relative present value. That is:

In our example, the duration of a 4‑year, 9% annual coupon bond is 3.5 years, given a flat yield curve at 10% (see Exhibit 7.5‑4).  It should be noted that duration also can be measured for a portfolio of bonds. The duration of a bond portfolio, Dp, is simply the weighted average of each of the bond's durations (Di), with the weights being the proportion of investment funds allocated to each bond (wi):
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Thus, instead of selecting a specific bond with a desired duration, an investor could determine the allocations (wi) for each bond in his portfolio which would yield the desired portfolio duration.


In the next chapter we will examine bond management strategies; one of them is called bond immunization.  The object of bond immunization is to minimize market risk.  As our discussion here indicates, one way to achieve this goal is to select a bond or portfolio of bonds with a duration matching the investor's horizon date.  This is one of the approaches that can be applied to minimizing market risk (see Chapter 8).  Duration, and a related characteristic known as convexity are also important parameters in describing a bond or bond portfolio's volatility, as measured by its price sensitivity to interest rate changes.

7.6  DURATION AND CONVEXITY
7.6.1 Duration Measures
Immunizing a bond against market risk by buying a bond whose duration equals the investor's HD is a relatively new technique in finance.  The concept of duration and its applications, though, are not new.  Duration was introduced in International Economics in the 1800s as a way of reducing exchange-rate risk.  Its introduction to finance came later when, in 1938, Frederick Macaulay suggested using the weighted average of a bond's time periods as a better measure of the life of a bond than maturity.  J.R. Hicks in 1939, Paul Samuelson in 1945, and F.M. Redington in 1952 also came up with duration measures, each somewhat different, to explain the relationship between price and the life of a bond.  In 1971, duration attracted widespread attention when Fisher and Weil published their work on the use of duration as a way of minimizing market risk.


Though duration is defined as the weighted average of a bond's time periods, it is also an important measure of volatility.  As a measure of volatility, duration is defined as the percentage change in a bond's price  (% (P  = (P/P0) given a small change in yield, y.  Mathematically, duration is obtained by taking the derivative of the equation for the price of a bond with respect to the yield, then dividing by the bond's price (this derivation is presented in Exhibit 7.6-1).  This yields:
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where:

PVt    =
present value of the bond's cash flow at time t.





dP/P0  =
percentage change in the bond's price.

  



  dy     =
small change in yield.

The bracketed expression in Equation (7.6-1) is the weighted average of the time periods, defined in the last section as duration.  Formally, the weighted average of the time periods is called Macaulay's duration, and Equation (7.6-1), which defines the percentage change in the bond's price for small change in yield is called the modified duration.  Thus, the modified duration is equal to the negative of Macaulay's duration divided by 1+y.
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The 4-year, 9% annual coupon bond (used in the illustrative example in the last section), has a Macaulay duration of 3.5 years, and given the initial yield of 10%, a modified duration of  -3.18:
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Note: For bonds that pay their principal (F) only at maturity and their coupons (C) each period, the modified duration can be found using the following formula:
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The above measures of duration are defined in terms of the length of the period between payments.  Thus, if cash flows are distributed annually, as in the above example, duration is in years; if cash flows are semi-annual, then duration is measured in terms of half years.  The convention is to express duration as an annual measure.  Annualized duration is obtained by dividing duration by the number of payments per year (n):
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Thus, the modified duration measured in half-years for a 10-year, 9% coupon bond selling at par (F=100) with coupon payments made semi-annually is  -13 and its  annualized duration  is -6.5:

7.6.2 Uses of Duration
Recall in Chapter 5 we described the relationship between a bond's price sensitivity to interest rate changes and its maturity and coupon rate.  Since duration is the percentage change in a bond's price to a small change in yield, these relationships also can be defined in terms of duration.  Specifically, the greater a bond's maturity, the greater its duration, and therefore the greater its price sensitivity to interest rates changes; the smaller a bond's coupon rate, the greater its duration, and therefore the greater its price sensitivity to interest rate changes.  Thus, in addition to identifying bonds for immunization strategies, duration is also an important descriptive parameter, defining a bond's volatility as measured by its sensitivity to interest rate changes.  Knowing a bond or bond portfolio's duration is important in formulating bond strategies.  For example, a bond speculator who is anticipating a decrease in interest rates across all maturities (downward parallel shift in the yield curve) could realize a potentially greater expected return, but also greater risk, by purchasing a bond with a relatively large duration.  In contrast, a bond portfolio manager expecting a parallel upward shift in the yield curve could take defensive actions against possible capital losses by reallocating his portfolio such that it had a relatively low portfolio duration.  Such strategies are discussed further in the next chapter.


A second application of duration is its use as an estimate of the percentage change in a bond's price for a small change in rates.  Consider again the 10-year, 9% coupon bond selling at 100 to yield 9%.  If the yield were to increase by 10 basis points (from 9% to 9.10%), then using Equation (7.6-1) the bond would decrease by approximately -.65%:
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This is very close to the actual percentage change of -.6476%.
  Note, though, that duration as an estimator is only good for measuring small changes in yields.  For example, if the yield had increased by 200 basis points to 11%, instead of only 10 basis points, the approximate percentage change using the duration measure would be -13%:
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This contrasts with the actual percentage change of -11.95%.
  Thus, the greater the change in yields, the less accurate duration is in estimating the approximate percentage change in price.

7.6.3 Convexity
Duration is a measure of the slope of the price-yield curve at a given point (dP/dy).  As we noted in Chapter 5, the price-yield curve is not linear, but convex from below (bowed-shaped).  While capturing several of the characteristics describing the price-yield curve, duration does not capture this property of the curve.  Moreover, the convexity of a bond's price-yield curve is important.  Convexity implies that for a large absolute change in yields, the percentage increase in price will be greater for the yield increase than for the yield decrease.  This is illustrated in Figure 7.6-1, where the increase in price is greater in absolute value than the decrease in price, given the same absolute changes in yield.  For an investor who is long in a bond, convexity implies that the capital gain resulting from a decrease in rates will be greater than the capital loss resulting from an increase in rates of the same absolute magnitude.  Thus, all things equal, the greater a bond convexity the more valuable the bond.

7.6.4 Convexity Measures
Mathematically, convexity is the change in the slope of the price-yield curve for a small change in yield; it is the second-order derivative.  It is derived by taking the derivative of Equation (7.6-1) with respect to a change in yield and dividing the resulting equation by the current price.  (This derivation is presented in Exhibit 7.6-1)  Doing this yields:
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The convexity for a bond which pays fixed coupons each period and the principal at maturity can be measured as either:
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Like duration, convexity is measured in terms of the length of periods between cash flows.  The annualized convexity is found by dividing convexity, measured in terms of n-periods per year, by n2:
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Thus, the convexity is half-years for the 10-year, 9% coupon bond with semi-annual payments is 225.43, and its annual convexity is 56.36:
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7.6.5 Uses of Convexity
As we discussed earlier, given two bonds which are identical (same durations, yields, etc.) except for their convexity, the one with greater convexity is more valuable since it provides greater capital gains and smaller capital losses for the same absolute changes in yields.  This is illustrated in Figure 7.6-1 where, for the same changes in rates, Bond B with the greater convexity than Bond A has a greater capital gain and smaller capital loss than Bond B.  Thus, convexity is distinguishing characteristic of a bond.


In addition to describing an important feature of a bond, convexity also can be used with duration to estimate the percentage change in a bond's price given a change in yield.  Unlike duration, which can only provide a good estimate when the yield changes are small, incorporating convexity allows for better estimate of large yield changes.  The formula for estimating the percentage change in price for a large change in yields is derived using Taylor expansion.  This expansion yields:
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The estimated percentage change in the price of our 10-year, 9% coupon bond given a 200 basis point increase in yields is 11.87%:

[image: image28.wmf]Convexity

years

Annual

convexity

(

/

)

(

.

)

(.

)

(

.

)

(

.

)(

)

(.

)

(

.

)

(

)[

(

.

/.

)]

(

.

)

.

.

.

.

.

1

2

2

4

50

045

1

1

1

045

2

4

50

20

045

1

045

20

21

100

4

50

045

1

045

100

225

43

225

43

2

56

36

2

20

2

21

22

2

=

-

L

N

M

O

Q

P

-

+

-

=

=

=


[image: image29.wmf](

.

)

%

.

7

6

7

2

-

=

+

D

D

D

P

Modified

Duration

y

Convexity

y

b

g

The 11.87% decrease is closer to the actual decrease of 11.95% than the estimated 13% decrease obtained using the duration measure.  The above formula also results in non-symmetrical percentage increases and decreases.  For example, if rates had decreased by 200 BPs, the percentage decrease would be 14.13%, not 13% that the duration measure yields.  That is:

7.6.6 Alternative Formulas for Duration and Convexity
Duration and convexity can also be estimated by determining the price of the bond when the yield increases by a small number of basis points, +P, and when the yield decreases by the same number of basis points, -P.  Given these prices, duration and convexity can be estimated using the following formulas:
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7.6.7 Caveats
Duration and convexity are important characteristics that can be used to determine a bond's price sensitivity to interest rates and the asymmetry of its capital gains to capital losses for given absolute changes in yields.  There are two problems, though, with the methods we defined here for estimating a bond's duration and convexity.  First, we've assumed a constant YTM.  For yield curves that are not flat, one can use appropriate spot rates in determining the present values of the bond's cash flows instead of the same YTM.  A second and more serious problem with our measures is that they apply only to option-free bonds.  Call, put, and sinking fund arrangements alter a bond's cash flow patterns and can dramatically change a bond's duration and convexity.  Moreover, since most bonds have option features, adjusting their cash flow patterns to account for such features is important in measuring a bond's duration and convexity.  In  Chapters 9 and 10 we show how bonds with embedded option features can be valued using a binomial interest rate tree.  With this valuation model, one can estimate the prices of bonds with call and put option features, then substitute these prices into Equations (7.6-8) and (7.6-9) to estimate the duration and convexity of the callable and putable bonds.

7.7 CONCLUSION
In a world of certainty, bonds with similar features (maturity, duration, taxability, marketability, etc.) would, in equilibrium, trade at the same rates.  If this were not the case, then investors would try to buy bonds with higher rates and sell or short bonds with lower rates, causing their prices and rates to change until they were all equal.  In fact, though, we live in a world of uncertainty.  Issuers can default on their obligations, borrowers can redeem their bonds early, and the markets can change.  This is why we have differences in the relative demands, prices, and yields on bonds.  Thus, an important factor explaining different rates among debt instruments is uncertainty.  In this chapter, we've examined the nature and impact of uncertainty by examining default, call, and market risk, and by introducing duration and convexity as volatility measures.
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Default Rates 1970 – 1991
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Figure 7.3-1

Yield Curves For

Different Quality Bonds

Johnston Study
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Figure 7.3-2
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Figure 7.4-1
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Exhibit 7.5-2


ARR OF 4-YEAR, 20% COUPON BOND PURCHASED AT YTM of 10% ($1316.99)


AND LIQUIDATED AT HD = 3.5 YEARS AT RATES OF  12%, AND 8% 

With an HD of 3.5 years, this is a bond which has an interest on interest effect which dominates the price effect.  This bond’s ARR  varies directly with rate changes
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[image: image51.wmf]b. If the YC shifts to 8%, your ARR for 3.5 years will be 9.845%
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[image: image52.wmf]a. If the YC shifts to 8%, your ARR for 3.5 years will be 10%:
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Exhibit 7.5-3

ARR OF 4-YEAR, 20% COUPON BOND PURCHASED AT YTM OF 10% (P0 = $1316.99)

AND LIQUIDATED AT HD = 3.5 YEARS AT RATES OF 12% AND 8%
[image: image53.wmf]b. If the YC shifts to 12%, your ARR for 3.5 years will be 10%:
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Exhibit 7.6-1

Derivation of Duration and Convexity
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Exhibit 7.6-1

Derivation of Duration and Convexity

Continued

Convexity:
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    �  The term `junk bond' had been used prior to the 1980s to refer to low graded bonds sold by companies with financial problems, often referred to as Fallen Angels.

    � Many targeted companies also sold such bonds to buy up their stock or provide stock dividends in an effort to avoid being acquired.  For an excellent account of the history of these deals, as well as the security abuses, see James Stewart's Den of Thieves.

    � In a widely cited study by Lawrence Fisher, yield premiums for corporate securities were found to be directly related to a company's variabilities in earnings, and inversely related to the company's equity to debt ratio, number of outstanding bonds, and how long the company had been solvent.  Specifically, Fisher ran a cross-sectional regression of the difference in yields between corporate bonds and Treasuries of the same maturity.  The estimated regression equation took the following form:

 

         � EMBED Equation  ���	

	 



    � Hickman found in his study that for an earlier period (1900-1943) abnormal returns were earned from trading in low and high grade bonds during recessions and expansions.

    � The modified duration is the most commonly used measure of duration.  Some applications of duration use the dollar duration.  The dollar duration is the change in the bond price given a small change in yield (dP/dy).  The dollar duration is obtained by multiplying both sides of Equation (7.6-1) by P0:



	Dollar Duration = (Modified Duration) P0.

    � For a pure discount bond Macaulay's duration would be equal to the bond's maturity, while the modified duration would be less than the maturity.

    � The actual percentage change is:



                   � EMBED Equation  ���



					

    � The actual percentage change is:



		� EMBED Equation  ���
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Bonds with Different Convexities

•

Property:

The greater a bond’s convexity, the 

greater its capital gains and the smaller its capital 

losses for given absolute changes in yields.
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[image: image86.wmf]b. If the YC shifts to 8%,  your ARR for 3.5 years will be 11.96
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[image: image90.wmf]a. If there is no change in the YC, your ARR for 3.5 years will 
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Study:

•

Applied the Evans and Archer methodology to bond 

portfolios grouped in terms of their quality ratings.

•

Found that lower quality bond portfolios had less risk 

because of their lower correlations.
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[image: image95.wmf]a. If the YC shifts to 12%, your ARR for 3.5 years will be 
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d. Relation:

Rate changes have two opposite effects: 

–

Inverse price effect

–

Direct interest on interest effect

•

Whether the ARR varies directly or inversely to rate 

changes depends on which effect dominates.  In this case 

(10

-

year, 10% coupon bond with HD = 3.5 yrs), the 

inverse price effect dominates.  This causes the ARR to 

vary inversely with rate changes.
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[image: image100.wmf]b. If the YC shifts to 8%, your ARR for 3.5 years will be 9.845%
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[image: image101.wmf]b. If the YC shifts to 12%, your ARR for 3.5 years will be 10%:

P

HD

Value

P

where

P

ARR

B

t

t

B

B

0

4

1

4

2

5

1

5

5

3

5

3

5

5

3

5

1

3

5

90

1

10

1000

1

10

968

30

90

1

12

90

1

12

90

1

12

48

1000

90

1

12

1029

95

1352

48

968

31

1

10

=

+

=

=

+

+

+

=

=

+

=

=

L

N

M

O

Q

P

-

=

=

å

(

.

)

(

.

)

.

(

.

)

(

.

)

.

$1352

.

:

(

.

)

.

.

.

.

.

.

.

.

.

.

.

/

.

b

g

[image: image102.wmf](

)

(

)

)

CF

(

PV

)

M

(

)

CF

(

PV

)

2

(

)

CF

(

PV

)

1

(

)

y

1

(

1

dy

dP

)

y

1

(

CF

)

M

(

)

y

1

(

CF

)

2

(

)

y

1

(

CF

)

1

(

)

y

1

(

1

dy

dP

)

y

1

(

CF

)

M

(

)

y

1

(

CF

)

2

(

)

y

1

(

CF

)

1

(

)

y

1

(

1

dy

dP

M

2

1

B

M

M

2

2

1

1

B

M

M

2

2

1

1

B

+

×

×

×

+

+

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

+

×

×

×

+

+

+

+

+

-

=

+

+

×

×

×

+

+

+

+

+

-

=

-

-

-

[image: image103.wmf]Year

Default Rate*

1991

9.01%

1990

8.74%

1989

4.04%

1988

2.48%

1987

5.47%

1986

3.39%

1985

1.68%

1984

0.83%

1983

1.07%

1982

3.12%

1981

0.16%

1980

1.48%

1979

0.19%

1978

1.27%

1977

4.49%

1976

0.37%

1975

2.64%

1974

1.11%

1973

0.61%

1972

2.72%

1971

1.23%

1970

11.39%

   

*

 Default Rate = Par Value of Bond's Defaulting/Par Value of Bond's Outstanding

[image: image104.wmf]Exhibit 7.5

-

4

Duration Measure

•

Duration of 4

-

year, 9% coupon Bond:
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	a. If there is no change in the YC, your ARR for 3.5 years will be 10%:
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b. If the YC shifts to 8%,  your ARR for 3.5 years will be 11.96%:
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		d. Relation:







Rate changes have two opposite effects: 

		Inverse price effect

		Direct interest on interest effect

		Whether the ARR varies directly or inversely to rate changes depends on which effect dominates.  In this case (10-year, 10% coupon bond with HD = 3.5 yrs), the inverse price effect dominates.  This causes the ARR to vary inversely with rate changes.
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b. If the YC shifts to 8%, your ARR for 3.5 years will be 9.845%:
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	b. If the YC shifts to 12%, your ARR for 3.5 years will be 10%:
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	a. If the YC shifts to 8%, your ARR for 3.5 years will be 10%:
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	a. If the YC shifts to 12%, your ARR for 3.5 years will be 10.16%:
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	b. If the YC shifts to 12%,  your ARR for 3.5 years will be 8.23%:
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Figure 7.6-1 

Bonds with Different Convexities

		Property: The greater a bond’s convexity, the greater its capital gains and the smaller its capital losses for given absolute changes in yields.
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Table 7.4-1

Cash Flow and ARR for Callable Bond



















1


2


3


100


100


1


10


121


100


100


1


10


110


100


1100


1200


1431


2


=


=


=


+


=


Call


Date


(


.


)


(


.


)


1268


.


1


1000


$


1431


$


ARR


1


P


Value


Date


Call


ARR


3


C


C


B


0


C


=


-


=


-


=


ARR


HD


Value


P


ARR


ARR


HD


B


HD


HD


HD


=


-


=


-


=


=


-


=


0


7


10


3


7


10


1


1


08


1


0938


1


1268


1


08


1


0938


$1431


(


.


)


$1000


.


(


.


)


(


.


)


.


ARR


YTM


HD


<


<


9


38%


10%


.





_1054201799

_1054201844

_1054201780

_1054199780.unknown

_1054201513

_1054201588

_1054201668

_1054201539

_1054199782.unknown

_1054199784.unknown

_1054201226.xls
Sheet1

		

		Year		Default Rate*

		1991		9.01%

		1990		8.74%

		1989		4.04%

		1988		2.48%

		1987		5.47%

		1986		3.39%

		1985		1.68%

		1984		0.83%

		1983		1.07%

		1982		3.12%

		1981		0.16%

		1980		1.48%

		1979		0.19%

		1978		1.27%

		1977		4.49%

		1976		0.37%

		1975		2.64%

		1974		1.11%

		1973		0.61%

		1972		2.72%

		1971		1.23%

		1970		11.39%






_1054201275

_1054199785.unknown

_1054199783.unknown

_1054199781.unknown

_1053621325

_1054199778.unknown

_1054199779.unknown

_1054119690.ppt
































YTM


P


B


0


A


YTM


*


A


'


CP


AA


Non


Callable


Bond


AA


Callable


Bond


'





_1054125987.ppt


Exhibit 7.5-4

Duration Measure

		Duration of 4-year, 9% coupon Bond:
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McEnnally-Boardman Study:

		Applied the Evans and Archer methodology to bond portfolios grouped in terms of their quality ratings.

		Found that lower quality bond portfolios had less risk because of their lower correlations.
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