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Chapter 1

Stochastic Differential
Equations

In the first parts of this chapter, we will revise the primary concepts pertain-
ing to numerical analysis of ODEs and an introduction to stochastic differ-
ential equations (SDEs). It is assumed that the reader has taken MS479 and
so is familiar with these concepts. For a more detailed treatment of these
topics, the reader is referred to either Mark Thompson’s MS479 notes, or to
(Oksendal 1998).

1.1 Review of ODEs

Recall the initial value problem (IVP) described by an ordinary differential
equation (ODE) and an initial starting point

yt) = flt.y®), yeR" (1.1)
y(to) = o
If Equation (1.1) is a function of y(¢) only, that is (1.1) can be written
y(t) = f(y(?)),
then the ODE is said to be autonomous.
Example 1.1.1 The IVP
y(t) = qy(t) yeR
Y(O) = Yo,
15 an autonomous equation and has the analytic solution

yi = yoe’'. (1.2)



Example 1.1.2 The IVP
y(t) = qt)y(t) yeR
y(to) = Yo,

is non-autonomous, so the analytic solution is related to the fundamental
solution

b(t 1) = exp ( /t:q(s)ds> | (1.3)

We note that any non-autonomous m-dimensional ODE can be trans-
formed into an autonomous m + 1-dimensional ODE by the introduction of
the equation

Y (1) =1, Ym+1(to) = to. (1.4)

When the ODE is linear, an analytic solution can easily be found. How-
ever when the ODE is non-linear, analytic solutions can be difficult to find.
Consequently, numerical techniques are often used to find an approximate
solution for non-linear ODEs. Many numerical schemes can be derived using
Taylor series expansions.

Deterministic Taylor Series

Consider the solution of the ODE

dX
d—tt = a(X,), telt,T]
X(to) = x4,

which can be written in the integral form
t
Xt = Xto +/ CL(XS)dS.
to

Let f : R — R be a continuously differentiable function and a(X) be a
sufficiently smooth function. Then by the chain rule,

d 0

dt (Xi) = a(Xt)a_xf(Xt)' (1.5)
At this point we introduce the deterministic operator £
of
Lf=a=
f a’ax7



so that £L2f := L(Lf). Then (1.5) can be expressed,

FX) = F(X,) + /t Lf(X,)ds. tE€ [to,T). (1.6)

to

We can use (1.6) recursively to define the deterministic Taylor series ex-
pansion of f. Let f(x) = x, then by (1.6),

t

X, = Xt0+/ Lf(X,)ds
to
t

Xt0+/ a(X)ds. (1.7)

to

Applying (1.6) to the integrand of (1.7) by letting f(x) = a we obtain

X, = Xt0+/t [a(XU)—i- sﬁa(Xr)dr] ds

to

to
t t K]
Xto—i-a(Xo)/ ds+/ / La(X,) dr ds.
to to Jto

We can derive the classical Taylor expansion of a general function f €
C"*!, in integral form by iterating in a like manner (applying (1.6) to the
remaining integrands) n times,

n

f(Xy) = f(Xy) + Z

(t — o)
J!

‘ij(Xto)

j=1
t Sn—1

N // LX) dsy . dspn. (L8)
to to

The last term in (1.8) is often referred to as Taylor’s Remainder term.

Most readers will be familiar with the differential form of the Taylor
expansion of a function f(X;,¢t) € C**'| where X, is not described by an
ODE; that is

dX,; = dt.



In this case, Lf = % and L2f = % etc., giving
" (t—to) .

) = £+ i)
= 7

t Sn—1
+/ / LrF(X,,)ds1 - . dSnst
to to

t—to) ,, t—tg)?
( 1' )f(Xt0)+( 2|)

fm(Xto) 4+ (t_ni'to)n

= f(Xto) +

(t —to)?
+T

f”(Xto)
Fm (Xy,) + Remainder.

Taylor’s formula (1.8) can be used to generate numerical schemes to solve
ODEs by truncating the expansion at a particular term. The simplest such
numerical technique is the Fuler method.

The Euler Method

The Euler method is a discrete numerical method to approximate the analytic
solution of the IVP

y(t) = fly(), yeR”
y(to) = Yo
As we have already stated, we can derive an entire family of discrete
numerical methods (including the Euler method) by truncating the Taylor

series and utilizing Taylor’s Theorem.
First, we rewrite the Taylor series expansion (1.8) in differential form,

h ! h’Z " h’3 n
y(t+h) = yO) + 5O+ 5y"(0) + 5y (O + ...

3

= Y1)+ )+ @) ) + (0 ) +

The Euler method is found by truncating the Taylor series at the first deriva-
tive, giving

y(t+h) =y(t) +hf(y(t) + e(o(h?)),

where e(o(h?)) is the error term - or Taylor’s remainder term - which is of
order h?. So if we define y,, = y(¢) and y,;1 = y(t + h) we obtain

Ynt1 =¥n + hf(Yn)a



which has a local error (error at each step) of o(h?), giving a global error of
o(h).

Similarly if we truncate the Taylor series at the next term, we derive a
numerical method with local error o(h3), and so on. However these higher
order schemes require higher order derivatives to be calculated - which can
be computationally expensive.

Stability, Stiffness and Implicit Methods

Numerical schemes for solving ODEs can be classified into either explicit or
implicit methods. Explicit methods compute approximations that are depen-
dent on previous approximations only, whereas implicit methods compute ap-
proximations which are dependent on previous and current approximations.

Example 1.1.3 (Euler Methods) The Euler method presented earlier is
also known as the explicit Euler method.
The explicit Euler method is defined as

Yir1 =Yi + hf(yi),
wherey; =y(t;) and y;1 =y(ti+h). This method has a global error = o(h).
The implicit Euler method is defined as
Yit1 =Yi + hf(yir1),
where y; = y(t;) and y;11 = y(t; + h). This method also has a global error
~ o(h).

The implementation of the explicit method is trivial to calculate, whereas
the implementation of the implicit Euler method involves solving a system
of non-linear equations. If these two methods have the same global error,
why does the implicit Euler method exist? The answer lies in the concepts
of stability and stiffness.

We can introduce the concept of stability by way of an example.

Example 1.1.4 Consider the IVP

y = qy, q<0
?/(0) = Yo-

We know that the analytic solution is y(t) = eyy. The explicit Euler scheme
gives

Yit1 = Yi+hqy;
= yi(1+ hq).

10



As the true solution decays, our numerical method must reflect this so we
must have

|1+ hq| <1,

or

Figure 1.1: The region of stable z = hq values for the explicit Euler method

So if, for example, q = —2000000 then h < 10¢. That is, for stability,
we have a very severe restriction on the step size.
In contrast, the same example using the implicit Euler method gives

Yir1r = Yi+hqyi
yi
1—hq

Again our numerical method must reflect that the true solution decays, so
we must have

<1

1
1—hq
that is

11— hq|=|1—2| > 1. (1.9)

11



Figure 1.2: The region of stable z = hq values for the implicit Euler method

We can see the solution region for (1.9) in Figure 1.1.

So for q < 0, hq will always be outside the circle in Figure 1.2 and so
the implicit Euler method is stable for all A. Note that we will still have
restrictions on the step size for reasons of accuracy - but not for stability.

For all discrete numerical methods, we can define a stability region, S as
we have in the previous two examples. If the left half of the complex plane
is a subset of S, the method is said to be A-stable. So the implicit Euler
method is A-stable but the explicit Euler method is not. A-stability is a
highly desirable property for any numerical method to possess when solving
stiff problems.

A stiff ODE results from processes with widely differing time scales. For
example the general solution of a differential equation may involve sums of
terms of the form ae and be®, where both ¢ and d are negative but c is
much smaller than d. In such cases, using a larger value for the step size can
introduce enough round-off errors to cause instability.

A stiff equation can be defined in terms of the eigenvalues of the coefficient
matrix, A, of the system y = Ay. If the eigenvalues have real parts that are
all negative and differ widely in magnitude, the system is stiff. If the system
is stiff, we should try to use an implicit A-stable method.

12



1.2 Analysis of Stochastic Differential Equa-
tions

1.2.1 Motivation of SDEs

Many systems studied in mathematics are described by a system of ODEs. A
significant number of these ODEs are deterministic approximations to reality
- chosen for mathematical convenience.

Consider the logistic equation, which arises in the study of population
dynamics

) (1.10)
y(0) = o

The solutions of (1.10) are smooth deterministic paths, having steady states
at y = 0 (unstable) and y = k (stable).

Plot of Population vs time for the Logistic Equation (k=5)
T T T T T

Population

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Figure 1.3: The Logistic Equation (k=5)

However the population of a species is far from deterministic. Many com-
peting factors ensure that the population of a species may have an underlying
trend that resembles Figure 1.3, but is nevertheless a random process about
this path. An example of what a true population model might look like is
given in Figure 1.4.

13



Plot of Population vs time for the Stochastic Logistic Equation (k=5)
T T T T T T T

Population

Figure 1.4: The Stochastic Logistic Equation - One Sample Path

Some population dynamicists may believe that modelling the underlying
trend is adequate however there are reasons to study the more complete
model other than simply mathematical correctness.

For example, we note in Figure 1.4 that the path is close to zero near
t = 0. If the population suddenly decreased near ¢ = 0, due to drought for
example, and hit the time-axis !, the path would be very different (see Figure
1.5). This possibility is not considered in the deterministic model.

Similarly environmental factors might change, implying that the carrying
capacity of the model (the stable steady state, k) may vary randomly about
the underlying mean, so that

k‘ - k() + lﬁ\pt,
where W, is a white noise process. Equation (1.10) then becomes

dy = y(k—y)dt

— y(ko + k10, — y)di

= y(ko — y)dt + k1yV,dt

= y(ko — y)dt + kyydW,; (1.11)

where W, refers to a Wiener process (aka Brownian motion). Note that (1.11)

Indeed, we know that the event of a species eventually dying out occurs with proba-
bility 1.

14



Plot of Population vs time for the Stochastic Logistic Equation (k=5)
T T T T T T T

Population
S
T
L

Figure 1.5: The Stochastic Logistic Equation - A Sample Path Resulting in
Extinction

has both a deterministic part [y(ky — y)dt] and a stochastic part [kiydWy],
which characterizes an SDE.

1.2.2 Stochastic Integration

Suppose we wish to describe the movement of a particle suspended in a mov-
ing liquid, subject to random molecular bombardments. Langevin showed
it is quite easy to mathematically represent the motion of the particle by a
stochastic differential equation of the form

dX;

dt
where a(t, ) € R? is the velocity of the particle and & € R? is ‘white noise’.
The Ito representation of the above equation is simply given by

dXt == b(t, Xt)dt+0(t,Xt)th (]_]_3)

= b(t, X;) + o(t, X))& (1.12)

where W, is 3-dimensional Brownian motion. For a stochastic differential
equation of the form given in (1.13), we will call b the drift coefficient and o
the diffusion coefficient.

The solution, X3, to (1.13) is given by

t t
Xt:XOJr/ b(s,Xs)der/ o(s, X,)dW,. (1.14)
0 0

15



In this section we will focus our attention on the existence and solution of

t
/ o(s, X,)dW,”. (1.15)
0

Why does integration with respect to the Wiener process differ from ordi-
nary integration? The problem with stochastic integration is that the paths
of the Wiener process have, almost surely, an infinite variation. That is if
we followed any segment of a Wiener path with a piece of string, we would
almost surely need an infinitely long piece of string - even if we looked at a
Wiener path over a very short time interval.

Riemann-Stieltjes integrals can only be defined when the integrator is of
bounded (finite) variation. Stochastic integrals, on the other hand, rely on
the integrator having bounded quadratic variation.

Definition 1.2.1 (Quadratic Variation) The function h is said to have
bounded quadratic variation if

sup » _ [(t:) — h(ti-1)]* < oo,
T o=

where the supremum is taken over all partitions T of [0,T].

Without going into the fine detail of why the integrator needs to be
defined in this way, we can make an intuitive connection by considering how
we might construct the stochastic integral. It is natural to approximate the
solution of (1.15) as

T n—1
/ o5, X)W, & lim 3 a(t5, X, ) (Wi, ~We), 85 € 5.ty (116)
0 n 0

J=0

As (1.15) is an integral with respect to a Wiener path and that the Wiener
path can have more than one particular expression, then (1.15) is itself a
random variable which can take on many different values (depending upon
the particular Wiener path). Similarly our approximation (1.16) is also a
random variable. So how do we prove that our intuitive approximation tends
to the true integral?

In the Riemann-Stieltjes case we would prove that our approximation
converges to the true integral as n — oo, however in the stochastic (integral)
case we need to show that our approximation converges to the true integral
in the mean square sense; that is we aim to show that

1

([ o )
lim E o(s, Xs)dWs — > _o(t;, Xe:) (Wi, — W) 0.
e | /0 2o J -

J=0

16



Example 1.2.1 As an illustrative example, we examine the general case for
the stochastic integral fab Wi dW,.

For the general stochastic integral, we can simplify the approximating sum

-1

7
-
S

WiWin =W;) = > (0W; 4+ (1 = 0)W;)(Wjn — Wj)
7=0 7=0
<1 1
= X [0+ 1) = 0= )0 = W) (W 4a13)
=0
(1.18)
1 n—1 1 n—1
= WL W) (0 ) Wy W
j=0 j=0
1 2 2 1 = 2
= W) (0 D) S Aw) (119
=0

As Z?;II(AWJ-)Q converges in mean square to Z;‘;ll At;, that is

n—1 n—1 2

1 . 2_ . —

lim E (z;(AW]) ' OAtJ) 0,
Jj= Jj=

then (1.19), and thus the approrimating sum, converges in mean square to

G0V =) = (0= 5) 52 8 = 50V = 1) = 0= )0 ),
That is,
lim E (/ W, — B(Wg—wg)—(o—%)(b—a)b ] ~0. (1.20)

When it comes to choosing #; in (1.16) (or ¢ in (1.18)), two of the most
common choices are:

e t7=t; (or § = 1), which leads to the It6 integral , denoted by

t
/ o(s, Xs)dWs,
0
and

17



0 t;  tiy1 T 0 t; tit1 T

(a) Tt interpretation (b) Stratonovich interpretation

Figure 1.6: Plots representing the different partitions in the It6 and
Stratonovich interpretation

e t7 = (tj+tj11)/2 (or 0 = 0.5), which leads to the Stratonovich integral,
denoted by

t
/ o(s, Xs) o dW;.
0

The two different interpretations are shown in Figure 1.6. Unlike the Rie-
mann case where it does not matter where the position of the ¢} is, in the
stochastic case it does matter.

We can see that we will obtain a different solution to our integral de-
pending on which value we take for 0. If we choose 0 = 1 (Ité), we obtain
2

b W2_w2_ bh—
/Wtth: b a.2 ( a),

however if we choose 8 = L (Stratonovich), we obtain

W W

b
/Wtoth: 5

2From here on when we use the ‘=’ sign in reference to a stochastic integral, we must
remember that we are really saying that ‘converges in the mean square sense’

18



We can also establish the relationship between the Ito and Stratonovich
integrals, if we assume that

/TE[f(Wt)]Q dt < 0o and /Txa[f'(w,ﬁ)]2 dt < oo, (1.21)

Theorem 1.2.1 (The Transformation Formula) Assume the function f
satisfies (1.21). Then the transformation formula holds:

/OT FW) 0 dW, = /OT FWV)dW, + % /OT f'(Wy)dt. (1.22)

Sketch of Proof:
As for the Ito integral, we can represent the Stratonovich integral as an
infinite series (in the mean square sense)

T n
/ FW3) 0 dW; = lim Y f(W,,) ATV, (1.23)
0 n—o0 =1

where 7; = %(tl + tiv1). We can expand the RHS of (1.23) using a Taylor
series to obtain

STFW)AW, = Y FWi AW+ > F (Wi, ) (W, = Wyl JAW, + ...
=1 =1 =1

= Y Wi DAW + > /(W ) (W, = Wy, )

+ Xn: fl(Wti—l)(WTi - Wti,l)(Wti - Wn) +... (1.24)

=1

where we have neglected higher order terms. By definition of the It6 inte-
gral, the first term of (1.24) has the mean square limit fOTf(Ws)dWs. An
application of condition (1.21) shows that the third term of (1.24) has the
mean square limit zero,and it can also be shown that

"W, W — 9 1 ,
7/:Zlf( ti—l)( i ”ti,l) 7 2/(; f(”t)dt

in mean square. Combining the mean square convergences of these three
terms gives the required result. [

Throughout the rest of these notes, we will focus our attention on It6 in-
tegrals, although in some situations, the use of the Stratonovich integral may

19



be more appropriate. The reader may be wondering how do we choose which
of the two interpretations to use. Both interpretations have their advantages
and disadvantages. One of the nice features of the Ito integral is that is does
not “look into the future”, and since the It integral is a martingale this
provides some nice computational advantages over the Stratonovich integral.

For example
t
EU g(Xs)dWS] _
0
2

E Votg(xs)dws] = /Ot]}«:[g(x,j)]2 ds.

However, the Stratonovich integral has the advantage of leading to ordinary
chain rule formulas under transformation, making it natural to use in connec-
tion with stochastic differential equations on manifolds. Note that if o (¢, X;)
does not depend on X;, then the Ito interpretation and the Stratonovich
interpretation are the same.

1.2.3 Analytic Methods for Solving SDEs

An important result due to It6 provides us with one method for determining
the diffusion equation of Y; = ¢(t, X;) given that X, satisfies the diffusion
equation given by (1.13).

Theorem 1.2.2 (It6’s formula) Let X; be an Ité process given by
Let g(t,z) € C*([0,00) x R), then

th = g(ta Xt)
s again an Ito process, and
3g(t, Xt) 8g(t,Xt) 1 82g(t, Xt) 2
dy; = dt dX; + ——————=(dX;)". 1.25
! ot + ox et 2 dz? (dX0) (1.25)

We will now give a sketch proof of 1t6’s formula.

Proof 1.2.1 If we substitute dX; into g(t, X;) we get
g(taXt) = g(oaXU)

"fog(s, X.)  0g(s,X,)  Og(s, X)) 1 ,0%(s,X,)
- /0 ( Os ks Ox s ox + 2% Ba2

. :
_|_/ /USMdWS

0 0x
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By applying Taylor’s theorem we get

g(t, Xy) = ¢(0,Xp) —i—ZAg ti, Xy,

0 0?
= (0, Xp) +Z£At +Z gAX atg(Atj)

+Zata (AL;)(AX)) Za2AX *+) R

where R; = o(|At;|* + |AX;|?) for all j. Thus, by ignoring terms of high
order than o(h) and noting that (dW;)? = dt we obtain Itd’s formula. [
We will now focus our attention on methods to solve equations of the

form given in (1.13). To illustrate one such method, we will look at a simple
example making use of Ito’s formula.

Example 1.2.2 (Geometric Brownian Motion) Let X satisfy the stochas-
tic differential equation
dXt = /LXtdt+UXtth

Hence,

t
dX,
— = ut+ oW,
0 Xi t
By applying Ito’s formula to the left-hand side of the above equation, we
obtain

dX 1
Hence,
X
lnfz (/L— —02> t+ oWy,
or

1
X; =exp <(,u — 502> t+ aWt> Xp.

For comparison, the Stratonovich interpretation of

dXt = /LXtdt + UXt [¢) th
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I8
Xt = exp(ut + O'Wt)XU.

Processes of this form are called geometric Brownian motions. These models
are very important as models for stochastic prices in economics.

Here we have illustrated one of many methods for solving stochastic differen-
tial equations of the form given in (1.13). There exists methods of solution
for stochastic differential equations that are linear in X;, as well as methods
that rely on Stratonovich calculus.

1.2.4 Fokker-Planck

Suppose we wish to determine the transitional probability distribution for a
diffusion process, X;, given by

dXt = CL(Xt, t)dt + O'(Xt, t)th

That is, we are interested in finding an expression for determining the proba-
bility of being in a particular region in the future, given the current position,
or

F(y,t|$,8) :P(Wt Sy | Ws:x)

(Recall that the transitional density function f(y,t | x,s) = OF (y, t|z, s)/0y.)

When the drift and diffusion coefficients (a and o resp.) of a diffusion pro-
cess are moderately smooth functions, then its transition density, f(y,t|x, s)
satisfies other PDEs. These are the Kolmogorov forward equation

of 0 1 02
E + a_y a(ya t)f} - §ay2 {O’z(y,t)f} = 07 (IL', 8) ﬁxeda (126)
and the Kolmogorov backward equation
of of |1 ,0%f
— — 4+ —0*=—= = fixed. 1.2
5 T oW t) 9y T2% gz =0 (y,t) fixed (1.27)

The first equation gives the forward evolution of the process from its
starting point, whereas the second equation gives the backward evolution
of the process from its end point. There is an enormous amount of theory
surrounding these two equations and they can often be notoriously difficult
to solve. The forward equation is often referred to in the physics and finance
liturature as the Fokker-Planck equation, and it is the formal adjoint of the
backward equation.
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Exercise 1.2.1 Verify that the transitional density function of the Wiener
process,

(y —2)?

Faetle,) = (e = )] esp (-

), —o00 < y < 00,

satisfies both the forward and backward equations and thus(subject to certain
conditions) is the unique density function.

1.3 Numerical Simulation

We have seen one analytical method for solving SDEs. While other methods
exist, SDEs are generally difficult to solve and so numerical simulations are
often required.

Numerical simulations can help us approximate either a strong solution
or a weak solution. A strong solution of an SDE is the trajectory of the
solution, that is a sample path trajectory. Stong solutions are useful when
we are interested in the dynamics of a system - whether there is a stationary
solution or an attractor et cetera. A weak solution of an SDE refers to the
statistics of the solution such as the expected value or the variance. To find a
numerical approximation to the weak solution of an SDE, we compute many
different strong solutions and calculate the relevant sample statistics.

So to compute either a weak or strong solution we need to compute a
sample path, that is given an SDE

dXt = a(t, Xt)dt + O'(t, Xt)tha

we wish to plot a sample trajectory as in Figure 1.7.

For any time discrete approximation scheme that might be derived, we
must define appropriate terminology to describe the accuracy of the numer-
ical solutions - that is, to describe if the numerical scheme converges to the
true solution of the SDE. We borrow some formal definitions from Kloeden
& Platen (1992):

Definition 1.3.1 (Strong Convergence) We say that a general time dis-
crete approximation, Yy, with mazimum time step-size 6 converges strongly
to X at time T if

ImE (|X7 - Y5(T)|) = 0.
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Strong Solution of dY = 0.1.Y.dt + 0.05.Y.dW
T T T T T

118

1.16

114

1121

1.08

1.06 -

1.04

1.02

Figure 1.7: A Sample Trajectory - A Strong Solution

Definition 1.3.2 (Order of Strong Convergence) We say that a gen-
eral time discrete approrimation, Yy, converges strongly with order v > 0
at time T if there exists a positive constant C, which does not depend on ¢,
and a dy > 0 such that

E(|Xr - Y5(T)]) < €&,
for each 6 € (0,6).

Definition 1.3.3 (Weak Convergence) We say that a general time dis-
crete approximation, Yy, with maximum time step-size 0 emphconverges weakly
to X at time T as 6 | 0 with respect to a class C of test functions g : R — R
if we have

lim [ (¢(Xr)) ~ E(g(45(T))) | =0,

forall g € C.

Definition 1.3.4 (Order of Weak Convergence) We say that a general
time discrete approximation, Yy, converges weakly with order v > 0 at time
T as 6 | 0 if for each g € Cz(ﬁﬂ)(Rd — R) there exists a positive constant
C, which does not depend on v, and a finite 6y > 0 such that

E(9(Xr)) —E(9(Ys(T))) | < CO°,
for each ¢ € (0,0dp).
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1.3.1 Stochastic Taylor Series

As with the deterministic case, an entire family of numerical schemes for
solving SDEs can be derived from a stochastic Taylor formula. There are
several possibilities for a stochastic Taylor formula, most notably formulas
using [to or Stratonovich calculi. We shall introduce the It6-Taylor expansion
based on the iterated application of the It6 formula (1.25), as presented in
Kloeden & Platen (1992). If we introduce the diffusion operators

_of 1 ,0°f _of
Af—aa—x—kigw and Bf—O'a—x,

then the It6 formula (1.25) can be re-written as

FX) = 70 + [ CAF(X))ds + / BRX)AW,, el ). (128)

Clearly, for f(z) = = we have Af = a and Bf = o giving the original It6
equation

X, = X, + /t a(X,)ds + /ta(Xs)dWs. (1.29)

to to

Applying the It6 formula (1.28) to the function f = a and f = o in
(1.29), as we did in the deterministic case, yields

t s s
X, = Xt0+/ |:U/(Xt0)+/ Aa(Xz)dz—i-/ Ba(XZ)dWZ] ds
to to

to

# [ oo+ [ aseeas [ sacesaw]aw. 0

to

We can continue, for instance, by applying the Ito formula to f = Bb in
(1.30) obtaining

t t t s
Xt = Xto + a(Xto) / ds + U(Xto) / dWs + BU(XtO) / / dWZdWS + R
to Y to

to to

where R is the Ito-Taylor remainder term. By continuing, we obtain the
Ito-Taylor expansion of X;. The Ito-Taylor expansion can, in a sense, be
interpreted as a generalization of both the It6 formula and the deterministic
Taylor expansion.

We can formulate the Ito-Taylor expansion for a general function f and for
arbitrarily high order by employing a similar strategy. The reader is referred
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to Chapter 5 of Kloeden & Platen (1992) for a more detailed treatment.
However, we present here the It6-Taylor expansion of f(X;), where X; is
given by (1.29), to the order which we will require in later sections:

f(X) = f(Xy,) /Af ds+/8f dW+//82 L) dW,.dW,
// BAf(X des+// A2 f(X,)dzds
+Remainder. (1.31)
For future reference, we also give the It6-Taylor expansion for the function
f(z) = z, in differential form. When f(z) = z, Af = a and Bf = o etc.,
giving

t t
Xt = Xto —+ a/ dS —+ U/ dWs
to to

t s t s
—l—a'a/ / szdWs+a'a/ / dW,ds
+(d'a + = a"02 / / dzds + Remainder

= Xto + alt + O'AWt + U U[(AWt) At]

1
+a'oAZ + (d'a + 2a"02)(At) + Remainder,

where AZ represents ft'; f:) dW.ds.

Kloeden & Platen (1992) also give proofs of convergence of truncated
Ito-Taylor expansions - which allows us to utilize [to-Taylor approximation
schemes for solving SDEs numerically.

By using a similar methodology, we can also derive the Stratonovich-
Taylor expansion of (1.29). The first few terms of this expansion are

t t
X, = Xto—l—a/ ds—i—a/ odW,

//Aga dzds+/ / Bsa(X,) o dW,ds

/ Aso(X,)dz o dW, + / / Bso(X,) o dW, o dW,
to Jto

+Remainder,

26



where the Stratonovich operators Agf = a% and Bgf = 0% are used.
While, for reasons already explained, we will not be referring to the
Stratonovich-Taylor series anymore, some prefer it over the Ito-Taylor inte-
gral as it is easier to use.

1.3.2 Explicit Strong Taylor Approximations
Euler-Maruyama Method

All of the strong Taylor approximation schemes are derived by truncating the
Ito-Taylor series at an appropriate term. The simplest of these methods is
the Euler-Maruyama method, which is derived by truncating the Ito-Taylor
expansion after one deterministic and one stochastic term. So given

dY, = a(t,Yy)dt + o(t,Y)dWs,
Y(to) = Yo, (1.32)

we have the Euler-Maruyama approximation scheme
Ynt1 = Yn + ha(tna yn) + AWtU(tna yn)a (133)

where AW, = (W.

Tn+1

— W,,). We know that

th - Wto ~ N(O, h)
ie \/E(th — Wto) ~ N(O, 1),

so AW, = Vh x R,, where R, ~ N(0,1). Matlab code which implements
the Euler-Maruyama method can be found in the appendix.

The Euler-Maruyama method can easily be extended to SDEs with more
than one Brownian motion. Given the SDE

d
dY, = a(t,Yy)dt+ Y o;(t,Yy)dW;, (1.34)
j=1

Y(tO) - Yb:

the stochastic Euler method (1.33) becomes

d
Ynt+1 = Yn + ha(tna yn) + Z A(j)VVtUj (tna yn)' (135)

Jj=1

In this case we will need to generate an N x d matrix of i.i.d.N (0, h) random
variables.
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Kloeden & Platen (1992) show that as the increment size tends to zero,
the numerical approximation tends to the true strong solution. They continue
to prove that the global error rate is o(v/h). That is, if the step length is
reduced to a h/4, the global error reduces by a factor of (i)o'5 = % This is
not a terribly efficient algorithm. We can obtain more accurate methods by
truncating the stochastic Taylor series at later terms.

Milstein Method

We can derive a numerical scheme which has a lower error rate by including
more terms from the It6-Taylor expansion. The Milstein scheme achieves a
global error rate of o(h) by adding just one more term to the Euler-Maruyama
method.

The next term in the It6-Taylor expansion (1.31) is b'b ft'; [ dW.dW,
which can be evaluated as

t K] t
/ / dW,dW, = / WdW
0 JO 0

1
= 3 (Wi-T). (1.36)
Discretizing (1.36) as $[(AW)? — At], the Milstein scheme is

1 /
Yns1 = Yo + ha(yn) + AW (y) + 5 (AWE = D)o'(yn)o (ya). (137

Matlab code which implements the Milstein method can be found in the
appendix.

The Milstein scheme converges strongly as h — 0 and has a global error
rate o(h).

We can continue to add extra terms from the Ito-Taylor expansion to our
numerical schemes to obtain lower and lower error bounds.

Exercise 1.3.1 Research the proof of error bound for the Euler-Maruyama
scheme (Theorem 10.2.2 in Kloeden & Platen (1992)) and use a similar strat-
egy to prove the error bound for the Milstein Scheme.

A strong order 1.5 Taylor scheme has also been derived by Platen and
Wagner by including even more terms from the [to-Taylor expansion. In the
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autonomous 1 dimensional case, the scheme is given by

1
Yni1 =Yn + ha+ AW+ {(AW,)* = h} 0’0o + AZod

2 1 1
+ % (a'a + §a"02) + {hAW, — AZ,} (0'@ + 50"02)

N % {%(AWQQ - h} AW, (a"00 + (0')%0)

where AZ,; is used to represent the double integral

t s
AZ, = / / dW,.ds.
to Jto

It can be shown that AZ; is normally distributed with mean E(AZ;) = 0
and variance E((AZ;)?) = h*/3 and covariance E(AZ; . AW,;) = h?/2. We
can simulate the pair of correlated normally distributed random variables,
AZ; and AWy, by generating two standard normal random numbers, U; and
Us, by means of the transformation

h3/2
AW, = UV, AZ, = —— <U1 + ﬂ) .

1.3.3 Implicit Methods

As described earlier, explicit methods can suffer from stability issues. Implicit
methods can be more stable and are necessary for the solution of stiff SDEs.

In Section 1.1 we saw that the implicit Euler method for solving ODEs
was obtained by simply substituting the current iterate, y,,11, for the previous
iterate y,. If we attempt to follow the same logic to derive an implicit Euler-
Maruyama scheme for the SDE

we obtain

Yn+1 = Yn+ ha(yn-i-la Tn—i—l) + AWtU(yn-Ha Tn—l—l)
= Yo+ hayn1 + AWi0Yn

1 — hayj Ao in the case that (1.38) is linear. (1.39)

However as W, is unbounded, this scheme has the potential to be very un-
stable (in fact the first absolute moment, E(|Y,|), does not exist).
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An alternative to this is to introduce ‘deterministically-implicit’ schemes
by using the current iterate, y,.1, in the coefficients of the non-random
terms and using the previous iterate, y,, in the coefficients of the ran-
dom terms. That is, we can define the (deterministically) implicit Euler-
Maruyama scheme as

Yn+1 = Un + ha(ynJrl; 7_nJrl) + AWtU(yna Tn)' (140)

In fact we can define a whole family of implicit Euler-Maruyama methods by
introducing a factor, «, such that

Ynt1 = Yn + D [aa(yn—l—la 7—n+1) + (1 - a)a(yn, Tn)] + AWtU(yn, Tn)-

Using this scheme with a value of @ = 0 describes the explicit Euler-Maruyama
scheme.

Example 1.3.1 (Geometric Brownian Motion) If we implement the im-
plicit Euler-Maruyama scheme (with oo = 1) to solve (1.38), we obtain

Yn+1 = Yn+ ha(yn-i-la Tn—l—l) + AWtU(yna Tn)
= Yp+ hayn-i—l + AI/Vto'yn

. 1+O’AWt
N 1—ha Yn-

This is a strongly converging scheme with errors of 0(h1/2) (Kloeden € Platen
1992).

If we implement the same implicit Euler-Maruyama scheme for general
a to solve (1.38), we similarly obtain

(1.41)

1+ 0AW, + k(1 — «)
Yn-
1— haa

Yn+1 = |:

This is also a strongly converging scheme with errors of o(hl/z) (Kloeden &
Platen 1992).

We can also derive a deterministically implicit Milstein scheme. Recall
the explicit Milstein scheme for geometric Brownian motion is

1
Ynt1 = Yn + hayn + AWthn + §UZ(AWt2 - h)yn

We can analyze the term
1

1 h
50’2(AWE — h)yn = 502At2y72l — §U2yn,
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so we obtain the deteministically implicit Milstein scheme
h o [N
1—ah+ 50’ Yn+1 = oAt + 50' At Un

oAt + %UQAtZ
SO Yn+1 = 1—ah + ko2 Yn-
2

Exercise 1.3.2 Describe the family of (deterministically-) implicit Milstein
schemes for numerically simulating an SDE and describe their convergence
properties.

The Balanced Method

Recently (1998), another ingenious alternative to fully implicit methods was
introduced called the Balanced method. The Balanced method uses a tech-
nique already in use for solving ODEs called splitting. Let us examine the
case of solving the SDE

dXt = O'Xtth. (142)

As the stochastic term is "much larger” than the deterministic term, this can
be considered stiff and so will require an implicit method to solve it efficiently.
We might start with a non-stiff solver, such as the Euler-Maruyama scheme
and try to ‘implicitize’ it using splitting. The Euler-Maruyama scheme for
(1.42) is

Splitting involves adding and subtracting a variable in an advantageous man-
ner, that is (1.43) becomes

Ynt1 = Yn Tt (Uyn +V = V)AWn

Ynt1 + VAW, = yo + AW, 0y, + VAW,. (1.44)
The Balanced method utilizes splitting by setting
_ 1AW,
V=0 A, v,

and by introducing an implicit term only on the LHS. Thus (1.44) becomes

|AW,| B |AW,|
Yni1 + 0O NG AW, Yno1 = Yn + AWy, + 0 N AW, yy,.

Yn+1 = Yn T+ o AWy, + U|AWn|(yn - yn+1)
(1.45)
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One may ask why this method is any better than those already proposed.
The reason that the Balanced method proves superior stems from the in-
herent difficulty with fully implicit methods. Recall that the fully implicit
Euler-Maruyama method for (1.42) is

o Yn
Ynt1 = 1—ocAW,’

As we have already seen, if AW, is close to 1/0 then the fully implicit
method becomes unstable. However, this instability can only occur when
AW, is greater than zero (for positive o). The beauty with the Balanced
method is, as a little algebraic manipulation will show, when AW, < 0 (ie
when |AW, | = —AW,,) then (1.45) reduces to

_ Yn
Yny1 = 1 oAW. AW,

which is a stable fully implicit Euler method! When AW,, > 0, the Balanced
method gives a semi-implicit method:

(14 20AW,)
Ynt1 =7 +oAW,

That is, for 50% of the time the Balanced method is fully implicit, while for
the other 50% of the time the Balanced method is semi-implicit!

For the general case of solving (1.32), we can define a family of Balanced
methods as

Yn+1 = Yn + ha(tna yn) + AWnU(tna yn) + Cn(yn - yn+1)7

where
Cp = he® (1, yn) + |AW, D (bn, yn).-

In the case where X, is a d-dimensional vector, then the functions ¢{* and
¢ will ned to be d x d matrix functions. If ¢® and ¢V are positive definite
and their components are uniformly bounded then the Balanced method
converges with order 0.5.

1.3.4 Comparisons and Wiener Paths

Throughout the previous sections, we have introduced a number of numerical
schemes to approximate a strong solution to an SDE. These methods have
all required random variables to be simulated at each iteration of the scheme.
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However, there is no requirement to generate these random numbers ‘on the
fly’ - we can generate them in advance and use them sequentially, as needed.
Once we have generated this sequence of random numbers and stored them
in a vector, we can ‘superimpose’ the numerical scheme on top of them. This
set of random numbers is called a Wiener path and an example of a Wiener
path is given in Figure 1.8. As these random numbers are generated from

Plot of Wiener Path — h=0.008
0.5 T T T

T
—— Brownian
— - Poisson

0.4 q

03 q

Figure 1.8: A Brownian Path (h=0.008)

a standard normal distribution, we expect that the asymptotic mean of the
Wiener path be zero, and its asymptotic variance be one.

The benefit of implementing any numerical method in this way is that it
allows us to compare different numerical methods by using the same Wiener
path. For example, we can compare the Euler-Maruyama solution and Mil-
stein solution to the exact solution of

Xo = L

in Figure 1.9 . In Figure 1.9, we see that the two methods give a similar
solution. However for a stiff SDE such as

dXt = O'Xtth
XO = 07

we can highlight the difference between the Euler-Maruyama method and a
more stable method such as the Balanced method (see Figure 1.10). The
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Comparison of Euler-Maruyama and Milstein Methods vs Exact Method — h=0.008

18 T T T T T T T T T
—- euler
vl — — milstein
_— —— exactbrn
16 ! H

Figure 1.9: A Comparison of Euler-Maruyama and Milstein Methods for
dX; = 1.3X,dt + 1.5X,dW; using the Wiener path in Figure 1.8 (h=0.008)

Comparison Plot of Euler-Maruyama Method vs Balanced Method fo dX(=5><(dW' (h=0.125)
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Figure 1.10: A Comparison of Euler-Maruyama and Balanced methods for
dX; = 5X;dW; using the same Wiener path for all solutions (h = 0.125)
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difference between the solutions in Figure 1.10 is quite stark (in some places
the difference is greater than one!). This difference can get worse if we
examine it closely (see Milstein, Platen & Schurz (1998) for more details).

Brownian Trees

Often we are also interested in noting the behaviour of a numerical method
for decreasing step-sizes. In this case we need two Wiener paths, where one
is embedded in the other. That is we wish to add more detail to an already
existing Wiener path.

Given the Wiener path segment with step length h, we wish to create
another Wiener path with step length h/2 that traverses the original Wiener
path. This is done by generating further Wiener increments on subdivisions
of the intervals, h. The set of Wiener paths that are constructed is called a
Brownian tree.

A Brownian tree is made up of Wiener increments as follows:

AWl,l AWZ,I

v pY v pY
AWLQ AWQ,Z AW372 AW472
< N N v N N

AWL?, AWQ’g AWg,g AW4,3 AW5’3 AWG’;), AW7,3 AWg,g
(1.46)

where AW, ; represents the i increment of the j™ level and where level one
is the original Wiener path. The increments for level j + 1 are computed for
j=1,2,... as

AW,
AWor_1,541 5 L Yk,j

AW i1 = AWy — AWop_1 41,

7j

where

h

Yrj ~ N(0, ﬁ)

Example 1.3.2 Consider the Wiener path, W of stepsize h = 0.5, which
has the increments

AW, = —0.3059
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giving
Wo1 =0 Wi =-0.3059
To create a Wiener path of stepsize h = 0.25, we generate n —1 = 1
new random variables from a N(0,0.125) = +/0.125 x N(0,1) distribution.

Suppose that the random number generated is 0.7143. Then the new set of
Weiner increments 1s

AWy, = % +/0.125 x 0.7143
= 0.0996

AWyy = AWiy — AW,
= —0.3059 — 0.0996

—0.4055
and the new Wiener path is
WO,Z - 0 WLQ - 00996 WQ’Z - —03059

The resulting Brownian tree is seen in Figure 1.11.

Plot of Wiener Path vs Time
0.1 T T T T _ -~ T

Figure 1.11: The Resultant Brownian Tree

If the same procedure is continued, the resulting Brownian tree is seen in
Figure 1.12.

Once a Brownian tree has been generated, it can be used to estimate rates
of convergence. By plotting the average absolute error for each stepsize on a
log-log plot, an estimate of the scheme’s rate of convergence can be obtained
from the estimate of the slope of the log-log plot.
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An Example of Brownian Trees
T T T

Figure 1.12: The Resultant Brownian Tree - 4 More [terations

Exercise 1.3.3 Formalize the above method of estimating the rate of con-
vergence and implement this method to estimate the rate of convergence for
both the Fuler-Maruyama method and the Milstein method. Do these esti-
mates correspond with theoretical rates of convergence obtained in Ezxercise
1.83.1¢

1.4 Summary

In this chapter, we have examined the theoretical concepts driving the de-
velopment of numerical methods for ODEs and extended these concepts to
the SDE case. We have also introduced various fixed stepsize numerical
schemes to approximate a strong solution to SDEs and looked at different
attempts to introduce implicit methods. Other relevant concepts which we
have not discussed here include looking at variable stepsize implementation,
non-Taylor-series based methods, more efficient weak approximation meth-
ods and other convergence issues (for example, could a fully implicit SDE
solver ever converge to the solution of an Ito6 SDE?). Research in these areas
is continuing and a lot of work is being done in this department. The reader
is encouraged to investigate these issues further and discuss possible research
topics in these areas with Prof. Burrage or Dr. Chandler.
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Chapter 2
Black-Scholes Models

Black & Scholes (1973) derived an explicit solution to the problem of pricing
and hedging a European put or call option on a non-dividend paying stock.
Their paper was probably the most significant contribution to financial eco-
nomics since the work of Markowitz on portfolio selection. The Black-Scholes
formula can easily be used to derive formulas for option hedging parameters
- delta, gamma, theta, vega and rho. Using simple arguments the Black-
Scholes formula can be extended to options on futures and currencies as well
as dividend paying stocks.

In this chapter we will derive the Black-Scholes model for European call
and put options on non-dividend paying stock. We will also introduce the
notion of an option (specifically European and American) as well as the idea
of abritrage and how it can be applied to derive the Black-Scholes equation.
We will then examine the ‘Greeks’ or option hedging parameters.

2.1 Options

An option gives its holder the right, but not the obligation, to buy or sell a
certain amount of an asset by a certain date for a specific price, agreed upon
before entering the contract. Before entering into the contract the writer
must decide upon the type of option to be sold, the amount and type of
underlying asset to be sold, the expiration date and the exercise price. Two
of the most common types of options traded on the market include European
and American options. A FEuropean option gives the holder the right, but
not the obligation, to buy (a call) or sell (a put) the stock at some specified
price K, on a certain date T. The time is often referred to as the maturity
date or expiry date. An American option is similar to a European option
except that it may be exercised at any time up to and including the expiry
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date. American options will be discussed further in Chapter 4 as the problem
of pricing an American option falls into the class of problems known as the
optimal stopping problem.

Unlike the American option, the payoff for a European option only de-
pends on the stock price at the expiry date, Sr. For a European call, if
St > K the holder would buy the stock at K and sell it for Sy and make
a profit of Sy — K dollars. If Sy < K, the option is worthless, and the
holder would not wish to exercise the option. Thus, we can formally define
the payoff of a European call option as

O(S, T) = maX(ST — K, O) = (ST — K)+ (21)

A similar argument leads to the formula for a European put, which is given
by

P(S,T) = max(K — Sy,0) = (K — Sr),. (2.2)

The payoff diagrams for the European call and put are given in Figure 2.1
respectively. We will often abbreviate the notation for a European put and
call to P, and C} respectively, suppressing the dependence on the underlying
assets price.

In the following sections we will look at the questions of how to price and
hedge the options correctly.

2.2 Arbitrage

Arbitrage is the financial strategy whereby a riskless profit can be made. It
could be as simple as buying from one trader at a lower price and selling to
another trader at a higher price guaranteeing a risk-free profit.

To illustrate the idea of arbitrage it will be assumed that there exists a
risk-free interest rate, r, at which traders can invest and borrow. If we invest
in a government bond, worth B dollars, at the continuously compounding
interest rate, it will be worth Be’T dollars at time T.

Suppose we are offered a forward contract to sell stock. What is the
future strike price we should agree to?

One possible strategy is to borrow enough money to buy the stock now,
wait until the date the contract matures, deliver the stock in exchange for
the strike price as promised, and pay back the loan and interest accrued.
Now if the strike price is greater than our borrowings we will have made a
risk-free profit, and it is unlikely the buyer would have agreed to this.

A similar tactic can be used by the buyer. Sell the stock now and invest
the cash at the risk-free interest rate. When the contract matures pay the
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Figure 2.1: The Payoff diagrams for a European call and put option
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strike price, receive the stock from the seller and pass it on to cover the
original sale. If the cash plus interest earned is greater than the strike price,
the buyer has an arbitrage opportunity to make money.

Thus the strike price for the forward contract must be equal to the cost
of the stock initially plus the interest on this amount over the duration of
the contract. The buyer and seller cannot agree on any other price.

2.3 The Black-Scholes Equation

Let IT denote the value of a portfolio of one long position and a short position
in some quantity delta, A, of the underlying,

I1=V(S,t) — AS. (2.3)

We can write down the change in the value of the porfolio from time ¢ to
t+ dt as

dll = dV — AdS.

Assuming that the underlying asset follows a log-normal random walk and
by applying It6’s formula, we can write down the change in the option value
as

ov oV 1 02V

dV = —dt + —dS + —02S*——dt.
ot T g T30 g

Thus, the change in the portfolio is

ov ov 1 0*V
II=— — —o?S?——dt — AdS. 24
d atdt+asd5+205652dt ds (2.4)

In the above equation, if we choose

A=— (2.5)
then (2.4) becomes purely deterministic as by choosing delta as above, we
have reduced the randomness in the equation to zero. After choosing the

quantity A as above, the change in the value of the portfolio can be written
as

oV 1, PV
= (21 1229 V) g 2.
(m*@”saﬂ) (2:6)
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The above change in the value of the portfolio is completely riskless. If we
have a risk-free change in the portfolio value, then it must be equal to the
growth we would get if we put the equivalent amount of cash in a risk-free
interest account. That is,

dIl = rIldt. (2.7)

The above is an example of the no arbitrage principle. Substituting equa-
tions (2.3), (2.5) and (2.6) into (2.7) and dividing by dt we get

1 2
%—Z+50252%+r52—‘5/ —rV =0. (2.8)
This is the Black-Scholes equation. The Black-Scholes equation is a linear
parabolic partial differential equation. Many of the partial differential equa-
tions arising in finance are linear and of a similar form to (2.8). They also
tend to be parabolic, meaning they are related to heat and diffusion equations
making them relatively easy to solve numerically.

2.4 Change of Measure

In this section we will show how to convert the discounted asset price into a
martingale. This is done by finding an equivalent martingale measure Q by
using Girsanov’s Theorem.

Suppose we have

StzeytSO, t e [0,00),

where Y; is a Wiener process with probability measure P. Under the proba-
bility measure P we know

Y, ~ N(ut,o*t).

Since the asset S; is risky when discounted by the risk-free rate, S; cannot
be a martingale. That is, under the true probability measure P we cannot
have

Ep(e "S|Sy,u < t) =e ™9,. (2.9)

The problem is therefore to find a probability measure Q such that (2.9)
holds. If we define the new probability measure Q by

N(pt,a*t),
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then the value of p that makes the discounted process S; a martingale under
the measure Q is

and

S, = e(r—%az)t—I—a\/iZSO,

where Z ~ N(0,1). Note that under the measure Q, S; depends on ¢ and r
but not . Now that we have the probability distribution of S; in terms of
Z we can apply the risk-neutral valuation formula to calculate the time-zero
value of a claim.

2.5 Black-Scholes Formula

The Black-Scholes formula gives the price of a call option, C'(S;,t) when the
following conditions apply

1. The underlying asset follows log-normal price dynamics.
2. The risk-free interest rate is a known function of time.
3. The underlying asset pays no dividends.

4. Continuous trading.

5. There are no transaction costs.

6. There exists no arbitrage opportunities.

In the paper by Black and Scholes they assume that the market consists
of one risky asset and one riskless asset given by the following set of price
dynamics

dBt == TBtdt
dSt = uStdt—FUStth
where r, i and o are constants satisfying the conditions given by (4.2), and

W, is standard Brownian motion. For the European call option, with payoff
function X = (Sy — K), the Black-Scholes price is given by

C(S,t) = Sp(dy) — Ke " T D(dy),
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where

1
dy = = (2.10)

dy = _ _ (2.11)

and ¢(-) is the standard normal cumulative distribution given by

1 v 22
o(x) = \/—2_7r/_ e 2dz.

One of the nice features of the Black-Scholes pricing formula is that it only
depends on one unknown parameter, the volatility . We will derive the
Black-Scholes formula for the call option from a measure theoretic point of
view. This approach will avoid having to solve the Black-Scholes partial
differential equation. Now,

Eo(Bp'X) = Eq(exp(—rT)(S - K)y)
_ /_ exp (=rT)(S — K).dQ

o0

o 1 (@—(r—30%)T)°
= / eirT(Soex — K)+ e 2597 dr.
—00 gV 27TT

To eliminate the max function, note that
S()@I Z K
implies that

>1 K
x> In—
=g

and hence

C / e (S - K T
— e e’ — (& 204T €T
’ In K ‘ oV2rT

So
e 1 (z—(r—Lo?)T)2
== S() 677‘T6:1: e 202T dx
In £ oV 21T

00 (re 1022

—Ke_rT/ ! e_%dx
IHSE g 27TT

0
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Letting w = (2 — (r — 26)T) /ov/T and noting that dz = ov/Tdw, we get

—Lw24ovVTw—La2T KeirT — L2
27 Se 2 2 - £ 1oy € dw.

Co= /°°
0 \/ﬁ 1n5£0;(\r/;%a \/ﬂ ﬁ

. In %«k(rféaz)T . .
Letting —dy = ——— 7 We can rewrite the above equation as

_ls2p 00 —rT o0

e 27 1.2 Ke 1,2

Co = S eoVTw=3w" oy — / e 2" dw.
V2T —dy V2 d2

Using the properties of the normal distribution,

7%(72T da KefrT da

Co =5, ¢ e 2 (W’ +20VTw) gy

0 V2T ) s 2T

Completing the square in the first integral, by adding and subtracting ez
gives us

1,2
e Y dw.

o2T
)

KeirT d> 1,2

1 2 _1
> (wraVT)? gy, e 2% dw.

o= E

If we define v = w + ov/T in the first integral, we get

do+oVT —rT
2 1,2 Ke 1,2
Cy = / e 2Y dv — / e 2V dw
° V2 Vo2t J_
= 50¢(d1) — Ke™ er)(dQ);

where d; = dy + ov/T. O

Theorem 2.5.1 (Put-Call Parity) Let C(S,t) and P(S,t) be the price of
a Furopean call and put option respectively, then

P(S,t)=C(S,t) — S+ Ke "I
where K is the strike price and S s the stock price at time t.

By applying the Put-Call Parity, Theorem 2.5.1, to the Black-Scholes formula
for a European call option, we get the formula for the European put option

P(S,t) = Ke " "D p(—dy) — So(—d,).
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2.6 Greeks

Options and derivatives are traded either through an organised market (ez-
change) or in the over the counter market. The later requires direct contact
between participants and the contract terms may be anything subject to
negotiation.

When a financial institution sells an option or other derivative to a client
it is faced with the problem of managing the associated risk. If the contract
happens to be the same as one that is sold on the exchange, the financial
institution can neutralise its exposure by buying the same option it holds on
the exchange. Since it is often the case that the contract has been tailored
to the needs of the client and does not correspond to a standardised product
traded on the exchange, hedging the exposure becomes more difficult.

One strategy open to the writer of an option is to simply do nothing.
Upon maturity the contract is either exercised or ignored. From the writer’s
point of view it is much better if the option finishes out of the money since
their maximum profit will be realised. However, they risk a potentially large
loss if the option finishes deep in the money.

An option without any offsetting position in an underlying asset is referred
to as a naked position. Writing a call option while also owning the underlying
stock is called a covered position.

The covered position is the opposite of a naked option. If the contract
finishes in the money and the contract is exercised then this strategy performs
well. If the contract finishes out of the money then the writer may be exposed
to large losses. Neither of the above two strategies provides a satisfactory
hedge.

Another basic scheme is known as the stop loss strategy. The idea behind
the stop loss strategy is to hold a naked position whenever it is favourable,
and a covered position otherwise. This strategy is achieved by buying or
selling the stock each time the price passes the strike. Applying this strategy
to hedge a call option would require the writer to be holding stock whenever
the call is in the money and sell whenever the call is out of the money.

2.6.1 Delta hedging

The hedging strategies mentioned so far lack sophistification and traders
usually use more sophisiticated schemes. This involves calculating hedging
measures referred to as the ‘Greeks’.

The delta of an option, A, is the rate of change of an option with respect
to the price of the underlying asset. Mathematically, the delta of a call option
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is the partial derivative of the call with respect to the underlying asset price

oC
A= —. 2.12
53 (2.12)
For a Furopean call option on a non-dividend paying stock, the delta can be
shown to be

Ao = ¢(dy), (2.13)

where d; is defined in (2.10). Similarly the delta for a European put can be
shown to be

Ap = o(dy) — 1. (2.14)

Using delta hedging for a short position in a European call option involves
keeping a long position of ¢(d;) shares at any given time. Similarly, a long
position involves maintaining a short position of ¢(d;) shares.

For a European put option, a long position in a put option should be
hedged with a long position in the underlying asset and a short position in
a put option should be hedged with a short position in the underlying.

s
Zos

Stock Price

Figure 2.2: The delta of a European call with K = 30, r = 0.1 and o = 0.35.

2.6.2 Gamma

The gamma, T', of a portfolio of derivatives on an underlying asset is the rate
of change of the portfolio’s delta with respect to the price of the underlying
asset. It is the second partial derivative with respect to the underlying asset

0°C _ *P e~/

05 ~ 0S8 " So\[am(T - 1)
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If gamma is small, delta changes slowly and adjustments to keep the portfolio
delta-neutral need only to be made infrequently. If gamma is large, the delta
of an option is highly sensitive to the price of the underlying asset and the
delta-neutral position should not remain unchanged for any length of time.

. 77/
TSR] & \‘
?tffl‘fl

Stock Price

Figure 2.3: The gamma of a European call with K = 30, »r = 0.1 and
o =0.35.

2.6.3 Theta

The theta of an option, O, is the rate of change of the option value with
respect to the time to maturity. It is also referred to as the time decay of
the portfolio.

For a European call, it can be shown using Black-Scholes formula that

~@/2
O i oc _ Soe R ——
T —1) 24/27(T — t)

Similarly for a European put option

opP Sge—di/?
Op = = — +rKe "TYg(—d,).
Pa(T =) 2./27(T —t) H=cb)

For an option, theta is usually negative since as time to maturity decreases
the option tends to be less valuable. Unlike delta hedging where it makes
sense to hedge against changes in the underlying assets price it does not make
sense to hedge against time to maturity, as time to maturity is not uncertain.
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Theta

Time to maturity Stock Price

Figure 2.4: The theta of a European call with K = 30, r = 0.1 and 0 = 0.35.

2.6.4 Vega

The vega of a portfolio of derivatives, v, is the rate of change of the value of
the portfolio with respect to the volatility of the underlying asset!

o1l
V=

= (2.15)

If vega is high in absolute terms, the portfolio’s value is very sensitive to
small changes in volatility. If vega is low, volatility changes have little effect
of the value of the portfolio.

For a European call or put option on a non-dividend paying stock, it can
be shown using Black-Scholes formula that vega is given by

L. 0C _ SVT— te=4i/?
- Oo V2

2.6.5 Rbho

The rho of a portfolio of derivatives is the rate of change of the portfolio
value with respect to the interest rate

_an
- or’

Vega is considered to be one of the Greeks even though it is not one of the letters of
the Greek alphabet

p
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Figure 2.5: The vega of a European call with K = 30, r = 0.1 and o = 0.35.

It measures the sensitivity of the portfolio value to interest rates. For a
European call option

oC
po = o= K(T = t)e 7T 0(dy)

and for a European put option

oP
,OP = E = —K(T — t)e*T(Tft)qﬁ(dQ).

2.6.6 Implied Volatility

In calculating the price of a call option using the Black-Scholes formula, the
only unknown parameter is the standard deviation ¢ of the underlying asset.
A common problem in practice is to find the implied volatility given the
observed market price. That is, we wish to solve the following equation for
o

co =c(S, X,r,0,T —t),
where cq is the observed market price and the function c() is the price under
the Black-Scholes economy. However, there is no closed form solution for
the implied volatility as a function of the option value, so we must solve
the equation numerically to find o. To calculate the value of o we use the
Newton-Rhapson method to find the root of an equation in a single variable.
In our case the function we wish to find the root of is

f(O') = Cy — CBs(O')
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and each new iteration will calculate a new value of o via

Co — CBS(Ui)
_ 3035
oo

Oi+1 = 05 +

until

|f(az)| <€,

where € is the desired accuracy.

Plot of Implied Volatility Vs. Stock Price
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Figure 2.6: Plot of Implied Volatility versus Stock Price with K = 95,
r = 0.05T—t = 0.5and ¢ = 12.
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Chapter 3

Interest Rate Models

The correct modelling of the stochastic behaviour of interest rate models is
important for the construction of realistic and reliable models for interest
rate derivatives.

In this chapter we will devote our attention to looking at interest rate
models. Interest rate models are used mainly to price and hedge bonds and
bond options. In Chapter 2 when dealing with the Black-Scholes equation,
we assumed that the interest rate was constant. Such an assumption may be
acceptable when the life of the option is only six to nine months. However,
the interest rate generally depends on both the date ¢ of the loan emmision
and on the maturity date of the loan T

The valuation of interest rate derivatives depends on the level of the
interest rates and the construction of valuation models for these securities
depends on the stochastic movement of the rates.

Many approaches have been put forward for pricing interest rate deriva-
tives, however, no definite consensus has been reached with regard to the
best approach to the problem of pricing interest rate derivatives.

The main essence is to model the prices of the interest rate derivatives as
a function of one or a few state variables such as the spot interest rate, long
term interest rate or the spot forward rate.

3.1 Introduction

A bond is a long-term contract under which the issuer (or borrower) promises
to pay the bond holder periodic coupon interest payments plus principal on
specific dates as specified in the bond agreement. A zero-coupon bond is a
bond in which there are no coupon payments. The face value of the bond
is often called the par value and the maturity date is the specified date on
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which the par value of the bond must be repaid. The premium is the amount
that should be paid by the bond holder at the beginning of the contract and
is simply the present value of all future cash flows.

It is unrealistic to assume that the interest rate will remain constant
throughout the life of the bond as it is usually 10 years or longer. Firstly
we will assume that the interest rate is a deterministic function of time
and derive the corresponding bond pricing formula. In the next section we
will discuss various stochastic models for interest rates and associated bond
pricing models.

3.1.1 Deterministic Interest Rates

Let 7(t) be the deterministic interest rate function, ¢ € [0, 7], where t is the
time and 7' is the maturity date of the bond. Since the interest rate is a
function of time and not an independent state variable, we can assume that
the bond price is a function of time only. Let P(¢) and ¢(t) denote the bond
price and coupon rate respectively. The final condition is P(T') = F'V, where
FV is the par value. In time increment At, the change in the value of the
bond and the coupon received must equal the riskless interest return by the
no arbitrage principle. Hence,

dP
' +ec(t)y=r(t)P, t<T.

Together with the final condition, the solution to the first order linear ordi-
nary differential equation is

T
P(t) =e ftTr(S)ds |:FV+/ C(T)eftTr(s)dsdT] )
t

A bond is called a discount bond if the price falls below the par value and
a premium bond otherwise. Also the pull-to-par phenomenon says that the
market value of a bond will always approach its par value as we get closer to
maturity.

3.1.2 Term Structure of Interest Rates

Let P(t,T) represent the price at time ¢ of a zero-coupon bond maturing at
T with par value P(T,T) = 1. The market values of P(¢,T) indicate the
market expectation of the interest rate at future dates. We can define the
yield to maturity R(t,T) as

R(t,T) = In P(t,T) (3.1)

T—t1
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which gives the internal rate of return at time ¢ of the bond. The yield curve
is the plot of R(t,T) against T. The dependence of the yield curve on the
time to maturity 7" — ¢ is called the term structure of interest rates.

A forward contract is a contract whereby the holder agrees to purchase
a zero-coupon bond at some future time 7 with maturity date To(> T}).
The forward price is simply P(t,T)/P(t,T;) with the forward rate at time
t, T <t < Ty, related to the zero-coupon bond prices by
1 P(t,Ty)

_ 1 .
-1 " PtT))

f(t,Tl,Tg) - (32)

The instantaneous forward rate at time t for a bond with maturity date 7" is

F(t,T) = lim InP(t,T)—InP(t,T + AT) _ 1 or
AT=0 AT P(t,T) 0T

t,T). (3.3)

F(t,T) can be thought of as the marginal rate of return for committing a
bond investment for an additional instant. Integrating (3.3) with respect to
T, we can express the bond price in terms of the instantaneous forward rate

P@Jﬁ:em)<iATF@ﬂnm0.

Combining (3.1) and (3.3) we can express the yield to maturity in terms of
the forward rate as

T

The above two equations show that the bond price/yield can be determined
from the term structure of the forward rate. The short interest rate or spot
rate r(t) is simply

r(t) = lim R(t, T) = R(t,t) = F(t,1).

T—t

Term Structure Theories

Several theories of term structures have been proposed to explain the shape
of a yield curve. Three of the most important term structure theories are:

Expectation Theory Long-term interest rates reflect expected future short-
term rates.
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Market Segmentation Theory Each borrower and lender has a preferred
maturity so that the slope of the yield curve will depend on the supply
and demand conditions for funds in the long-term market relative to
the short-term market.

Liquidity Preference Theory Lenders prefer to make short-term loans
rather than long-term loans since liquidity of capital is in general pre-
ferred.

3.2 Omne-factor Models

In this section we will derive the governing equation for the bond price using
the arbitrage pricing approach. Let us assume that the spot rate r(t) can be
described by the following general stochastic differential equation

dr = u(r, t)dt + v(r, t)dW;

where W; is standard Brownian motion and u(r,t) and v(r,t) are the in-
stantaneous drift and standard deviation of r(¢) respectively. Applying It6’s
Lemma to P(t) gives

(0P 9P 1 ,0°P opP

If we write the dynamics of the bond price as

dP
= p(r, t)dt + o(r, t)dW,

then we can obtain the drift and variance of P(r,t) to be

1 (0P 9P 1 ,0°P
N P il 4
ulr. 1) P<at+“ar+2“aﬂ> (34)
1 OP
O'(?",t) = EUE, (35)

respectively. Unlike the role of underlying assets in an equity option, interest
rates cannot be used to hedge with bond as they themselves are not tradeable
securities. Instead we try to hedge bonds of different maturities.

Suppose we construct a portfolio consisting of buying a bond worth V;
with maturity 77 and selling a bond worth V5 at maturity 7. The value of
the portfolio is given by

M=V, V.
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The change in the value of portfolio in time dt is

dll = (Vip(r, ¢, Ty) — Vou(r,t, Ty))dt + (Vio(r, t, T1) — Voo (r, t, To) ) dW,.
(3.6)

If we choose the V; (and similarly V5) such that

O—(Ta ta TZ)

Vi, =
' U(Ta t T2) - O-(rvtaTl)

then the stochastic part of (3.6) disappears and becomes

Ty ta TI)O—(T7 ta TZ) — /L(?", ta T2)0—(T7 ta TI)

i
dIT =11
O'(T,t,TZ) — 0'(7", t, Tl)

dt.

Since the portfolio is instantaneously riskless, it must earn the riskless
spot rate, that is, dII = r(¢)IId¢t. Combining with the above result gives us
/L(?", l Tl) — T(t) :U’(,rataTZ) — T(t)

O'(T,t,Tl) N O'(T,t,TZ)

The above equation is independent of the maturity dates 77 and 75 and thus
the ratio % is independent of the maturity date T'. We will define the
ratio by A(r,t), that is

) = M0

This quantity is referred to as the market price of risk as it gives the increase
in expected instantaneous rate of return on a bond per an additional unit of
risk.

When we substitute (3.4) and (3.5) into the equation for the market price
of risk we obtain the partial differential equation for the price of a zero-coupon
bond

oP 1 ,0°P oP

off L 2ol W P =0, t<T 3.7

5 T3¢ a742+(u U)ar r , t<T, (3.7)
with boundary condition P(7,7) = 1. Once we choose a suitable model for
r(t) and the market price of risk is specified, we can solve (3.7) to obtain the
value of a zero-coupon bond.
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3.2.1 Vasicek Model

Vasicek (1977) suggested that the spot interest rate be governed by the
Ornstein-Uhlenbeck process

dr = a(b—r)dt + odW, (3.8)

where a,b and o are non-negative constants. This process is often referred
to as a mean reverting process as the instantaneous drift a(b — r) pulls the
process back to the long term mean b at a rate proportional to the distance
from the mean. The mean and variance of the spot rate at time T conditional
on the current spot rate are given by

E[r(T)|r(t)] = b4 (r(t) —b)e T
var[r(T)|r(t)] = % [1— ¢ 20(T-0)]

If we set r;, = U;V;, we can solve for U, and V; to give the solution to the
Vasicek interest rate model as,

t
re =roe” " +b(1 — e ™) + e_at/ oe” "dW;.
0

For simplicity we assume the market price of risk A to be constant, indepen-
dent of  and ¢. For the Vasicek model given in (3.8) the pde for the price of
a bond becomes

oP o%?0%*P oP
ajL?WqL(a(b—r)—)\a)——7"P—0. (3.9)

or
Let us assume that the solution be of the form
P(r,t:T) = A(t,T)ePTr, (3.10)

Substituting (3.10) into (3.9) gives us the following set of odes to be solved

dA 1
E+()\U—ab)AB+§O’2ABz =0, t<T
dB
— —aB+1 = 0, t<T
7 ab + ,

with boundary conditions A(T,T) = 1 and B(T,T) = 0. Upon solving the
above set of equations and substituting the solution into (3.10), the solution
is with ¢ < T

Plrt:T) = exp(é[l — O Ry 1) = Roo(T = 1) = i [1 = ™0,
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where Ry, = b — "7}‘ — % The yield to maturity or the term structure of
interest rates can easily be found to be (Vasicek 1977)

7(t) — Roo][l — e~T1) o’ —a(T—1)12
Rit.T) = R+ 110 i(}[l— ) ]+4a3(T—t)[1_6 )

where R, = lim R(¢,T).
T—00

3.2.2 The Cox-Ingersoll-Ross model

Cox, Ingersoll & Ross (1985) suggested modelling the instantaneous interest
rate by the following stochastic differential equation,

dr = a(b—r)dt + o/rdW,.

Unlike the model proposed by Vasicek, the interest rates may never go nega-
tive given an initial non-negative interest rate. This is also a mean reverting
process however, the volatility is no longer constant and is dependent upon
the interest rate. It is easy to see that if 0? > 2ab then r(¢) may reach zero
while if 2ab > o? the interest rate may never hit zero. The mean and variance
of r(T) are

E[r(T)|r(t)] = r(t)e T £p[1 — e @T0],
var[r(T)|r(t)] = T(t)%[e*“(T*t) — eiZd(t*t)] + 1)2%[1 — e*“(T*t)]Z.

Some interesting properties to note are
e as a — oo, the mean tends to b and the variance tends to zero,
e asa — 07, the mean tends to r(¢) and the variance tends to o(T — ¢)r(t).

To solve for the price of a zero-coupon bond we assume the same form for
the solution as in (3.10). For the model proposed by Cox et al. (1985) the
system of odes to be solved now becomes

dA
— —abAB = 0, t<T
dt
dB 1
E—(a+)\a)B—502B2+l =0, t<T,

with boundary conditions A(7,T) = 1 and B(T,T) = 0. The market price
of risk is taken to be Ay/r(t) where A is a constant.
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The solution to the above set of equations is (Cox et al. 1985)

P(r,t:T) = A(t,T)e” B&Dr

where
2k6
O mel(sHA+7)(T—1)]/2 s
AT) = e
(Y + K+ A) (T —1) 4+ 2y
2(e7(T-1) _ 1
B, T) = (e )

(v+ K+ A) (T8 —1) 4 2y

and v is given by v = ((k 4+ A)2 4+ 202)2. Note that the market price of risk
A only appears in 7 in the above solution.

3.3 Two-factor Models

In general the one-factor interest rate models discussed in the previous section
cannot capture the rich structure found in practice. Most of these models of-
fer the analytic tractability where closed form solutions of the term structures
and bond prices can be found. However, this approach tends to oversimplify
the true behaviour of interest rate movements.

In this section we will focus our attention on multi-factor models that
involve the short rate together with some other state variable. Generally the
second state variable in a two-factor model is either the long rate (Brennan
& Schwartz 1982) or the variance of the short rate (Fong & Vasicek). Due
to the higher degrees of freedom used to model the term structure of interest
rates we usually need to resort to some numerical scheme to value the bond
prices.

3.3.1 Brennan and Schwartz

Brennan & Schwartz (1982) chose the two stochastic factors to be the short-
term interest rate r and the long-term interest rate [. The general form of
the model is

dr = a,(r,1,t)dt + b,(r,1,t)dW}
dl = a)(r,1,t)dt + b(r,1,t)dW}

and let p denote the correlation between dW,' and dW7?. By Itd’s Lemma, the
stochastic differential equation for the price of a zero-coupon bond is given

99



dP
- = w(r, L t)dt + o, (r, 1, ) dW, + oy (r, 1, £)dW}?
where
(r,1,t) = 1 8—P+aa—PjLaa—PJrl2—82P+1b2—82P+ bb—82p
PSS = B o "% T T2 a2 T e TP g1
1. 9P
r 7l7t — _br—
or(r,1,1) P or
1 9P
O'Z(T',l,t) = Fblﬁ

Let us construct a portfolio containing V;, Vo and V3 units of bonds with
maturity dates 17, To and T3 respectively. Let II denote the value of the
portfolio, then the rate of return on the portfolio in time dt is

dil = [Vip(Th) + Vap(T2) + Vap(T5)]dt
+[‘/10',«(T1) + %O’,«(TQ) + ‘/E;O'T(Tg)]thl
+[‘/10[(T1) + ‘/QUZ(TQ) + %U[(Tg)]dWE.

As last time, we shall select the values of V7, V5 and V3 such that the stochas-
tic terms in the above equation vanish. This leads to the following set of
equations for Vi, V5 and V3

‘GUT(Tl) + %U,«(TQ) + VE),O',«(Tg) =0
Vioy(Th) + Vaou(Ty) + Vsou(T5) =

Since the portfolio is instantaneously riskless, it must earn the spot interest
rate to avoid arbitrage, that is,

dll = [Vip(Th) + Vap(To) + Vap(Ts)]dt = r(Vi + Vo + V3)dt
so that
Vilu(Th) — r] + Va[u(Tz) — r] + Va[u(Ts) — 7] = 0.

Thus we have obtained a system of equations for V;, V5 and V3

o (Th) o-(T7) o (T3) Vi 0
UZ(TI) O'Z(TQ) O'Z(Tg) Vé = 0
p(T) —r w(T) —r w(T3) —r Vs 0
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The solution to the above system will be non-trivial provided that
O'T(Tl) UT(TZ) O'T(Tg)
UZ(TI) UZ(TZ) O'Z(Tg) =0.
p(h) —r pw(Tz) —r p(Ts) —r

The above condition is valid for arbitrary values of 17, T3 and T3 provided
that

p(t) —r = N(r, L t)op(t) + N(r, 1 t)oy (L), (3.11)

where A\, and ); are the market prices of risk for the short-term and long-
term interest rates respectively. Substituting the expressions for u(t), o,(t)
and oy(t) into (3.11) gives us the following partial differential equation

oP 1.9°P PP 1 .0°P
0 = Lol O Ll
ot T TP T3 g
op op
+(ar — )\rbr)a + (al — )\lbl)ﬁ —rP.

The specific form of the equations for the short-term and long-term rates
postulated by Brennan & Schwartz (1982) has the form

dr = (ay+b (I —7r))dt+ordW},
dl = l(CLQ — b27” + Cgl)dt + O-QldWE.

Both the long and short rates display locally log-normal behaviour. In addi-
tion, the drift term of the short rate model is mean-reverting, reverting to the
long rate at a speed by. This is consistent with theories of the term structure
based on expectations (Brennan & Schwartz 1982). That is, theories which
assume long rates to be based upon expectation of future short rates.

Substituting the coefficients in the specific model into the partial differ-
ential equation makes us need to use a numerical finite differences method
to solve it. In the numerical solution we need the full set of boundary condi-
tions for the bond price equation. It is expected that the bond price would
tend to zero and either one of the interest rates goes to infinity. However,
the boundary condition at the limiting case of zero can be quite difficult to
implement.

3.3.2 Fong and Vasicek

Many other multi-factor models have been proposed in the literature. Fong
and Vasicek, (Fong & Vasicek 1991), chose the variance of the short term
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rate to be the second state variable to more accurately describe the term
structure of interest rates. They proposed that the stochastic differential
equations for the short rate and the variance of the short rate should be

dr = a(F —r)dt+ JodW}
do = bl — o)dt + &J/odW}?
where 7 and & are the long term means of r and o respectively. The market

prices of risk are assumed to be proportional to \/o. Using the free arbitrage
argument the partial differential equation for the price of a discount bond is

a_P — 182_P_|_§ 82P+1§2 aZ_P
ar 2702 %00 2% 7902
B OP B OP
+(ar—ar+)\U)W+(ba—(b+§77)0)%—7"P

where \y/o and 1./ are assumed to be the market prices of risk for r and
o respectively and p is the correlation between W, and W2. Although very
difficult, the closed form solution can be found'.

3.3.3 Longstaff and Schwartz

Longstaff & Schwartz consider the following model for the risk-adjusted vari-
ables,

dr = a(z — x)dt + /xdW},
dy = by —y)dt+ /ydWy,

where the spot interest rate is given by
r=cr+dy.

The simple form of the terms in the above equations results in the explicit
solution for simple interest rate products.

3.4 No-Arbitrage Models

In this section we will take market data, such as the current term structure
of interest rates, and develop the no arbitrage yield curve model so that is is
consistent with the current market data. These type of models are called no

!The closed form solution is in terms of confluent hypergeometric functions with com-
plex arguments (Selby & Strickland 1995).
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arbitrage models. These models allow for time dependent functions within
the models, with the functions being determined in such a way that the
bond prices match the observed market prices. No arbitrage models can
be developed using either the bond prices, forward rates or the short rates.
In the rest of this section we will explore some of the popular no arbitrage
models.

3.4.1 Ho & Lee Model

This is the first no arbitrage model proposed (Ho & Lee 1986), where the
initial model was developed in the form of a binomial tree. The continuous
time limit of this process is given by

dr = a(t)dt ++/odX

where r is the short rate and o is the instantaneous standard deviation of
the short rate. The function a(t) is chosen such that the model fits the initial
term structure. The value of a zero-coupon bond is given by

P(T, t- T) — eA(t,T)—TB(t,T)
where
B(T) = T—1t

A(LT) = —/t a(r)(T = 7)dr + éb(T— 13,

3.4.2 Hull & White Model

In their paper, Hull & White (1990) extend the one-factor models of Vasicek
(1977) and Cox et al. (1985) to models which are consistent with the current
term structure of interest rates and either the current volatilities of all the
spot interest rates or the volatilities of all the forward interest rates.

The extended model of Vasicek takes the form

dr = [0(t) + a(t) (b — r)]dt + o(t)dW,.
This implies that any contingent claim, f(r), must satisfy
o 18(0) = alt)r1fs + 50 (0o~ 7f =0, (3.12)
where
o(t) = a(t)b+ 0(t) — A(t)o ().
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The solution to (3.12) with boundary condition f(#) = 1 at maturity 7" is
the price of a zero-coupon bond of the form

f(t,T) = A(t,T)e” BEIr, (3.13)

This function satisfies (3.12) and the boundary condition when

A, — (AB + %a(t)ZABQ _ 9 3.14)
B—a()B+1 = 0 (3.15)

with
A(T,T)=1, B(T,T)=0. (3.16)

Solving (3.14) and (3.15) subject to the boundary conditions given by (3.16),
Equation (3.13) gives the price of a zero-coupon bond maturing at time 7.
If we assume that a(t), ¢(t) and o(t) are constants then the solution is that
given by Vasicek,

oB(0,t)/0t

B(t,T) =

dlog A(0, 1)
ot

3?30 [ [oa 7]

_9*B(0,t)/o¢
) = ~3B0.0/0

log A(t,T) = logA(0,T) —log A(0,t) — B(t,T)

we obtain

3.4.3 Black-Derman-Toy Model

The Black-Derman-Toy model, (Black, Derman & Toy 1990), as in the Ho-
Lee model, is formulated as a binomial tree. The continuous time limit of
the model is

dlnr = [H(t) _ 2 lnr] dt + o (t)dW,

N o(t) ;
This process models the changes in the short rate as log-normally distributed
random variables with the interest rates always being non-negative. Similar
to the Ho-Lee model, the function 6(t) is chosen so that the model fits the
term structure of short rates and o(¢) is chosen to fit the term structure of
short rate volatilities. If o(¢) is constant, this model reduces to a log-normal
version of the Ho-Lee model.
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3.5 Heath-Jarrow-Morton

The HIM model, (Heath, Jarrow & Morton 1992), attempts to construct a
family of continuous time stochastic processes for the term structure, consis-
tent with the observed initial term structure data. The driving state variable
of the model is chosen to be F(t,T), the forward rate at time ¢ for instan-
taneous borrowing at a later time 7. The stochastic process is assumed to
be

dF(t,T) = ap(t, T)dt + > op(t,T)dW;, 0<t<T,

=1

where ap(t,T) is the instantaneous forward rate’s drift, oy is the vector of
volatilities of the forward rates and W, is an n-dimensional vector of inde-
pendent Wiener processes.

The Heath, Jarrow and Morton approach is to specify the volatilities of
all instantaneous forward rates for all future times, often referred to as the
volatility structure. By defining the risk-neutral process P(¢,T') as

dP(t,T)=r(t)P(t,T)dt + v(t, T)P(t,T)dW,. (3.17)

The expected return of the risk-neutral process is r(¢). The volatility, v(¢, T),
can be any well-behaved function, but since a bond’s price volatility declines
to zero at maturity,

v(t,t) =0,

which is equivalent to the assumption that all discount bonds have finite
drifts at all times. Applying It6’s Formula, Theorem 1.2.2, to In P(¢,T") and
using (3.17)

d1n P(t,T) = <r(t) _ ”(tTT)Q> dt + v(t, T)dW;

and using the definition of the forward rate given in (3.2) we get

U(t, T2)2 — U(t, Tl)th 4 ’U(t,Tl) — 'U(t,TZ

T\, Ty) =
CACRIEED) 2T, —T)) T, — T,

dW;.

The above equation shows us that the risk-neutral process for f(t,71,73)
depends only r and P to the extent that v can be a function of r» and P.
If welet 77 = T and To, = T + AT and take the limit as AT — 0 we
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will obtain the stochastic differential equation for F'(¢,T'), the instantaneous
forward rate.

dF (t,T) = v(t, T)or(t, T)dt — vp(t, T)dW,

where vp(t,T) denotes the partial derivative of v(¢,T) with respect to T.
Once we know the function v(t,T) for all values of ¢ and T the process
F(t,T) is fully known.

Next we will derive the risk-neutral process for r(¢) from the bond price
volatilities and the initial term structure. We know that

F(t,t) = F(0,t) + /lt dF (7, t)dr

and since r(t) = F(t,t) it is given by
t t
r(t) = F(0,t) +/ v(T, t)vy(r, t)dt +/ vy (7, 1) dW,.
0 0

3.6 Affine Models

In the previous sections we have looked at a number of different models,
characterised by the dynamics of their state variables. Given a stochastic
differential equation for the short rate of the form

dr = p,(r, t)dt + o, (r, t)dW,

then the absence of arbitrage requires that for any asset V' there should
correspond a parabolic pde

oV (r,t) N oV (r,t)

y , 02V (r, 1)
ot " or "

Erea r(t)V(r,t).

1
=0,
2

In the above description, the equations are completely general. However, if
we place restrictions on the form of u, and o,, we can obtain useful results
about the form of the discounted bond price. If the functions u, and o, are
affine or linear functions of the form

pr = ay(t) + az(t)r
and

o7 = by(t) + by(t)r,
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then the solution of the partial differential equation for the discounted bond
price P(t,T), with boundary condition P(T,T) = 1, is of the form

P(r,t,T) = explA(t,T) — B(t, T)r(t)].

As you can see, many of the models discussed in the previous sections
belong to this category. Models such as those of Vasicek, Hull & White and
even Cox, Ingersoll & Ross fall into this group. However, any log-normal
model such as Black-Derman-Toy do not belong to this class.

In general, the ordinary differential equations for A(t,T) and B(¢,T) must
be solved numerically.
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Chapter 4

Optimal Stopping

4.1 More on 1t6 Diffusions

Markov Property

Definition 4.1.1 A (time-homogeneous) Ité diffusion is a stochastic pro-
cess Xi(w) = X(t,w) : [0,00) x Q@ — R™ satisfying a stochastic differential
equation of the form

dXt = b(Xt)dt + O'(Xt)th, t 2 S; Xs =x (4].)

where Wy is m-dimensional Brownian motion and b : R™ — R™, o : R™ — Rm™x¢
satisfy

b(z) = b(y)| + lo(z) —o(y)| < Dlz —y[, x,y eR" (4.2)
where |o]? =Y |0y

We can think of condition (4.2) as guaranteeing that the solution to (4.1) is
unique. In other words, if there exists two processes, X;(t,w) and X,(t,w)
satisfying (4.1), then

Xi(t,w) = Xs(t,w), Vt<T,a.s. (4.3)

We will denote this unique solution to (4.1) by X, = X,"*, t > s.

If for the process, X;, the future behaviour given the history up to time t,
is the same as starting the process at X;, we say that X, satisfies the Markov
property. More formally, this can be written as

Theorem 4.1.1 (The Markov Property for It6 diffusions) Let f be a
bounded Borel function from R™ — R. Then, for t,h > 0

E7[f (Xeen) | Fil(w) = B Cf(X)]. (4.4)
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Generator

If we can associate a second order partial differential operator A to an Ito
diffusion X;, we refer to A as the generator of the process X.

Definition 4.1.2 Let {X;} be a (time-homogeneous) Ito diffusion in R™.
The (infinitesimal) generator A of X, is defined by

E* | f(Xy)] —
t10 t
The set of functions f : R™ — R such that the limit exists at x is denoted by
D4(x), while Dy denotes the set of functions for which the limit exists for
all v € R™.

The generator A of the diffusion X; can be thought of as the infinitesimal
difference as t tends to zero between the future expected value of the function
of X; and the function at the starting point, x.

We will now give the relationship between the generator A and the co-
efficients b and o in the stochastic differential equation (4.1). To be able to
determine the relationship between A and the coefficients of (4.1), we will
need to make use of the following lemma.

Lemma 4.1.1 Let Y, =Y," be an Ito process in R™ of the form

Ve =o+ [

0

r € R™. (4.5)

t

u(s,w)ds—l—/o v(s,w)dWs. (4.6)

Let f € CZ(R™) and let T be a stopping time with respect to {F;}, and assume
that E*[1] < 0o. Then
E*[f(Y7)] = f(z) +
" of(Ys) | 1 - 02 f(Y,)
/0 (2; Ui(S,w)iaxz_ + 3 Z(UU )i, (s, w) D0 ds|(4.7)

i7j

E{E

That is, given that Y} is a process of the form (4.6), and the expected value
of the stopping time is finite, then the expected value of f(Y,) is given by
(4.7).

Theorem 4.1.2 Let X, be the Ito diffusion

dX; = b(X,)dt + o(X;)dW;. (4.8)
If f € C2(R™), then f € Dy and
0 1 0?
i ! iy !

69



In other words, if f is twice continuously differentiable on R™ and has com-
pact support, i.e. closed and bounded, then for an It6 diffusion of the form
(4.8) its generator A is given by (4.9). The proof of Theorem 4.1.2 is given
in (Oksendal 1998) using Lemma 4.1.1 with 7 = ¢ and the definition of the
generator A.

Example 4.1.1 Consider the Ornstein-Uhlenbeck process given by

Then the generator A of X, is

Example 4.1.2 For the generator A of an Ito diffusion given by

_of 0°f

= o T o2 fe C@(R’"), (4.12)

Af ()
it 1s easy to verify that the stochastic differential equation of X, is given by

dX, = dt +/2dW,. (4.13)

The Dynkin Formula

If we combine Theorem 4.1.2 with Lemma 4.1.1 , it is easy to check that we
get:

Theorem 4.1.3 (Dynkin’s formula) Let f € CZ(R™). Suppose T is a
stopping time, E*[T] < oo. Then

B (X)) = 1) +B| [ Ar(ras). (4.14)

Dynkin’s formula provides us with a way of evaluating the expected value of
a function of X; at a stopping time 7 in terms of the function at our starting
position, x and the expected value of the integral of the generator of X;.

Characteristic Operator

We will now introduce an operator which is slightly more suited for some
problems, but is still closely related to the generator A.

70



Definition 4.1.3 Let {X,;} be an Ité diffusion. The characteristic operator
A= Ax of {Xy} is defined by

(4.15)
where the U’s are open sets Uy decreasing to the point x, in the sense that
Ugt1 C U and Ux = {x}, and v = inf{t > 0; X, ¢ U} is the first exit

k
time from U for X;. The set of functions f such that the limit (4.15) exists
for all x € R™ (and all {Uy}) is denoted by D 4. If E*[1y] = oo for all open
U >z, we define Af (x) =

It turns out that

Dy C Dy
and that

Af = Af

for all f € Dy4. It also turns out that if f is a twice continuously differentiable
function, then the generator of X; and the characteristic operator of X,
coincide. So for all functions f € C?, Af = Af.

As for the generator A of the process X, we can establish a relationship
between the characteristic operator, A and the coefficients of the Itd process
given in (4.1).

Theorem 4.1.4 Let f € C?. Then f € D4 and
af 0 f
Af = Zb -+ 3 Z oo’ ”axzax] (4.16)

We will now demonstrate how we can apply Theorem 4.1.4 to an It6 process,
X; to determine the characteristic operator A of X;.

Example 4.1.3 (Brownian motion on the unit circle) Define the pro-

cess X = < §1 ) by the set of stochastic differential equations
2
1
dX1 - —§X1dt—X2th
1
dXy, = —§X2dt+X1th.
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We can rewrite the above equations as
dX = b(X)dt + o(X)dW,;

where

Therefore,

2
T Ty —X1T9
o0 = )
—T1T2 €Ty

and the characteristic operator A of X is

1 [ ,2f 2f  L*f  af  of
— (2221 o . . .
Af(z) 2 <x2 oz? T 01107, o 0x3 = 0x; 2 Oz

Cameron-Martin-Girsanov Theorem

An important result that builds upon the results given in subsection A.1.2
is Girsanov’s Theorem. Girsanov’s Theorem is a fundamental result in the
general theory of stochastic analysis, and has many important applications,
for example, in finance. Suppose we wish to model the movement of stock
price by a stochastic process of the form

St = SO exp(,ut + O'Wt)
and where the time value of money is
Bt == 6”.

We wish to find the probability measure Q such that the discounted stock
process B; 'S, is a martingale. Now

B'S; = Spexp(ut+oW,)e " (4.17)
= Sopexp((p — )t + owy). (4.18)

Then, the expected value under PP is

E(B;'S,) = Spexp((u—r)t)E(e”™) (4.19)

= Spexp <<u —r+ %02) t) : (4.20)
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If p—r+40% = 0, then Q is the risk-neutral measure. We can rewrite (4.17)
as

~ 1
Bt_IS’t = Sy exp <0Wt — 50215) ,

where
. —r+ 12
Wt - Wt + M72t

o

Thus, if W is Brownian motion under the new measure Q, then
~ 1
]E(B;lst) = SU]EQ <0’Wt - 50'2t> = S()

and Q must be the martingale measure for the discounted stock price process.
Girsanov’s Theorem tells us the conditions required for Q to be a martingale
measure for the process and the form of the Radon-Nikodym derivative for
the change of measure.

Theorem 4.1.5 (Girsanov’s Theorem) Let W; be Brownian motion on
(Q, F,P). Suppose vy is a process adapted to the accompanying filtration F;.
Define

t
W, =W, +/ s (4.21)
0

T 1 T
A =exp <_/ YuldWoy — _/ VZdU> )
0 2 0

and define a new probability measure Q by

Q) = [ Adp

and

then, provided Ep (exp <% fOT *yfdt)) < oo, W, is Brownian motion under

the measure Q where A is the Radon-Nikodym derivative of Q with respect
to P.

We may also note that the converse to Girsanov’s Theorem is also true, and
that changing the measure by applying Girsanov’s Theorem only changes
the mean. The variance as well as the volatilities, quadratic variation and
covariations remain unaffected.
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4.2 The Optimal Stopping Problem

In this section we formulate the optimal stopping problem and present various
methods for its solution. We start this chapter by examining the fundamental
concepts used in formulating the optimal stopping problem. We will conclude
this section with some examples.

To begin, we illustrate the fundamental concepts involved in the optimal
stopping problem by way of an example.

Example 4.2.1 (An illustrative example) Suppose that we are playing a
game of shells. There is a line of shells in front of us, and under each of them
15 a random amount of money. In this game we are allowed to look under
one shell at a time and after looking under the shell, we have two options.
We can either keep the money under the shell OR we can look under the next
shell.

So after each shell we have to decide whether to stop or not. If we take
the money, we could be losing a lot more in the future, yet we could also
currently be at the maximum.

When, or at what event, do we stop and take the money?

This is an example of the optimal stopping problem. That is, we wish to
determine a stopping time, of some stochastic process, that will return the
greatest reward (the reward in this case being cash!).

A Stopping Time

One of the most common misunderstandings in optimal stopping is the def-
inition of a stopping time. Initially, one may think that a stopping time is
a time that, once we have solved the problem, remains fixed. In reality a
stopping time is in reference to an event that is fixed, and the actual stop-
ping time is a random variable dependent on this event occurring. So once
we have fixed the event (by solving the problem), the actual time that we
stop will be different for each observation of the underlying process.

There is another subtlety of the definition of a stopping time which is
important to understand. For 7 to be a stopping time, it must be possible
to decide whether or not to stop on the basis of the knowledge of the history
of the process up to and including the current time ¢.

Definition 4.2.1 (A Stopping Time) Let {o;} be an increasing family of
o-algebras (of subsets of Q). A function 7 : Q — [0, 0] is called a (strict)
stopping time w.r.t. {o} if

{w;T(w) <t} €0y,  forallt>D0.
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In other words, it should be possible to decide whether or not 7 < t has
occurred on the basis of the knowledge of the history of our process up to
and including our current time, that is on the basis of the knowledge of o;.

Example 4.2.2 (Stopping Time for a Martingale) A fair coin is tossed
repeatedly; let T be the time of the first head. Writing X; for the number of
heads on the ith toss, we have that

{T=n}={X,=1X;=0for1<j<n}eF,

where Fp, = o(Xy,...,X,). That is, it is possible to decide whether or not
our total number of heads is 1 by considering only the results of our coin
tossing up to and including the current toss. Therefore T is a stopping time.
In this case T is finite almost surely.

In addition, it is important to understand that we cannot think about
an optimal stopping time for a particular future path as we do not, nor by
Definition 4.2.1 should we need to know, the individual future path. Instead,
we wish to find a stopping time that will give the largest expected reward.
That is we must start thinking about the stopping time which will return
the best reward over the long run.

The Reward Function

The principle aim in optimal stopping problems is to maximise some expected
reward function. It seems logical therefore that before we look at a formal
definition of optimal stopping we must, at least heuristically, decide what is
meant by a reward function.

Clearly, a reward function will be some function of the underlying stochas-
tic process. For example if the underlying stochastic process is the movement
of our stock price, then a possible reward function could be the net discounted
profit made if we sold our stocks now

g(St, t) = €_T(T_t)(st — SO) (422)

Some reward functions do not involve time as a variable. These reward
functions only depend on the state of the underlying stochastic process.
When the reward function does not involve time, we refer to the problem
as the time homogeneous optimal stopping problem.

Some reward functions, such as (4.22), do depend on time. In this case
the solution to the optimal stopping problem will depend not only on the un-
derlying stochastic process, but also in some way on the timing of the process
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as well. So a state of the process at one time may have a different effect on
our decision to stop than the same state at a different time. When the reward
function involves time, we refer to the problem as the time inhomogeneous
optimal stopping problem.

4.2.1 The Optimal Stopping Problem

We are now in a position to look at the formal specification of the optimal
stopping problem.

Definition 4.2.2 (The Optimal Stopping Problem) Let X; be an It6
diffusion on R™ and let g (the reward function) be a given function on R™,
satisfying

a) g(&) >0 for all £ € R™, and

b) g is continuous.

We wish to find a stopping time 7" = 7" (x,w) (called on optimal stopping
time) for {X;} such that

E*[g(X,+)] = Slip E*[g(X;)] forallz € R™, (4.23)

the supremum being taken over all stopping times T for {X;}. We also want
to find the corresponding optimal expected reward

g"(x) = E*[g(X7)]. (4.24)

That is, we wish to find a stopping time such that the reward gained by
stopping is greater than the expected reward if we did not stop.

We will see later that the first condition on g may be relaxed in certain
situations.

To solve this problem, we will examine the time homogeneous case first.
We will then outline modifications to this method of solution for the time
inhomogeneous case.

Time homogeneity

Throughout the rest of this chapter we will examine what happens in the
time homogeneous case. At first this may seem a little dismissive however
this is not such a terrible thing. If we encounter a problem that is not
time homogeneous (where the reward function does indeed depend on time),
we can define a new diffusion Y; that transforms our time inhomogeneous
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problem into a homogeneous one. From there we can carry on as with the
homogeneous case.

If, in our time inhomogeneous problem, we have an It6 diffusion X; defined
as

Xt = b(?", Xt)dt + O'(OZ, Xt)tha
and a reward function

g (t,x) = sup B [g(7, X;)] = B0 [g(7%, X, )],

T

then we can define a new It6 diffusion Y, = Y, € Rm+1,

s+t
=] s

That is, Y, — Y,*"”) is the graph of X; — X7 shifted to start at (s, z). Now
as the new Ito diffusion takes time into account, the original problem as in
Definition 4.2.2 can be written in terms of Y},

g"(s,2) = sup B [g(¥7)] = B [g(¥7- )]
and the problem can then be solved using the same methods as for the time
homogeneous problem.

In the rare case that something different is required for the time inho-
mogeneous case, we will make a note. Otherwise, when we have a time
inhomogeneous problem, we will replace in the notes X; with Y; and g(x)
with g(s, z).

4.2.2 The Least Super-harmonic Majorant

The first step of our solution involves finding a special function called the
least super-harmonic majorant of our reward function, g. This concept can
take a little getting used to so we will present it, as Oksendal (QDksendal 1998)
does, in stages.

Definition 4.2.3 (A Super-harmonic Function) A continuous function
f:R™ —[0,00] is called super-harmonic (w.r.t. the Ité diffusion, X;) if

f(@) = E°[f(X7)] (4.25)

for all stopping times 7 and all x € R™.
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That is a function is super-harmonic if, given our starting point z, the
expected value of the function is always less than or equal to the value of the
function at our starting point. So if f is a reward function which is super-
harmonic, our expected future reward will always be less than or equal to
our current reward.

At first glance, the definition of super-harmonic may resemble the defini-
tion of a super-martingale, however the two are very different. The definition
of super-harmonic refers to a property of a function (of an It6 diffusion),
whereas the definition of a super-martingale refers to a property of the un-
derlying stochastic process.

Another way of defining or determining super-harmonicity can be found
by considering a rearrangement for equation (4.25) (and considering for all
t, not just stopping times),

E*[f(X)] < f(=) (4.26)
= E* [f(X)] = f(z) < 0 (4.27)

which we should recognise as the generator of f. Reconsidering this last
equation in terms of stopping times gives us the following corollary.

Corollary 4.2.1 Let f : R™ — [0,00] be twice continuously differentiable
such that Af is bounded, where A is the generator of the Ito diffusion, X;.
Then f is called super-harmonic if

o { /0 ' Af(Xs)ds] <0, (4.29)

for all stopping times, T.

Proof: By Dynkin’s formula.

Definition 4.2.4 (Least Super-harmonic Majorant) Let h be a real func-
tion on R™. If f is a super-harmonic function and f > h we say that f is a
super-harmonic majorant of h (w.r.t X;). The function

h(z) = irflf f(z); zeR™, (4.30)

the infimum being taken over all super-harmonic majorants f of h, is called
the least super-harmonic majorant of h.

The construction of the least super-harmonic majorant of a function A is
not a trivial task. For this reason the main result of this section, the method
of solution for the optimal stopping problem, will be presented first followed
by the method of construction of the least super-harmonic majorant.
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9(X) /mt superharmonic majorant, g*(z)

“°\:-._Reward for the underlying trend

Reward for the single expression| of t.

o Underlying trend

An expression of the diffusion

Xi

t

Figure 4.1: An example of the concept of the least super-harmonic majorant,
g*, of the reward function, g

4.2.3 Formulation of Some Problem Applications

We now include the formulation of two application problems using the no-
tation used above. The first of these is a problem that is very close to our
hearts, the ‘When is the best time to sell my stock’ problem.

Example 4.2.3 (When is the best time to sell stock?) Suppose we cur-
rently own a stock (or for that matter, any asset - house, business, etc) whose
price, X; varies according to geometric Brownian motion, that is

dXt = TXtdt + OZXtth,

where 1 is the underlying trend of the stock and « is the variance term.
Let us also suppose that the reward is the return on this stock which, if
we sell it, is a discounted price process, that is,

g(t, Xy) = e (X, — a),

where p is the riskless rate of interest and a is a some constant representing
transaction costs. So we are wanting to know when to sell the stock so that
we receive the largest reward, after taking the transaction cost into account.
As the reward function does depend on time, the problem is a time-
inhomogeneous one. Consequently we define a new diffusion process, Y; as

(s2) _ [ s+t
K _<X§”>’
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that s,

1 0
dY, = [rXt}dt—i_[aXt}th'

Our reward function g(t,z) then becomes g(s,z) = e "*(x — a).

This problem is an interesting one, so we will use it as our illustrative example
throughout the next section.

Example 4.2.4 (American Put Option) An American option is similar
to a European option in that the owner has the right but not the obligation
to exercise the option. However, unlike an Furopean option, the American
option does not have to be exercised only on the maturity date but at any
time up to and including the maturity date, T. The decision to exercise the
option at any time t only depends on the history up to time t. More formally,

{w;T(w) <t} € F.
We can define the payoff function for the American option as

F(7(w),w) =sup(S, — K,0)

T

where K is the strike price for the option. That is, the supremum at time
7 less than T of the maximum of the stock price minus the strike price or
zero. Let us define the Ito diffusion X, = (Xo(t), X1(t)) which consists of a
riskless asset

dXo(t) = p(t, Xo(t)) Xo(t)dt
and a risky asset
dXi(t) = p(t, X1(t))dt + o(t, X1(t))dW;

where p(t, Xo(t)), p(t, X1(t)) and o(t, X1(t)) satisfy the conditions given in
(4.2). If we define a new probability measure Q on F;, then by applying a
change of measure

dQ _

= M(T,w)

where M (t,w) is given by

M(t,w) = exp (- /Otu(s,Xs)dWs - %/Ot uz(s,Xs)ds)
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then X, is a martingale under the new probability measure Q. If the payoff
function for the American option is of the form

F(t,w) = g(t, Xi)

then if we assume that the market is complete, the price of the contingent
claim is given by

pA(F) = SupE@[&(T)g(TaXT)]

T<T
= supEp[M(7)€(7)g(, X;)]
T<T
where £(7) is the discount process. If we define the function K(t) by

K(t) = M(HE()

- (— /0 (s, X)W, /0 t (%uQ(s,Xs) +p(s,Xs>>) ds)

then the corresponding diffusion equation for K(t) is given by
dK(t) = —p(t, Xp) K(t)dt — u(t, X;) K (t)dW;.

If we define the j-dimensional Ito diffusion Y; by

1 0
dt - .
ay, = | dx@) | = | 2 |dt+ | T | aw,

pXO 0
X,
14 o

then we can see that the price of the contingent claim is given by

pa(F) = sup E[G(Y, ],
T<T
where G(y) = G(s,k,x) = kg(s,z) and y = (s,k,r) € R x R x R?. Thus,
the price of the American contingent claim, pa(F'), can be thought of as the
solution to the optimal stopping problem with Ito diffusion Y, given abowve.
Unfortunately, even in the most simplistic case of the American Put op-
tion problem, an explicit solution has not yet been found, however, some
interesting partial results can be found in (Oksendal 1998) with further ref-
erences given within.

4.3 Methods of Solution

We are now ready for our main results on the optimal stopping problem.
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4.3.1 Solution Using First Principles

Theorem 4.3.1 (Existence Theorem for Optimal Stopping) Let g be
a continuous, non-negative reward function which has a least super-harmonic
majorant, g. Let g* denote the optimal reward.

a) Then
g*(x) = g(x). (4.31)
b) If we define the continuation region, D
D = {z;9(r) < g*(x)}, (4.32)

and for N = 1,2,... define gy = min(g,N),Dy = {z;gn(z) < gn(x)}
and on = Tp,, .

Then Dy C Dy4q1 and D =y Dn.

If oy < o0 a.s. w.r.t QF (the probability measure of X;) for all N then

g'(2) = lim B [g(X,,)]. (4.33)

N—00

c¢) In particular, if Tp < o0 a.s. w.r.t. Q% and the family {g(Xyy)}n is
uniformly integrable w.r.t. QQ°, then

9" (z) = E* [g(X5,)] (4.34)
and T* = Tp is an optimal stopping time.

The proof for this Theorem can be found in @ksendal (Oksendal 1998), page
201.

This theorem gives a sufficient condition for the existence of an optimal
stopping time 7*. Unfortunately, it does not prove that an optimal stopping
time necessarily exists in general.

Corollary 4.3.1 Suppose there exists a Borel set H such that
gu(x) = E* [g(X7,)] (4.35)

1s a super-harmonic magjorant of g. Then

g9°(x) = gu(x), (4.36)

so T = 1y is optimal.
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Corollary 4.3.2 Let
D= {z;9(x) < g(x)} (4.37)
and put
9(x) = gp(x) = E* [g(X-,)]- (4.38)
If g > g then g = g*.

Theorem 4.3.2 (Uniqueness Theorem for Optimal Stopping) Define
as before

D ={x;g(r) < g"(x)} CR™.

Suppose there exists an optimal stopping time 7 = 7%(x,w) for the problem
4.23 for all x. Then

™ >71p forallz €D (4.39)
and
g (x) =E* [g(X,;,)] forallx € R™. (4.40)
Hence 1p 1s an optimal stopping time for the problem 4.23.

The proof for this Theorem can be found in @ksendal (Oksendal 1998), page
205.

These existence and uniqueness theorems give us a two step method for
solving the optimal stopping problem:

Step 1. Identify g* with the least super-harmonic majorant ¢ of g with
respect to X;.

Step 2. Define the continuation region D C R™ by

D = {w;9(r) < g"(2)}.

Then (under certain conditions) the first exit time 7* = 7 for D for X solves
the optimal stopping problem (4.23), and hence the optimal reward (4.24) is
given by

g°(x) = E" [g(X5p)]-
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So our method of solution tries to identify a function, ¢, that has the
following properties:

e The new function, g, is greater than our reward function,

e The new function, g, has a future expectation which is less than the
current value, and

e The new function, g, is the least of all such functions.

Once we have found this function ¢, then we can define our continuation
region as specified earlier. It is left as an exercise to show that if D is time
invariant then it must have the form

D={z:0<xz<m}.

First exit from D

\ Least Superharmonic Majorant

Continuation Region, D

|
\ X,
The stopping time,7p

Figure 4.2: An example of the concept of the least super-harmonic majorant,
g%, and its role in the determination of the continuation region, D.
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Example 4.3.1 (@ksendal (@Qksendal 1998) page. 206) Let X, = B,
be Brownian motion in R® and let the reward function be

_ el forful =1 3
g(x)—{l Jor x| <1 3 ¢ ER

Then g is super-harmonic in R3, so g* = g everywhere and the best policy is
to stop immediately, no matter where the starting point is.

This example illustrates the principle that if the reward function itself
is super-harmonic, then it is always optimal to stop immediately. This is
because each point in the function does escape the continuation region, or at
least lies on its boundary. If the next step in the diffusion is a negative step
(that is, the process dips slightly), then a new continuation region is set and
again, each point lies on its boundary.

Construction of the Least Super-harmonic Majorant

Earlier in the chapter, the reader was asked to suspend belief for a moment
and to assume that the least super-harmonic majorant of the reward function
could be readily found. If we assumed this, then understanding the method
of solution for the optimal stopping problem became easier. Now that the
method of solution is understood, it is time to explore the construction of
the least super-harmonic majorant.

The method of construction presented by Oksendal (Oksendal 1998) is
an iterative procedure, starting with the reward function g.

Theorem 4.3.3 (Construction of the Least Super-harmonic Majorant)
Let hg = g, where g is the reward function, be a non-negative continuous
function of R™ and define inductively

hp(x) =supE* [h,—1(Xy)]; n=1,2,... (4.41)
£>0

Then h, T g, where g is the least super-harmonic majorant.

This is not a simple task. The authors have had difficulty finding a simple
example by which to demonstrate this method. We will see later that it can
be done reasonably using numerical methods.
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4.3.2 Approximate Solution Using Characteristic Op-
erators

While solution using first principles tries to define a continuation region by
finding the least super-harmonic majorant, this method tries to approximate
the continuation directly using characteristic operators. If we can find the
continuation region directly, we can eliminate the need to find the least super-
harmonic majorant.

Now the definition of our continuation region D,

{r:g(z) <g"(2)},

where g*(z) = E* [¢(X,~)], can be rewritten as

{2 E" [g(X)] — g(x) > 0}.

We can use a similar argument to that used for Corollary 4.2.1 (but consid-
ering only stopping times) to intuitively show Lemma 4.3.1 below.

Lemma 4.3.1 Let A be the characteristic operator of X;. Assume g € C*(R™).
Define

U={x;Ag(z) > 0}. (4.42)
Then, with D as before,
UcCD. (4.43)

This observation has two implications. The first is that it is never optimal
to stop the process before it exits from U. So if U = D (for example if
U = R™, then U = D), we have another tool for calculating our continuation
region. But if U # D (the usual case), then it is optimal to proceed beyond
U before stopping.

Example 4.3.2 (Stock Selling Problem) The characteristic operator of
the process Yy = (s + t, X;) where X, is geometric Brownian motion is given
by

of 0

1 0?
Af(s,x) = 3 +rxa—£ + §a2x26—a£; f € C*(R™).
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So for g(s,z) = e P (x —a), Ag(s,x) is given by

Ag(s,x) = —pe”(x—a)+rze ?
= e ”((r—p)z + pa).

and solving Ag(z) > 0 gives

x<% ifr<p,

4.44
TERXRL ifr>p. ( )

Forr > p, this means that U is defined as
U={(s,x) : Ag(s,z) > 0} = {R xRy},
and as U C D, then the continuation region D must be
D={RxR,}.

Because the continuation region is infinite, the stock price process will never
leave, so an optimal stopping time does not exist. That is, if r > p we never
sell our stock! This is hardly surprising when we realise that v > p means
that that the average rate of return of the stock process is greater than the
riskless rate of return.

While this example may seem as if it is proving the obvious, it does illus-
trate an important feature of using characteristic operators - that sometimes
it is simple to show that U is unbounded, so D is unbounded and thus no
optimal stopping time will exist.

In the above example, for r < p, D is defined for some region where the
least super-harmonic majorant is greater than » = —*2-. This can be done
using characteristic operators, but is reasonably difficult. The next section

shows a much easier way of doing the same thing.

4.3.3 Solution Using Variational Inequalities

Once we have determined the conditions for which a stopping time exists
(see the previous section), we now look for a simple method by which we
can determine the continuation region, D, precisely. This can be done using
variational inequalities.

This theorem is given for a time inhomogeneous problem. For a time
homogeneous problem, we make the usual adjustments and the theorem still
holds.
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Theorem 4.3.4 (Variational Inequalities for Optimal Stopping ) Suppose
we can find a function ¢ :'V — R, where V' is a closed set, such that

1. ¢ is continuous on the boundary of V', and continuously differentiable
on the remainder of V,

2. ¢ > g onV and ¢ = g on the boundary of V, where g is the reward
function,

3. Ap =0 on D, where D is defined as
D={zeV:g()>gr)}.

and A is the characteristic operator as before,

4. ¢(x) is sufficiently ‘nice’ in other ways,

5. Tp is the time of the first exit from D.

Then

o(y) =supE [g(Y;)]; yeV (4.45)

<T

and

*

T = 1TD
is an optimal stopping time for this problem.

The proof for this theorem is quite lengthy, so it will not be given here,
but it can be found in Qksendal (Dksendal 1998).

Although this theorem seems a little daunting, it gives us a four step
program for solution success!
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Step 1. Using characteristic operators as in section 4.3.2 to determine the
constraints on when an optimal stopping time exists
Step 2. Assume that the continuation region D, is of the form

D ={(s,z) : 0 <x < xzp}, for some constant z,, which is to be found
Step 3. Find ¢(s, z), the bounded solution of the free boundary problem

Ao = 0, 0 <z <
¢(s,m0) = g(s,70).

Step 4. Find the characterisation of the continuation region, xy by solving

¢ (s,r) =g'(s,x) atx=um (4.46)

We can illustrate this method by solving the selling stock problem.

Example 4.3.3 (Selling Stock cont’) Given the stock price process fol-
lows geometric Brownian motion,

dXt = TXtdt + OZXtth,

where 1 is the underlying trend of the stock and « is the variance term, and
also given the reward function,

g(t, Xy) = e (X, — a),

where p is the riskless rate of interest and a is a some constant representing
transaction costs.

Step 1. In section 4.53.2, we showed that this problem does not have an
optimal stopping time unless r < p.

Step 2. We assume the continuation region is time invariant, that is the
continuation region has the form

D={(s,2):0<z<ump},
Step 3. We find a bounded solution to the free boundary problem

Ap = 0
d)(S,.’EO) = 9(8,1'0)-
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That s, we look for a solution of

9 09 1, 0% _
s + I + ST gy = 0 (4.47)
(s, o) = g(s, ). (4.48)

We can solve this problem using separation of variables. If we assume
o(s,x) is of the form ¢(s,x) = e P*Y(x), then equation (4.48) becomes

_ 0% 06 1, ,0%
0 = 88+rx8x+2ax8x2

= —pe PY(x) + Txe”sw'(x)%o?ﬁepsw"(x)
= —pb(x) + oy () g0 e ()
and so we can reduce the PDE problem to a free boundary ODE problem,
—p(z) +r:vw'(x)%a2x21/)"(x) =0 (4.49)
P(zg) = xo—a. (4.50)
The general solution to this ODE is
() = Cra” + Cox™?,

where C, Cy are arbitrary constants and ~;, ©+ = 1,2 are the solution to the
characteristic equation

L,

0 = jay(y=1)+ry—p
1 1
= 50"+ (r— 507 —p.

That is,

1
ri\/(r—§a2)2+2pa2], i=1,2.

M= 5T a”?
And we note that 7, < 0 < 4.
Now since 1(x) is bounded as x — 0 we must have Cy = 0 and the
boundary requirement ¥ (xy) = xo — a gives C1 = x4 (g — a). Thus the
bounded solution ¢(s,x) of (4.48) is

(s, ) = e (20 — a) <£>7 . 0<z < (4.51)

Zo

90



Step 4. We find zy by solving
¢'(s,2) = g'(s,2)

that is i (vo —a)zyt = 1.
Solving this gives us
am
Ty — .
m—1

And so for r < p, our continuation region D is

D:{(s,x):0<x< o },

1 —1
and our optimal stopping time is the time that the stock price first exits this

continuation region. That is, we sell out stock the first time the stock value

reaches % in value.

If we take look at a simulation of the selling stock problem for r» < p, we
can gain a better appreciation for this result.
Suppose the stock price process follows the SDE

dX; = 0.07X,dt 4+ 0.12X,dW,

and we have a reward function

9(§,5) = e (€= 5),

where the transaction cost is $5. Then we obtain 7; = 1.375 and thus
Tmar = $18.32. If we plot the boundary of the continuation region and
overlay a simulation of the stock price, as in Figure 4.3, then we can see why
selling the stock at this price does return the optimal reward (the bottom
line is the reward corresponding to the stock price).

If we then contrast this by looking at the same style of plot for the r > p
case (see Figure 4.4), we can see that we should never sell our stock - as the
reward function continues increasing.

4.4 Numerical Implementation

As it stands we have two methods for solving the optimal stopping problem,
one using first principles and another using variational inequalities. Ana-
lytically we found that variational inequalities provided a straight forward
method of solving the optimal stopping stopping problem whereas first princi-
ples, whilst making fewer assumptions, proved to be a difficult skill to master.
In this section we examine the feasibility of numerically implementing both
of these methods.
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Plot of Stock Price Simulation and Reward vs Time
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Figure 4.3: A simulation of the stock process shown against the continuation
region using 100 time steps.
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Figure 4.4: A simulation of the stock process shown against the continuation
Region (for r > p case using 100 time steps.)
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4.4.1 First Principles

We saw in Theorem 4.3.3 that we could construct the least super-harmonic
majorant iteratively by defining hyo(x) = g¢(z), where g(x) is the reward
function, and

hy(z) = supE” [h,—1(Xy)]; n=1,2,... (4.52)
£>0

then h, T g, where ¢ is the least super-harmonic majorant.

We also noted that, analytically, this was not a trivial task. We can
however, attempt to emulate this numerically.

If we look closely at the iterative formula (4.52), we will note that h,, is
a function of x, that is each new iterate is a function of the starting value z.
This means that to simulate the iterative definition, we will need to discretize
the set of starting values (2’s), so that we will obtain a function over this set.

Once we have discretized the set of starting values, we will look at each
of these in turn to arrive at some value for that particular x;, so that we
obtain a set of points which we can interpolate h,, with. This concept is seen
in Figure 4.5.

T (03) —

Figure 4.5: An example of how the set of starting points, =, must be dis-
cretized so that we can generate h,(x).

Now for each of these starting points x;, we will need to find a numerical
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approximation for

hy(x;) = sup E[hy—1 (Xy)|z] - (4.53)

>0

We can approximate equation (4.53) with

hal;) = max (% > hnl(Xf)) , (4.54)

where X} is the i simulation of the diffusion process.

That is for each starting value z;, we simulate the diffusion process (con-
ditional on ;) a number of times and take the average of h, ;(X}) - this
gives an approximation for the expected value. We then take the maximum
value over time of these averages (for each starting value, x;). This maximum
will then form the point (z;, h,,(x;)). A graphical understanding of what we
are trying to achieve is given in Figure 4.6.
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Figure 4.6: An illustration of the steps involved in the BAD method.
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So our algorithm is

e Discretize 1 = {Tmin * Tstep * Trmaz
e Discretize t £ = {to : tsep: T'}
e Repeat
*for each z; in 7, repeat
-simulate a diffusion process through time
(using, say, the stochastic Euler method)
-substitute this process to give h,_;(X})
-update the mean + 3. nh,_i(X})
*until the mean converges
*find the maximum value over time of the means
*set hy, (1) = mazihy_1 (XP)
e until |h,(z) — h, 1(z)| <€

Working matlab code that implements this algorithm can be found in the
appendix.

Results

This algorithm was implemented on the stochastic logistic equation,

This problem was used because it is a familiar problem. The deterministic
version of this equation is a popular model for population studies. The solu-
tion to the deterministic logistic equation has a stable steady state solution,
as seen in Figure 4.7.

So we were interested in observing if adding a noise term changed this
solution dramatically.

When we implemented this as yet unnamed algorithm - let us call it the
Burrage-Alcock-Denman or BAD method - on the stochastic logistic equa-
tion, we obtained the plot in Figure 4.8.

So we see that a steady state has evolved, and a least super-harmonic
majorant is forming. This plot does highlight a shortfall of the BAD method,
that while we can clearly see that the LSM is a straight line - the BAD
method’s solution will not quite get there (at least not for a long time).

If we assume that the BAD method eventually arrives at the horizontal
line y = 1 for our LSM, then we can observe a simulated stopping time in
Figure 4.9

When we implemented the BAD method to the selling stock problem
when we chose r > p, another shortcoming is highlighted. If we take our
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Xi

Figure 4.7: The stable solution to the deterministic logistic equation.

BAD Method Approximation of LSM for Stochastic Logistic Equation

Figure 4.8: The 6 iterations of the BAD method required to obtain the LSM.
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A Simulation of the Stochastic Logistic Process Against the LSM

0.6 v Ny .
.
0.4 N \ \/

0.2-\/

Figure 4.9: A simulation of the stochastic logistic equation (using a stepsize
of h = 0.5) compared to the LSM approximated in Figure 4.9.

set of initial values to be [0, 20] we obtain one LSM. If we use another set of
initial values, say [0, 40], we obtain a different LSM.

This happens because, as we saw in part 3, there is no least super-
harmonic majorant for this problem if » > p. Thus the continuation region
is infinite and so when we take a subset of the starting values, the LSM
obtained by the BAD method depends on z,,,;.

4.4.2 Variational Inequalities

For the problem of finding the optimal reward function, ¢*, using the varia-
tional inequalities it is not always possible to find an analytic solution. Recall
the problem is to find a solution to the free boundary problem

Ap(x) = 0
o(s,20) = g(s,20)
¢'(s,m0) = g¢'(s,20),

where A is the characteristic operator of X;. When an analytic solution is
very difficult to find, it is necessary to implement a numerical technique to
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approximate the solution. One such method method for solving the above
style of problem (PDE’s) numerically is the method of lines (MOL). However,
to use such a numerical method we need a set of initial values (both initial
value and initial derivative values). As yet we have not been able to determine
the set of initial conditions necessary to solve this problem numerically.

4.4.3 Further Research

We have introduced the BAD method for approximating the least super-
harmonic majorant, and implemented it on the stochastic logistic equation.
There are however, many questions which still need to answered. Some of
the more interesting questions about the BAD method are:

e As this algorithm resembles the Picard iteration for differential equations,
and seems to be some fixed point process, can we derive some results about
the speed of convergence? In our simple experiments, we noted that the num-
ber of iterations to convergence was far fewer in the cases when the ratio -,
where r and « are the drift and diffusion coefficients respectively, was large
and far more when this ratio was small. There may be some relationship to
‘stiff” ordinary differential equations and their respective convergence results.

e Given that we can derive some convergence results, can this rate of conver-
gence be accelerated? Can we use some Newton-like acceleration or perhaps
use windowing principles?

Numerically implementing the result due to variational inequalities ap-
pears difficult at this stage due to the lack of initial conditions, but there
may be some windows of research opportunity. We might be able to either
guess the set of initial conditions and check the validity of the solutions, or
to further delve into undertanding the problem and try to derive the correct
set of initial conditions.

These are just some of the many questions that need to be answered and
certainly warrant future research efforts.
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Chapter 5

Stochastic Control

5.1 Deterministic Control

5.1.1 The Problem

In control theory, we are interested in governing the state of a system by
using controls. The most common problem is that of finding the control
which steers a system from a prescribed initial state to a final state so as to
optimise some performance index. We can best illustrate these concepts by
way of an example.

Example 5.1.1 (A National Economy) The economy of a typical cap-
atilistic nation is a system made up in part of the population (as consumers
and producers), companies, material goods, production facilities, cash and
credit available, and so on. The state of the system can be thought of as a
massive collection of data: wages and salaries, profits, losses, sales of goods
and services, investment, unemployment, welfare costs, the inflation rate et
cetera. The federal government can influence the state of this system by us-
ing several controls, notably the prime interest rate, tazxation policy, and
persuasion regarding wage and price settlements.

Most readers will be familiar with classical optimisation problems and
constrained optimisation problems. In optimal control problems, constraints
are induced by the dynamics of the system. So, an optimal control problem
is characterised by an optimisation problem subject to constraints expressed
as differential equations.

We will also be interested in the set of allowable controls (in the National
Economy example, we cannot allow the prime interest rate to be negative).
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We can state the deterministic optimal control problem more formally

Ty
min/ g(x,u,t)dt

uclU Ty

subject to

x = f(x,u)
x(0) = xp

where u are the controls, U is the set of valid controls and g(x,u,t) the
objective function (or performance measure).

5.1.2 Solution using Dynamic Programming
Dynamic Programming

One method of solving the deterministic optimal control problem is by utilis-
ing dynamic programming principles. Many readers will be aware of dynamic
programming, it is a computational technique often used to sequentially make
decisions which together define an optimal policy. A typical application of
dynamic programming is the routing problem.

Example 5.1.2 (The Routing Problem) Consider a motorist wishing to
travel from town A to town 1 in the shortest posible time, where the times
required to travel between towns is given in Figure 5.1.2.

We could find the optimal path by calculating the time required for every
possible path, but this would be very inefficient (especially as the number of
possible paths increases). We want to be able to identify a solution much
more efficiently.
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An optimal policy can be found by employing Bellman’s Principle of Opti-
mality.

Definition 5.1.1 (Bellman’s Principle of Optimality) An optimal pol-
icy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision.

So, in the routing problem, for A— B — E'— F — I to be the optimal path
from town A to town I, B— E — F — I must be the optimal path from town
B to town I (which requires F — F — I to be the optimal path from town F
to town I, etc.).

Bellman’s principle of optimality is the fundamental concept in dynamic
programming.

The Hamilton-Jacobi-Bellman Equation

We can use Bellman’s principle of optimaliy in the optimal control prob-
lem to derive a non-linear p.d.e. called the Hamilton-Jacobi-Bellman (HJB)
equation.

Recall that we are trying to control the system described by the state
equations

x(t) = a(x(t),u(t),t) (5.1)
to minimise the objective function
J = h(x(ty),t5) + /t ' g(x(7),u(r), 7)dr, (5.2)

where h and g are specified functions, ¢y and ¢; are fixed and 7 is a dummy
variable of integration.

To allow for a more general solution, we will let the initial time be a
parameter, ¢, rather than it being fixed at 5. So we will now look to minimise

J(x(), 8 Wicrei, (7)) = h(X(tf),tf)Jr/tfg(X(T),u(T),T)dT- (5:3)

The minimum performance measure, J*(x(t), t), over the set of valid con-
trols is then

J*(x(t),t) = min {/t ' g(x(7),u(r), 7)dr + h(x(ts), tf)} ) (5.4)

u(T)rtSTStf
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By subdividing the interval, we obtain

Jx(t),f) = min {/ttwgdw/ttf ng+h(x(tf),tf)}. (5.5)

u(7),t<r<ts +AL

The principle of optimality requires that

u(T)vtSTStf

JH(x(t),t) = min { /t t+Atng+J*(x(t+At),t+At)}. (5.6)

where J*(x(t + At), t + At) is the minimum cost for the process for the time
interval ¢t + At < 7 < t; with initial state x(¢ + At).

Assuming that the second partial derivatives of J* exist and are bounded,
we can expand J*(x(t+At), t+At) about the point (x(t+At),t) using Taylor
series to obtain

Jx(®),f) =  min { /1t t+Atng+J*(x(t),t)+{aajt*(x(t),t)] At

u(7),t<7T<t+At

+ [88{: (x(1), t)] ' x(t + At) — x(t)] + terms of higher order} .
(5.7)
Now for small At
JH(x(t),t) = 2}171)1 {g(x(t),u(t),t) At + J*(x(t),t) + J; (x(t),t) At
+ Je(x(1),t) [a(x(t), u(t), )] At + o(At)} .
(5.8)
As J* and J; do not depend on our controls, u(t), we can eliminate them

from the minimization. Then by dividing by At, we obtain

0= J;(x(t),t) + min {g(x(t), u(t), t) + Ji(x(t), t) [a(x(t), u(t), t)] + o(At) } .

u(t) At
(5.9)
Finally, we take the limit as At — 0, we have
0=J + mel[I]l {9(x,u) + Jia(x,u)}, (5.10)
TH(x(ty), tr) = h(x(tg), ts). (5.11)
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Equation (5.10) (along with its boundary condition (5.11)) is known as
the Hamilton-Jacobi-Bellman equation.

Example 5.1.3 (Optimal Investment and Consumption - Kohn (1999))
Suppose an investor can choose between two different investment opportuni-
ties:

1. a money market account, paying constant interest, r, and

2. a high-yield account, paying constant interest R > r.

The investor can move money between the two accounts, but in doing so
incurs a transaction fee proportional to the amount of money moved: the
transaction cost s pX, where X s the amount of money moved. Thus if X
dollars was transferred out of the money-market account, (1 — p) X would be
moved into the high-yield account.

Consumption is restricted to the removal of money from the money-market
account - there is no transaction fee associated with consumption. The in-
vestor can take short positions in either account, however we impose a ‘sol-
vency constraint’ to avoid the obvious arbitrage. That is, liquidation into
money market should not leave the investor in debt. When X 1is the money-
market position and Y s the high-yield position, the solvency condition says:

1. if Y >0 then X + (1 —p)Y >0,

2. if Y <0 then X +Y/(1 —p) > 0.

The investors goal is to mazimise the discounted value of his/her total
future consumption.

The state is an R?-values function of time, (X, Y;), where X, is the
money-market position at time t and Y; is the high-yield position at time t.
The solvency condition is a state constraint. The control is an R®-values
function of time, («(t), 5(t),v(t)), where «(t) is the rate at which money is
being moved from money-market to high-yield at time t, B(t) is the rate at
which money is being moved from high-yield to money-market at time t and
v(t) is the consumption rate at time t.

We also have

X
dd—t = 1 X—a+(1-pp—vy
dY
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with initial conditions X (0) = Xy and Y(0) = Yp. Using a power law to
calculate the future vaue of consumption, the investors goal is to mazimise

T
max/ e *yP(s)ds. (5.12)
0

a,Byy

So our problem is formulated as the solution to the optimal control problem:

Maximise

(o) = /0 e=5P(5)ds (5.13)

over controls restricted by a(t) € A, subject to

. | -1 1—p 1
o I PR g N T
The solution, J*(x,t), of (5.13) is the solution to the HIB eqn:

0 = J '+

(e[ o ][] =)

The HJB equation clearly serves as a necessary condition for optimality; that
is the minimum objective function value J*(x(¢;), ) must satisfy (5.10).

Tt is also true that if there is a objective function value .J((x(ts),s) that
satisfies (5.10), then .J is the minimum objective function value, that is

max {657”(5) +

~

J((x(tf),ty) = J(x(tf), ).

So the HJB equation also serves as a sufficient condition for optimality.

However, while the HJB equation serves as both necessary and sufficient
condition for an optimal performance measure, it is usually quite difficult
to solve analytically and so numerical techniques are often used to find its
solution.
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5.2 Stochastic Control

5.2.1 Restatement of the Problem

In the previous section, we derived the HJB equation for the deterministic
optimal control problem, where the state of the system was defined by a set
of ODEs. Sometimes, the state of a system is more accurately described by
a set of stochastic differential equations (SDEs). This type of problem is
known as the stochastic optimal control problem.

Given a probability space (£, F, P) we wish to control the system de-
scribed by

dx(t) = a(x(t),u(t))dt + b(x(t), u(t))dBy, (5.14)
so as to minimise the objective function

J = minkE, {/ttf a(x(t), u(t),t)dT} , (5.15)

uelU

where a(x(t),u(t)) is the drift coefficient of the SDE (5.14) and b(x(t), u(t))
is its volatility coefficient. The Weiner process B; can also be replaced with
another stochastic process such as the Poisson process.

We note that, as with all SDEs, the control variable u must satisfy some
additional properties for it to be admissible. u(t) is said to be admissible if

u(t) € L%(0,T),

]E/OT u(t)2ds < oo} C (5.16)

That is, u(t) is admissible if it is Lesbesgue square integrable on the filtration
F; of states of the system.

where L%(0,T) := {u(t)

5.2.2 Analytic Methods of Solution for the Stochastic
Case

If we follow the same method as in the deterministic case, we may be able
to obtain a meaningful result.

uclU

t+At tf
= mink, {/ ng}+minEt+At{/ ng}
uelU t uelU AL

t+At
= minkE, {/ ng}+J*(X(t+At),t+At). (5.17)
t

uclU

Jx(£),t) = minE, {/ttfg(x(t),u(t),t)dT}
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At this point in the deterministic derivation of the HJB equation, we
expanded J*(x(t),t) using a Taylor series. When we examine any Taylor
series expansion we usually wish to include terms which are meaningful and
ignore terms which will be negligible. Thus, in the deterministic case (if we
will eventually use limits) we include first order terms such as At and ignore
higher order terms such as (At)? (if At is very small, (A#)? will be negligible).

However when our terms include stochastic process, we cannot simply
ignore second order terms. Intuitively, the variance of any stochastic process
is a second order term and by ignoring it we are enforcing the variance to be

zero - thus returning the process to a deterministic setting.
So

* . aJ" oJ* 102"
J(x(t+ At), t + At) = J(x(t),t) + o~ Ax + o At+§ -
2J* 1 2,]* )

8x8tAXAt++§ Y (At)? + o(At)

(Ax)”

+

Recalling that
Ax = a(x(t), u(t))At + b(x(t), u(t))AB; + o(At),
and that we treat
(At)? =0, AtAB; =0 and (AB)? = At,

then (5.17) becomes

F(x(0).) = minE, {/tt+ g dr 4 (x(t), )

+ [Jx + J5] la(x, u) At + b(x, u)AB,] + J; At
1
+§J;x [a(x, u) At + b(x, u)AB,]* + O(At)}
t+AL
= minE{/ g dr + J(x(t),t)
uclU "
1
+ {J;a(x, u) +J; + 5t JE b (%, u)] At
+J:b(x,u)AB; + O(At)}.
(5.18)
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Now as E(AB;) =0

J(x(t),t) = min [Et { /1t T ().

uclU

1
+ <J;a(x, u) +J; + 5t JE b (x, u)) At}

E(o(At))].

If we now take the expectation operator inside the brackets, divide by At
and take the limit as At — 0, we obtain the stochastic HJB equation:

1
0=J + mel[r]l {g(x, u) + Jia(x,u) + §J;§xb2(x, u)} : (5.19)

The stochastic HJB equation is simply the deterministic HJB equation
with a J, term added.

The astute reader may also be able to recognise another familiar construct
in Equation (5.19), the differential generator A. Recall from Chapter 4, the
diffusion generator for the It6 diffusion given by

dXt = a(t, Xt)dt + b(t, Xt)dBt,

is given by

2

0°f
T
Af(t, x) +§ + E (bb") ”a o f € C*(R).

However, when the objective function involves an integral, the characteristic
operator becomes (see Oksendal (1998), page 212),
AJ(t,x) = Af(t,z) + g(x,u).

So Equation (5.19) becomes

min {AJ(t,x)} =0, (5.20)

uclU

with the boundary conditions being determined by the individual problem.

Using (5.20) instead of (5.19) gives a method for solving optimal stochas-
tic control problems where the state equations are described by an It6 diffu-
sion.
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5.2.3 Example

Example 5.2.1 (Optimal Porftolio Selection and Consumption) From
Kohn (1999). This is the simplest of a class of problems solved by Robert Mer-
ton in his paper ”Optimal consumption and portfolio rules in a continuous-
time model”, Merton (1971). Consider a world with one risky asset and one
risk-free asset. The risk free asset grows at a constant risk-free rate r, that
is its price per share satisfies dpy/dt = pyr. The risky asset executes a ge-
ometric Brownian motion with constant drift > r and volatility o, that is
its price per share solves the SDE dps = pupodt + opodW .

The control problem is this: an investor starts with initial wealth x at
time t. His control variables are

ai(s) = fraction of total wealth invested in risky asset at time s

as(s) = rate of consumption at time s.

It is natural to restrict these controls by 0 < «aq(s) < 1 and as(s) > 0.
We ignore transaction costs. The state is the investors total wealth y as a
function of time; it solves

dy = (1 — ay)yrdt + ay(udt + odW) — audt

as long as y(s) > 0. We denote by 7 the first time y(s) = 0 if this occurs
before time T, or T =T (a fized time horizon) otherwise. The investor seeks
to mazximise the discounted total utility of his consumption. We therefore
consider the value function

u(x,t) = max Eyq /tT e P hlas(s)]ds

Q1,02

where h(-) is a specified utility function (monotone increasing and concave,
with h(0) = 0). We shall specialize below to h(az) = ag with 0 < v < 1.
By (5.20), the HJB equation is then

1,02

1
max {ut + e Ph(az) + [(1 — aq)zr + arzp — ao] ugy + §x2af02um} = 0.
(5.21)

Solution - Let us assume that u, > 0 and u,, < 0(reflecting the concavity
of the utility function). Then optimal oy (ignoring the constraint 0 < a; < 1)
S

(1 = r)us

*
O[l —_— 2 9
O T Uy
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which is positive. We proceed, postponing till later the verification that aj <
1. The optimal ay satisfies

B (a) = etug;

we can be sure this o is positive by assuming that h'(0) = oo.
When h(as) = ag with 0 < v < 1 we can get an explicit solution. Indeed,
let us look for a solution of the form

u(z,t) = g(t)z".

The associated af and o are

ot = (:U’ - T)
(1)
CY; — [eptg(t)] 1/(v=1) T

We assume henceforth that u—r < o*(1—7) so that of < 1. Substituting
these values into the HJB equation gives, after some analysis,

dg _
g+ (1=7)g(e”g) /070 =0

where

(1 —r)*

V:T+m.

We must solve this with g(T) = 0. The substitution f = (e’'q)"/O~V leads
to a linear differential equation for f(s). It is readily solved to give

v

1—
g(t) = et { 1-7 (1 - e("”ﬂ)(f”)] ,

p—vy

which is only meaningful if p > v7y.
Thus we have solved the HJB equation.

5.3 Numerical Implementation

One method, developed by Harold Kushner, to numerically solve the SOC
problem uses a discrete-time, discrete-state Markov chain to simulate the
diffusion process. First we choose a Markov Chain whose local properties
closely resemble those of the diffusion process we are trying to control, then
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by forming a discrete approximation to the objective function we can develop
a discretization of the HJB equation to solve numerically.

While it is important for the Markov chain to be locally consistent with
the diffusion process, any numerical method we use must also converge as
the discretization grid becomes finer. The method presented in the next few
sections has been shown to converge in such a manner, however the proofs
will not be given here - they can be found in Kushner & Dupuis (1992).

Local Consistency

Let " n < oo denote a controlled discrete parameter Markov chain on a dis-
crete state space Sj, € R™ with transition probabilities denoted by p”(z, y|u).
Here h is used to denote the stepsize although another discretization param-
eter, At, will also be needed. The second discretization parameter will need
to be related to the first by

(h—0) = supAt, — 0.

The control variable is denoted by u and the control action is denoted by «.
We can define the change in state of the Markov chain as A" := " | — ¥l
As we will be using a discrete-time Markov chain to approximate the
diffusion process, the Markov chain properties must be locally consistent with
the properties of the diffusion process, that is that the mean and variance of
the chain are the same as the mean and variance of the diffusion process

dX; = a(t, X;)dt + b(t, X;)dB,.
That is
E(AW") = a(t, X;)At;, + o(h),
and
E[AU" — B(AV!)] [AW! — B(AUM)]" = b(t, X,)bT (1, X,) Aty + o(h).

For a control to be admissible under such an approximation, the Markov
property must hold for the chain, that is
P{\IJZJA = y|qj?7 U?,i < n} = ph(\IjZ7 y|u2)

The difficulty with developing such a Markov chain is in determining the
transition probabilities that ensure the local properties hold. However, this
can be done using a finite difference approximation. While using finite difer-
ences is good for introducing the elementary concepts of numerical stochastic
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control, problem-specific alterations are often required and the reader is en-
couraged to investigate a good text (such as Kushner & Dupuis (1992)) for
more details.

Suppose we wish to control a one-dimensional diffusion defined by

dr = a(x,u)dt + b(x, w)dW,,

using a feedback control u(-) € U, so as to optimize the objective function

W(z,u) =E} [/UT k(z(s),u(x(s)))ds + g(z(1))| . (5.22)

If W(-) is smooth enough then W (-) satisfies It6’s Lemma:

LW,(x)+k(z) = 0, z€(0,B), (5.23)
W(0)=W(B) = 0,

where £ is the differential operator as defined in Chapter 4.

The transition probabilities can be obtained by trying to solve equation
(5.23) numerically using finite differences. The finite difference aproximation
for the second derivative is, as seen before,

fl@+h)+ flz—h) —2f(x)
h2

fox(7) = :
However, if the finite difference approximation is to have an interpretation in
terms of a Markov chain (ie the transition probabilities are all non-negative),
then the first derivative approximation must be

r+h)— f(z
where fT(z) = max[f(x),0], and f~(z) = min[—f(z),0] %
When both these terms are substituted into (5.23), we obtain (after sim-
plification)

o?(z)/2 + hb*(z)
o?(x) + hlb(z)|
hZ
o*(z) + hlb(z)|’
Tt is now more obvious that the optimal control would be the infimum over all admis-

sible controls of LJ =0
2Note that f*(z) + f=(z) = |f(2)|

o?(x)/2 + hb~ ()
o?(z) + hlb(z)|

Wh(r) = Wh(z + h) + Wh(z — h)

k() (5.24)

111



It is (5.24) that delivers the transition probabilities. By rewriting (5.24)

Wh(z) = p"(z,z +h)W" (@ + h) + p" (v, 2 — R)W"(x — h) + k(2) At"(2),
(5.25)

and setting p*(x,y) = 0 for y # x + h, we have determined a complete set
of transition probabilities which, it can be shown, give the approximating
Markov chain the ‘local consistency’ properties discussed above.

Objective Function

Once the approximating Markov chain is defined, an approximation for the
objective function can be derived. If (5.25) has a unique solution, then it is
the cost associated with the controlled chain, that is

Nj—1

Wz, u) =B | > k(Th)AL"(Th, u(Th))].

As already discussed, the optimal control is the control which optimises
the performance measure. In the discrete approximation, following (5.20),

Vi(z) = min W"(z,u)

act
N, -1
_ AL (WP (TP
= glelbr}]E E k(U )AL (U, u(¥,))

= min
acU

> (@ yla) V() + k(z, o) At (z, a)] . (5.26)

Once the dynamic programming equation, (5.26), is solved, the SOC
problem is solved.

Solving the Dynamic Programming Equation

Once the transition probabilities have been derived and the dynamic pro-
gramming equations have been written, the final step is to solve the DPEs.
That is, we need a numerical procedure for solving (5.26), or in vector form

Whu) = R*u)W"(u)+ C"(u) (5.27)
vho= min [R )V () + O ()], (5.28)
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where R"(u) is a matrix of probabilities.

Two main methods exist for the solution of the DPEs. The first, called
‘approximation in policy space’, attempts to iteratively define the optimal
control policy.

Theorem 5.3.1 (Approximation in Policy Space) Assume that r(x,y|a)
and C(x,«) are continuous functions of a for each x and y in the state space
S. Also assume that there is at least one admissible feedback control ug(-)
such that R(ug) is a contraction, and the infima of the costs over all admis-
sible controls is bounded from below and that R(u) is a contraction for any
feedback control u(-) for which the associated cost is bounded.

Then there is a unique solution to (5.28), and it is the infimum of the
cost functions over all time independant feedback controls. Let uy(-) be an
admissible feesback control such that the cost W (ugy) is bounded. Forn > 1,
define the sequence of feedback controls u,(-) and costs W (uy,) recursively by
(5.27) together with the formula

unia(r) = axgmin | 37z, y10) W (y, wa) + C ()|
Yy

Then W (u,) — V.
Under the initial condition that, if the cost associated with the use of the
feedback controls u'(-),...,u™(:),... in sequence, is bounded, then

R(u")...R(u™) =0,
then V' is the infimum of the costs over all admissible control sequences.

The second method, called ‘approrimation in value space’, can be inter-
preted as a fixed point iteration method.

Theorem 5.3.2 (Approximation in Value Space - The Jacobi Iteration)
Let u(-) be an admissible feedback control such that R(u) is a contraction.
Then for any initial vector Wy, the sequence W, defined by

Wasi(z,u) =) r(z,ylu(@))Waly, w) + C(z, u(@))

converges to W (u), the unique solution to (5.27). Assume that similar con-
ditions to those in Theorem 5.3.1 hold. Then for any vector Vy, the sequence
recursively defined by

Vo1 = min [R(u)V, + C(u)] (5.29)

u(z)eU
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converges to V', the unique solution to (5.28). In detail, (5.29) is

Va1 = min Zr(x, yla)Vu(y) + C(z,a) |

acU
Y

Vi, is the minimal cost for an n — step problem with terminal cost vector V.

It must be pointed out that the ‘approzimation in policy space’ method
and the ‘approzimation in value space’ method can be combined in a ‘predictor-
corrector’ style. More details about combining these methods, as well as the
proofs and error bounds for Theorems 5.3.1 and 5.3.2 can be found in Kush-
ner & Dupuis (1992).
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Appendix A

Mathematical Preliminaries

A.1 Probability Theory

The purpose of this introductory chapter is to give a brief overview of the
theoretical background. To fully appreciate this report, the reader is advised
to persist with this chapter until it is fully understood. For readers who are
familiar with the measure theoretic presentation of probability, it is advised to
briefly peruse this chapter to become refamiliarised with the relevant topics.

A.1.1 Introductory Measure Theory

In a random experiment, the outcome is not known in advance. The set of
all possible outcomes is denoted by €2. An event, A, is any set of possible
outcomes - so that A is a subset of {2. Sometimes we will be interested in
when one of two possible events occurs (union) and other times we will be
interested in when both of these two possible events occur (intersection).

Sometimes it is useful to identify all the events of interest pertaining to
a particular random experiment. Thus, we usually denote by F the family
of all events of interest. This family, known as a o-algebra (pronounced
sigma algebra), has the following definition.

Definition A.1.1 A o-algebra over €2 is a collection of subsets of Q2 which
satisfies

e ()c F,

o if A€ F then A€ F, and

o if Ay, Ay,--- € F then ;2 Ai € F.

The pair (2, F) is known as a measurable space.

We need to introduce a definition for random processes through time.
This concept is embodied in filtrations.
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Definition A.1.2 A filtration (on (2, F)) is a family of sigma algebras
M= {Mf'} ., My CF such that

0§S<t:>M5CMt,
that is M, 1s increasing.

So for our purposes, we can think of a filtration as the ‘history’ of a process.
Further, if a function is ‘contained’ in the history up until time ¢, then the
function is said to be adapted to the filtration F;. For example the function
h(t,w) = Bt (w) is F-adapted, while h(t,w) = By (w) is not Fi-adapted.

Now, in order to assign probabilities, we wish to define a function P :
F — [0,1], such that P(A), A € F can be interpreted as ”the probability
that A occurs”. For such a concept to exist it must at least satisfy the
properties of probability that we are familiar with.

Definition A.1.3 A probability measure, P, on (Q,F) is a function P :
F — R satisfying

e P(A)>0if Aec F,

e P(U) =1, and

e P is countably additive.

The triple (2, F, P) is called a probability space.

A.1.2 Change of Measure

We cannot refer to random processes without referring to measure. It is in
fact slightly ambiguous to refer to a process without specifying a probability
measure for the process. We can intuitively think of a probability measure
as something that assigns relative likelihoods to the possible sample paths
that a process may take. A probability measure, P on (€2, X') is a mapping
of a sample space X into the interval [0, 1], i.e.

P:X —[0,1]
subject to
(a) P(A)>0,if A € X,
(b) P(2) =1,

(c) P is countably additive, i.e.
P (U AZ-> => P(4)
i=1 i=1
if Ay, Ay, --- € X and {4;}$°, is disjoint.
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Before we state the general Radon-Nikodym result, which is used in condi-
tional expectation and conditional probability, we first need to introduce the
definition of absolute continuity of measures.

Definition A.1.4 The probability measure Q s called absolutely continuous
with respect to P, defined as Q << P, if every event with zero probability
under P also has zero probability under Q.

Note that if Q << P and P << Q, that is QQ is absolutely continuous with
respect to P and P is absolutely continuous with respect to @, then P and Q
satisfy the definition of equivalent measures.

Theorem A.1.1 (Radon-Nikodym) Let Q << P, then there exists a ran-
dom wvariable A > 0 such that Ep(A) =1, and

Q) = [ Adp

for any measurable set A. A is P-a.s. unique. Note that the converse also

holds.

In other words, if there exists two measures, (Q and P such that Q is absolutely
continuous with respect to P and there exists a random variable A such that
the expected value under the measure P is one, then

Q4) = /A AdP.

To illustrate the ideas of a change of measure, we will given an example
from Mark Thompson’s MS479 lecture notes.

Example A.1.1 Let Q = {HH,HT,TH,TT}, be the set of coin toss se-
quences of length two. Let P correspond to the probability % for H and % for
T, and let Q correspond to the probability % for H and % for T. Then the
Radon-Nikodym derivative is

W9 9@y 9 @ 9 @ 9

In Chapter 2, we introduced a theorem due to Cameron, Martin and Gir-
sanov which gives us the conditions necessary for the new measure Q to be
a martingale measure and the form of the Radon-Nikodym derivative under
this change of measure.
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A.1.3 Expectation in a Measurable Space

Given a measure P as defined in section A.1.2 we can now define the expected
value of a random variable X under this measure. If [, |X[dP < oo, then

Eo(X) = /Q XdP (A1)

is called the expectation of X with respect to P. Throughout the rest of
this section, for notational convenience, we will use E(X) instead of Ep(X),
unless explicitly stated otherwise. We can think of the expected value of X
as the weighted average of the random variable X. If we have a function
g:R — R, then

E(g(X)) = / 4(X)dP. (A.2)

To conclude our very brief introduction to expectation in a measurable space,
we will briefly describe some of the basic properties of expectation.

(a) If X, Y are independent, E(XY') = E(X)E(Y).
(b) E(aX +bY) = aE(X) + bE(Y), if a,b € R.
(c) If X(w) > Y(w), Yw € Q, then E(X) > E(Y).

A.1.4 Martingales

We now introduce the reader to the class of random processes known as
martingales. Martingales are a broad class of random variables which rely
on very few, but very powerful assumptions.

Definition A.1.5 (A Martingale) Let F be a filtration of the probability
space (Q, F,P) and let Y be a sequence of random variables adapted to F.
We call the pair (Y, F) = {(Ys, Fn);n > 0} a martingale if, for alln >0

Ep|Y,| < oo, (A.3)

So a martingale is simply a random variable whose expected value in
the next step, given the history up to the current step, is the current value.
For example, if a stock price process is known to be a martingale then the
expected value of the price in the next time step, given the price history, is
just the current price of the stock.

This definition can be extended to allow for an inequality in equation
(A.4), giving the concepts of sub-martingale and super-martingale.
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Definition A.1.6 (Semi-Martingales) Let F be a filtration of the proba-
bility space (2, F, P) and let Y be a sequence of random variables adapted to
F. We call the the pair (Y, F) a sub-martingale if, for alln > 0,

Ep(Y,)) < oo (A.5)
EP(Yn—l—l | fn) 2 Yna (A6)

or a super-martingale if, for alln > 0,

Ep(Y,) < oo, (A.7)
EP(Yn+1 | fn) < Yn; (A8)
where Y* = max{0, Y}, and Y~ = —min{0, Y}.

Clearly for (Y,F) to be a martingale it must also be both a sub and
super-martingale. Also if (Y, F) is a sub-martingale, then (=Y, F) is a super-
martingale. This allows us to appreciate a famous result on the decomposi-
tion of any sub-martingale by Doob.

Theorem A.1.2 (Doob Decomposition Theorem) A sub-martingale
(Y, F) with finite mean may be expressed in the form

Y, =M, +S,, (A.9)

where (M, F) is a martingale, and (S, F) is an increasing predictable process.
This decomposition is unique.

If the stock price process that we are modelling is a martingale, then the
analysis becomes trivial. This analysis becomes trivial in the sense that if
we have a stock price model, S; and a model for the time value of money B;
and if the discounted stock price process B; 'S, is a martingale, then we can
apply the risk neutral valuation formula

Eq (Br'X)

to price relatively arbitrary claims with payoff X. However if the stock pro-
cess is not a martingale we might be able to change the probability measure
P, of the process so that it becomes a martingale. We will see in the next
section the conditions required to perform this change of measure.
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Appendix B
Markov Chains

The random walk and branching process are two simple examples of random
or stochastic processes. Typically a random process is a family of random
variables {Xy;¢ € T} which may be either a discrete-time, 7= {0,1,2,...},
or continuous-time, 7 = R or R*, process. Both the random walk and
branching process share an interesting property. That is, conditional upon
their current value, their future value does not depend upon their previous
values. In this section we will focus our attention on the general theory of
process with this property.

B.1 Basic description

Definition B.1.1 The process X is a Markov chain if it satisfies the Markov
condition.

P(Xn = l‘n|Xn—1 =Tp_1,---, X0 = l‘O) = P(Xn = l‘n|Xn—1 = -'L'n—l)
foralln > 1 and all xg,x1,...,x, € S.

The path that the process follows is described by its transition probabil-
ities P(X,4+1 = j|X,, = 7). We shall look at the case where the evolution of
the chain does not depend upon n.

Definition B.1.2 X s called homogeneous if
P(Xp = jlXn = i) = P(Xy = j|Xo = 1)

for alln,i,j.
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The transition matrix P = (p;;) is an |S| x |S| matrix of transition prob-
abilities

bij = P(Xn1 = j| Xy = 9).
Theorem B.1.1 P is a stochastic matriz, i.e.
(a) P has non-negative entries, p;j > 0

(b) P has row sums equal to one, >, pij = 1.

We can define the n-step transition matrix P, = (p;;(n)) as the matrix
of n-step transition probabilities

pij(n) = P(Xopyn = j|Xon = 0).
An important theorem is the Chapman-Kolmogorov equations which tell
us how the long term behaviour depends on the short term behaviour and

how X,, depends on the initial variable X.

Theorem B.1.2 (Chapman-Kolmogorov equations)

pzy m + 7"L szk pk]

Hence P,, ., = P, P, and so P, = P".
Proof:

pijm+n) = P(Xpn = jlXo=1)
= ZP min = J, X = k| X = i)

= ZP man = J|Xm =k, Xo = 1) P(X,, = k| Xy = i)
k
= ZP(Xm+n = j| X = k) P(X,n = k| Xy = 19)

- szk pk]
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B.2 Classification of states and chains

Definition B.2.1 State i is called persistent (or recurrent) if
P(X,, =i for somen > 1|X,=1i) = 1.

If this probability is strictly less than 1, state i is called transient.

Corollary B.2.1 (a) j is persistent if Y pjj(n) = oo, and if this holds
then Y pij(n) = oo for all i such that there is a positive probability
that the chain ever visits state j starting from 1.

(b) j is transient if Y, pj;(n) < oo, and if this holds then ) pi;(n) < oo
for all 1.

A result that follows immediately from the above corollary is that if j is
transient then p;;(n) — 0 as n — oo for all 7.

From the above it is clear that each state is either persistent or transient
and the number of times, N(i), which the chain visits its starting point i
satisfies

1, if 7 is persistent

P(N(i) = o0) = {

0, if ¢ is transient.
Let
T; =min{n > 1; X, = j}

be the time of the first visit to j, with the convention that T; = oo if this
visit never occurs. Then P(T; = oo|X, = i) > 0 if and only if ¢ is transient,
and E(T;| X, = i) = oc.

Definition B.2.2 The persistent state © is called
(a) null if p; = oo
(b) positive (or non-null) if p; < oo.

There is a simple criterion for nullity in terms of the transition probabil-
ities.

Theorem B.2.1 A persistent state is null if and only if p;;(n) — 0 asn — 0.
If this holds, then p;i(n) — 0 for all j.

We will also give the definitions of the period of a state and ergodicity.
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Definition B.2.3 The period d(i) of a state i is defined by
d(i) = ged{n; pi;(n) > 0}.

We call i periodic if d(i) > 0 and aperiodic if d(i) = 1. That is to say,
pii(n) = 0 unless n is a multiple of d(i).

Definition B.2.4 A state is called ergodic if it is positive recurrent and
aperiodic.

We will now consider the way in which the states of a Markov chain are
related to each other.

Definition B.2.5 For a Markov chain X

(a) i communicates with j, i — j, if the chain may ever visit state j with
positive probability, starting from i. That is, p;; > 0 for some n > 0.

(b) i and j intercommunicate if i — j and j — i, written as i <> j.

The state space S may be partitioned into the equivalence classes of <.
Within each class, all states are of the same type.

Theorem B.2.2 Ifi <+ j
(a) i and j have the same period
(b) i is transient iff j is transient

(c) i is null persistent iff j is null persistent.

B.3 Stationary distributions

Definition B.3.1 The vector m is called a stationary distribution of the
chain if T has entries (m;;j € S) such that

(a) mj >0 for all j, and 3, m; =1
(b) m =P, which is to say that m; =Y, mp;j for all j.

Theorem B.3.1 An irreducible chain has a stationary distribution m if and
only if all the states are positive recurrent. If so, w is the unique stationary
distribution and is given by m; = u;l for each i € S where p; is the mean
recurrence time of i.
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Theorem B.3.2 For an irreducible aperiodic chain, we have that
1
pi(n) = —
j 0

as n — oo for all v and j.

Theorem B.3.3 For any aperiodic state j of a Markov chain,

1
pys(n) = —
27 ,U’j

as n — 0o. Furthermore, if © is any other state then
() > —

Dij(n — Jij

j ;!

as n — oQ.
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Appendix C
Numerical Methods for PDEs

Partial differential equations (PDEs) form the basis of mathematical models
for many real world phenomena and have more recently been applied to
economics and finance. Often it is necessary to approximate the solution of
these PDEs numerically and in this chapter we shall be concerned with the
numerical solution of parabolic PDEs. The problem of solving a hyperbolic
or eliptic PDE is much more difficult and numerical methods to solve them
can be found in (Morton & Mayers 1994) and (Ames 1992)

C.1 Classification of Equations

Consider the linear second-order PDE of the form

0%z 0%z 0*z 0z 0z

where the functions a, ..., ¢ depend only on x and y. It turns out that the
terms involving the second order derivatives of z are of greatest significance.
If we look at the discriminant of the above equation, we say that the equation
is hyperbolic if b> — 4ac > 0, elliptic if b> — 4ac < 0 and parabolic when
b2 — 4ac = 0.

C.2 Method of Lines

The method of lines (MOL) reduces a partial differential equation into a
system of ordinary differential equations by descretizing in the space-like in-
dependent variable. If the original PDE is an initial value problem (IVP), the
resulting system of ODEs forms an [VP. The same is also true for boundary
value problems.
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Consider the uniform grid z; = ih, h = 1/N where we want to compute
our approximation wu;(t) to z(z;,t). Recalling elementary difference approxi-
mations we can approximate the derivatives of z by

2o(®i1/2,t) = (2(,t) — 2(xi1,t))/h, (C.2)
Zoo(Ti,1) R (20(Tig1/2,t) — 2o(Tiz1)2, 1)) /P
~  (2(zigr,t) — 22(w,t) + 2(m 1, 1)) /B2 (C.3)

Example C.2.1 Consider

Up + Uy = Uy, O0< <1, 0<{, (CA4)
with boundary conditions

u(0,t) =u(l,t) =0, wu(z,0)=sinmz. (C.5)

Using our central difference scheme, our approzimation u;(t) should satisfy

dus(t) — —2“—,1<ui+1<t> —ui () +

1 .

p(uiﬂ(t) —2u;(t) +uma(t), 1=1,...,N—1,
u;(0) = sinmih, i=1,...,N—1,

up(t) = upn(t) =0.

The solution to the above problem is shown in Figure C.1.

The Matlab code to solve the above problem is

N = 100;
x = (1:N-1)’/N;
h = 1/N;

V = sin(pix*x);

t =0:0.01:1;

[ts,us] = odelbs(’F’,t,V);
surf(x,ts,us);

xlabel(’x’);

ylabel(’time’)

title(’u_t + uwu_x = u_{xx}’);

where the equation to be solved is given by
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function du = F(t,u)

N = length(u) + 1;
iN = (2:N)’;
h = 1/N;

uu = [0; u; 0];
du = —uu(iN)/(2*h) .*(uu(iN+1) —-uu(iN-1)) +
(uu(iN+1)-2*uu(iN)+uu(iN-1))/h"2;

u+uu =u
t X xx

i
il
o

y
it
55,

)

time

Figure C.1: Plot of the numerical solution of u; + uu, = u,, with N = 100
and ¢ € [0,1].
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Appendix D

Source Code

The source code for the fixed stepsize Euler-Maruyama method for Geometric
Brownian motion:

function y=euler(pars)

b

% This function numerically simulates a strong solution
% of the stochastic differential equation using the Euler method
b

T dY_{t} = aY_{t}dt + bY_{t}dw_{t}

b

% a and b must be scalars.

% Use the function call

b

b y=euler (pars)

b

/» where pars is a struct including

h st = initial value

% time = the time discretization

pA brp = the Brownian increment path
pA pa = other parameters, including
h a = drift coefficient

h b = diffusion coefficient

b

format long
yO=pars.st;
t=pars.time;
brp=pars.brp;
other=pars.pa;
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a=other(1);
b=other(2);

n=length(t);
h=(t(n)-t(1))/(n-1);
y=zeros (size(t));
y(1)=y0;

yp=y0;

i generate the full path

for count = 2:n
y(count)= yp + yp*axh + yp*b*brp(count);
yp=y (count) ;

end

The source code for the fixed stepsize Milstein method for GBM:

function y=milstein(pars)

T

% This function numerically simulates a strong solution
% of the stochastic differential equation using the Milsein method
b

T dy_{t} = ay_{t}dt + bY_{t}dw_{t}

T

% a and b must be scalars (so b’(X,t) = b).

% Use the function call

b

b y=milstein(pars)

T

% where pars is a struct including

b st = initial value

h pa = vector containing

h a = drift coefficient

b b = diffusion coefficient
h brp = brownian path

h time = time vector

h
format long

yO=pars.st;
t=pars.time;
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brp=pars.brp;
other=pars.pa;
a=other(1);
b=other(2);

n=length(t);
h=(t(n)-t(1))/(n-1);
y=zeros (size(t));

y (1)=y0;

yp=yO0;

% generate the full path
for count = 2:n
y(count)= yp + a*xyp*h + bxyp*brp(count) + ...
0.5xb*b*yp* ((brp(count)) "2 - h);
yp=y (count) ;
end

The source code for the fixed stepsize Balanced method for GBM:

function y=bal(par)

b

% This function numerically simulates a strong solution

% of the stochastic differential equation using the balanced method
b

T dY_{t} = ay_{t}dt + bY_{t}dwW_{t}.

b

% a and b must be scalars.

% Use the function call

h

b y=bal (par)

% where pars is a struct including

T st = initial value

h pa = vector containing

b a = drift coefficient

b b = diffusion coefficient
h brp = brownian path

b time = time vector

h

format long
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yO=par.st;
t=par.time;
brp=par.brp;
param=par.pa;
a=param(1);
b=param(2) ;

n=length(t);
h=(t(n)-t(1))/(n-1);
y=zeros (size(t));
y(1)=y0;

yp=yO0;

% generate the full path
for count = 2:n
t1=h*count;
y (count)=yp* (1+(2*axh) + (b* (brp (count) +abs (brp(count)))))
/ (1+(axh)+(b*abs (brp(count)))) ;
yp=y (count) ;
end
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