Black-Derman-Toy: a simple implementation in C

Eric Bouyé

Autumn 1998
Financial Econometrics Research Center
City University Business School
http://www.city.ac.uk/cubs/ferc/eric
e.bouye@city.ac.uk
1 Black-Derman-Toy

1.1 The Model

In the Black-Derman-Toy model, the tree structure is such that the probability of an upward or downward change in the interest rate is the same (0.5).

\[
\begin{align*}
r_j^{(i+1)}(\tau) & \quad \text{with probability } 0.5 \\
0.5 & \quad r_j^{(i)}(\tau) \\
0.5 & \quad r_j^{(i+1)}(\tau)
\end{align*}
\]

Condition 1 The binomial tree must reflect the current term structure. Then the following holds:

\[
\left\{ \begin{array}{ll}
g(r_j^{(i)}(1)) = & \frac{1}{1+r_j^{(i)}(1)} \left[g(r_j^{(i+1)}(1)) + g(r_j^{(i+1)}(1)) \right] * 0.5 & \text{if } t = \tau \\
& \frac{1}{1+r_0^{(0)}(\tau)} = g(r_0^{(0)}(1)) & \text{otherwise}
\end{array} \right.
\]

(1)

However, this condition is not sufficient to have a closed-form solution. **Benninga and Wiener [1997]** introduce a relationship such that we can obtain a closed-form solution to this non-linear problem.

Condition 2 There exists a relationship between the interest rates of the same period \(t \).

\[
r_j^{(i)}(1) = r_0^{(i)}(1) \exp(2j\sigma_t) \quad \text{for } j = 1, ..., t.
\]

(2)
2 The program

There are two problems to solve. First, the recursive function \(\varphi(r_j^{(i)}(1)) \) corresponding to the first expression of equation (2.1) has to be implemented. The function builds all possible ways in the tree. It is the main difference with Ho-Lee model. Second, a bisection algorithm finds a root for the non-linear equation in (2.1) taking into account volatilities from (2.2). This choice is motivated for practical purpose and simplicity. Indeed, it would have been possible to use Brent or Newton-Raphson algorithms to increase the rate of convergence.

Algorithm 3 \(\text{treebuild}(t,j) \) {
if \(t < n \) {
\(r_j^{(1)}(1) \leftarrow r_0^{(1)}(1) \exp(2j\sigma_t) \)
\(\text{return } \frac{1}{1 + r_j^{(1)}(1)} \text{treebuild}(t+1,j+1) + \text{treebuild}(t+1,j) \)
\}
\else \text{return } 1.0 \}
\}

\text{treebuild}(0,0)^*(0.5)^n

The C code for the Black-Derman-Toy model is:

```c
#include <stdio.h>
#include <math.h>

#define NTAU 5
#define DIMTREE 15

Simple bisection algorithm
```
double bisection(double (*f)(double[], double[], int, double),
 double a,
 double b,
 double rmin[],
 double vol[],
 int n,
 double R)
{

 The searched element of the array rmin is allocated with the bounds

double fa,fb,c,t,s; side;
 rmin[n-1] = b;
 fb = (*f)(rmin,vol,n,R);
 rmin[n-1] = a;
 fa = (*f)(rmin,vol,n,R);
 if (fb*fa > 0) {
 printf("Change DELTA value for convergence\n");
 return 0.0;
 }
 else {
 if (fb >= fa) side = 1.0; else side = 0.0;
 while (fabs(b-a)>e-8) {
 c = (a+b)/2.0;
 rmin[n-1] = c;
 if ((*f)(rmin,vol,n,R) > 0) t = 1; else t = 0;
 a = side*(t*a + (1-t)*c) + (1-side)*(t*c + (1-t)*a);
 b = side*(t*c + (1-t)*b) + (1-side)*(t*b + (1-t)*c);
 }
 c = (a+b)/2.0;
 return c;
 }

Equation (2.2)

double BenningaWiener(int t, int j, double rmin[], double vol[])
{
 return rmin[t] * exp(2*vol[t]*j);
}

The main piece of the program: the recursive function

double treebuild(int t, int j, double rmin[], double vol[], int n)
{
 double y, rtj;

 if (t < n) {
 rtj = BenningaWiener(t,j,rmin,vol);
 y = (i/(i+rtj))*(treebuild(t+1,j+1,rmin,vol,n) + treebuild(t+1,j,rmin,vol,n));
 }
 else y = 1.0;
 return y;
}

 Function used for bisection

double function(double rmin[], double vol[], int n, double R)
{ return (R-treebuild(0,0,rmin,vol,n)/pow(2,n)); }

This function defines the bounds and allocate node values

void BDT(double tree[], double zerorate[], double volatility[], double delta)
{
 int i,indx,n;
 double a,b,R;
 double rmin[NTAU];

 rmin[0] = zerorate[1];
 tree[0] = rmin[0];
 indx = 0;
 for(n=1;n<NTAU;n++) {
 a = rmin[n-1] - delta;
 b = rmin[n-1] + delta;
 R = 1/pow((1+zerorate[n+1]),n+1);
 rmin[n] = bisection(&function,a,b,rmin,volatility,n+1,R);
 indx += n;
 tree[indx] = rmin[n];
 for(i=1;i<n;i++) tree[indx+i] = BenningaWiener(n,i,rmin,volatility);
 }
}

The famous example of Black, Derman and Toy [1990]

int main()
{
 int i;
 double Delta;
 double Tree[DIMTREE+1]; double ZeroRate[NTAU+1]; double Volatility[NTAU];
 ZeroRate[1] = 0.10;
 ZeroRate[2] = 0.11;
 ZeroRate[3] = 0.12;
 ZeroRate[4] = 0.125;
 ZeroRate[5] = 0.13;
 Volatility[0] = 0.00;
 Volatility[1] = 0.19;
 Volatility[2] = 0.18;
 Volatility[3] = 0.17;
 Volatility[4] = 0.16;
 Delta = 0.02;

 BDT(Tree,ZeroRate,Volatility,Delta);
 for(i=0;i<DIMTREE;i++) printf("%lf\n",Tree[i]);
 return 0;
}

The output of this program is:

0.100000
0.097916
0.143180
0.095682
0.137401
0.196941
0.082361
0.115713
0.162571
0.228404
0.077872
0.107239
0.147682
0.203377
0.280077

that gives the following tree:

0.280077
 / \
0.228404 0.196941 0.203377
 / \
0.143180 0.102571 0.147682
 / \
0.10000 0.137401 0.115713
 / \
0.097916 0.115713 0.107239
 / \
0.095862 0.107239 0.077872
 /
0.082361 0.077872

References

[5] EL KARAQUI N. [1996], Modèles stochastiques en Finance, Lecture Notes, Université Paris VI.
