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BINOMIAL MODELS FOR OPTION VALUATION - EXAMINING AND
IMPROVING CONVERGENCE

DIETMAR LEISEN AND MATTHIAS REIMER

ABSTRACT. Binomial models, which rebuild the continuous setup in the limit, serve for approximative
valuation of options, especially where formulas cannot be derived mathematically due to properties of
the considered option type. Unfortunately, even with the valuation of European call options distort-
ing irregularities occur calculating prices along iteration of tree refinements. For the first time, these
convergence patterns in binomial option valuation models are examined and it is proved order of con-
vergence one for the Cox—Ross—Rubinstein[79] model as well as for the tree parameter selections of
Jarrow and Rudd[83], and Tian[93]. Then, we define new binomial models, where the calculated option
prices converge smoothly to the Black—Scholes solution and we achieve order of convergence two with
much smaller initial error. Notably, solely the formulas to determine the constant up— and down—factors
change. Finally, all tree approaches are compared with respect to speed and accuracy calculatingrelative
root—-mean—squared error of approximative option values for a sample of randomly selected parameters
across a set of refinements. This approach was used in Broadie and Detemple[94]. Approximation of
American type options with the new models exhibits order of convergence one but smaller initial error

than with previously existing binomial models.

1. INTRODUCTION

With arbitrage pricing theory, the present value of any derivative security is obtained by calculating the
initial cost of a dynamically payoff-replicating portfolio with proportions of the underlying asset and
savings. The usual assumption of idealized financial markets leads to a model where this underlying asset
is characterized by a stochastic lognormal diffusion process. Consequently, in this setup the replicating
portfolio is reconstructed continuously.

Alternatively, in a simplified approach, asset price changes are decomposed into a sequence of Bernoulli
steps implying a time— and state—discrete replicating strategy. Due to the central limit theorem, if
this binomial tree is defined correspondingly to the continuous framework, in particular with matching
distribution parameters, this model coincides with the continuous model when refined infinitly.

For practical applications however, a binomial tree of only fixed length approximates the continuous set of
trading occurences and asset prices always by covering but some finite range of asset prices with a discrete
grid structure. With every application of binomial trees, one inevitably must examine the approximation
quality by careful consideration of the approximation result with changing tree refinements.
Investigations reveal, that the acquired degree of precision in binomially computed option prices in
comparison to a continuously calculated option price varies with the refinement of the binomial trees
in a bumpy manner. The option prices unsymmetrically oscillate with changing amplitude around the
Black—Scholes solution for a European call option.

When considering lattice approaches primarily as a means to design a limit distribution, we desire that

an approximation method should have a convergence speed as fast as possible. Convergence speed is
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2 Binomial Models for Option Valuation

measured here by the degree of change with iterated refinement in absolute difference of binomial price
and continuous solution price. Furthermore, the approximation should improve “smoothly”, that is
improvement with each increase of the refinement regardless of the given parameter constellation.

Our paper goes beyond the findings of the existing literature in several ways. First, for several existing
lattice approaches the order of convergence is shown and proved. Astonishingly, convergence speed of
binomially computed option prices has not been examined technically so far. We present here a theorem
which characterises the order of convergence in terms of the by one reduced highest order contained in
first, second, and third moments and a pseudomoment. This allows for a comparison of methods with
well measurable and quantifiable criteria.

Second, the presentation of models with higher order of convergence and smooth convergence pattern
follows. We exploit findings of the mathematical literature of normal approximations to the binomial
function. The approach is general with respect to the choice of inverted normal approximations. In
particular, there is the Peizer and Pratt[68] method which consists of a convolution of several methods.
Constructing a sequence of binomial models and each time iterating the tree refinement, a stepwise
approximation improvement is revealed. All the presented models, in particular the previously existing
and the newly developed models, have the same computation speed given the same tree refinement,
because only the formulas to calculate the tree parameters change. Importantly, lattice approaches
establish much more than a vehicle to achieve a certain limit distribution of future asset prices. Here, the
arbitrage relationships which imply the replicating portfolio can be characterized clearly, whereas this
theoretical construction is somewhat concealed in the continuous setup. Notably, these neat properties
are retained entirely in the newly established models with improved approximation properties. From the
theoretical point of view all the considered models can be used interchangeably. Consequently, we have
shown how the applicability of lattice approaches can be improved tremendously.

Finally, we give some numerical examples to underline the strength of the new approximation. A method
recently presented by Broadie and Detemple[94] follows, where option prices are computed for a large
sample of random parameters and then the relative standard deviation to the true solution is calculated
and compared to computation time with increasing refinement. Graphically it is shown that previous
models stay behind drastically with respect to accuracy. On top, using the same sample of parameters
it is shown that our tree models perform better than all previous lattice approaches when computing
American type option prices. Here is the specific attraction of fast performing models, because binomial
models can approximate prices of those derivative securities for which explicit formulas cannot be derived
in the continuous setup.

A binomial option pricing model was first developed simultaneously by Cox, Ross, and Rubinstein[79]
(CRR) and Rendleman and Bartter[79]. CRR presented the fundamental economic principles of option
pricing by arbitrage considerations in the most simplest manner. By application of a central limit theorem
they proved that their model merges into the Black and Scholes model when the time steps between
successive trading instances approach zero. In their proof the binomial functions are transformed to
standard normal functions repectively. This serves as a starting point for our construction of improved
models. Additionally, the model was used to evaluate American type options and options on assets with
continuous dividend payments.

In the meantime, innumerable contributions to lattice approaches have been published. We must excuse
that not all of them can be mentioned here.

Jarrow and Rudd[83] (JR) constructed a binomial model where the first two moments of the discrete and
continuous time return processes match. Furthermore, a probability measure equal to one half results.
Boyle[88] constructed a trinomial lattice, which is fixed up to some arbitrary parameter A, which is
determined heuristically. Although this model lacks a universal solution, he realizes indeed that there

are potentialities to improve lattice approaches by an ingenious choice of parameters.
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Omberg[88] deduced a whole family of lattice trees using the technique of Gauss—Hermite quadrature as
solution to the backward recursive integration problem. Unfortunately, trees with four or more vertices
do not recombine properly and interpolation methods must be applied to keep a tracktable grid of asset
prices. Notably, he recognizes that even with a 20th order Gauss—Hermite jump process the location of
the exercise price within the tree structure may cause trouble.

Tian[93] proposed binomial and trinomial models where the model parameters are derived as unique
solutions to equation systems, established from sufficient conditions to acquire weak convergence due to
the Lindeberg theorem, supplemented to use remaining degrees of freedom to equalize further moments
of the continuous and discrete asset—distributions. Unfortunately, this interesting contribution lacks to
support the ideas by mathematical arguments.

Numerous adjustments have been introduced to apply lattice approaches to various types of options.
There is the broad field of exotic options. Already Cox and Rubinstein[85] presented an adjustment
for the valuation of Down—and—out calls. Hull and White[93] modified the original CRR-model for the
pricing of path dependent exotic options by linear or quadratic interpolation. Recently, Cheuk and
Vorst[94] presented a model where the payoff of Lookback options itself is modelled in a lattice, thus
resolving the path dependency. Whereas our paper does not focus directly on the pricing of complex
payoff themes, we view our contribution as a starting point for the derivation of methods with superior
accuracy there.

Further extensions to the field of lattice approaches involve the transfer to the pricing of derivative con-
tracts with multiple underlying securities (see He[90]). Other authors devote research to the construction
of “simple” binomial lattices, that is construction principles where pricepaths recombine properly even
when more complex models such as those with state varying volatility functions are considered (e.g. see
Nelson and Ramaswamy[90], Li[92]).

2. ON DISCRETE AND CONTINUOUS MODELS

Black and Scholes assume that trading at financial markets proceeds continuously in time. Asset-price

dynamics are described by
(1) dSt = T’St dt—f—O'St th

where 7 is the instantaneous expected return of the underlying asset S = (5;);>0 if immediately the risk-
neutrality argument of Harrison and Pliska[81] is used, o2 is the instantaneous variance of the return,
and (W;)i>0 is a standard Gauss—Wiener process on a suitable probability space (Q, F, P).

Within this model, for any fixed European call option, having strike price K and maturity date 7', a
hedge portfolio can be constructed containing solely the underlying asset S and a savings account with
riskless borrowing and lending at r, which perfectly replicates the value of this option ! at each instant ¢
of time.

It is this equilibrium connection which results in the Black-Scholes differential equation for the unknown
function e:

de ge 1 , 2626_
2) I R LA TR

The solution to the differential equation with boundary condition f : z — (z — K)* as payoff function is

given by the Black-Scholes option pricing formula:
(3) et,S) = S-N(d)—K e TN (dy)

In(S/K) + (r+ 10?)(T —t)
oI —1

1The value depends on time ¢ and asset price .S under consideration. We adopt the common notation c(t, S) for this

dip =

function.
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where A(+) is the cumulative standard normal distribution function. Due to Harrison and Pliska[81] we

know that this can be written as
(4) e(t,S) = e "I By [£(S7)]

Transferring this framework into the simplifying binomial structure induces several adjustments. Suppose

there is given a second probability space (ﬁ, F, ?) Given a prespecified number n of trading dates, we

suppose that trading occurs only at equidistant spots of time ¢} € {0 =13, .-, = T'} with ¢}, | -t} = %
(1=0,...,n—1). The one-period returns R,; (i=1,...,n) are modelled by two point iid binomial
random variables
— u, with probability Pn
(5) R = . - _
d, with complementary probability 1—pn =qn
on (Q,F,P). Thus for all k =0,...,n the discrete asset price dynamics at time ¢ are described by
k

(6) Sne= 50" HRn,i

i=1

The specification of the one-period returns is a complete description of the discrete dynamics S,,. We
call such a finite sequence R, = (Rn,i)izl,... n alattice (tree).
The parameters uy,,d,, p,,n differ from lattice to lattice, but remain constant throughout a specific
lattice. We call a method which assigns to each refinement n a lattice a lattice approach. In the sequel
we will suppose always that there is given a whole sequence of lattices. One should think of it as a
triangular array
Ry
Ry1 Rap
Rs1 Rs» Rss
where each row represents a lattice.
Several different lattice-approaches have been proposed. They all take into account that the risk—
neutrality argument of Harrison and Pliska[81] implies that the expected one-period return E[R, 1]
must equal the one period return of the riskless bond r,, = exp{rAt,}. The remaining degrees of freedom

are resolved in different ways as shown in the following table:

CRR[79 ] JR[83 ] TIAN [93 ]
U, = exp {O’\/g} U, = €exXp {,u’% + U\/g} U, = rn;n (vn + 1+ \/m)
d, = exp {—0'\/%} d, = exp {,u’% — U\/g} d, = rn;n (vn +1- \/m)
wo= r— %0‘2 T, = exp {r%}

v, = exp{o?L

TABLE 1. remaining degrees of freedom are resolved in different ways in the considered
lattice—approaches of CRR, JR, and Tian; thus there are alternative definitions of tree

parameters
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Within all these models, a hedge portfolio can be constructed which perfectly replicates the value of a
European call option at each discrete point of time ¢} regardless whether the asset price increases to
?nﬁ.l = ungn,i or decreases to gn,i+1 = dngn,zw Nodewise payoff replication with respect to up- or
down-movements requires
Aj-uy - gn,i +r, B = ¢y ( ?_(_1’ Un §n,z)
Ai ' dn : gn,i + 7, Bz = Cn ( ?_(_1’ dn gn,z)
to hold.
From this, the proportion A; of the underlying asset and amount B; of savings in the replicating portfolio
can be derived, the value at ' is interpretable as discounted expected value of prices at t7,; with
martingale measure equal to p, = (r, — dn)/(un — dy).

Here, this equilibrium connection is subsumed for all discrete steps in a binomial formula, of which the
first was presented by CRR:

(7) Cn(o = tga SO) = r;nF[f(gn,n)]
—\J
]_
and equivalently:
(9) en(0 =15, So) = So ®[a;n, pp,] — K ;" ®[a;n, py]
where p, = rn — dy o= Un P ‘— In(K/Sp) — n Ind,)
Uy, — dp, n Inu, —Ind,

where ®[-] denotes the binomial distribution function.

3. EXAMINING CONVERGENCE

By an easy application of the central limit theorem one immediately proofs convergence of the binomial
distribution terms in (9) to its respective normal distributed terms in (3). Essentially, existing lattice
approaches only differ in the way how this limit result is acquired. The proceeding involves differing
definition of the tree parameters u, and d,,. For all three models, the requirements to achieve the
same limit distribution are fulfilled. But beyond that, the distinct approaches do not reveal properties
suggesting superiority or inferiority in terms of convergence quality. Essentially, equating moments merely
assures convergence to a distribution with matching parameters. Yet, computing option prices within a
tree constructed this way does not lead to the best achievable estimation results. Figure 1 depicts a typical
pattern resulting from option price calculations along iteration of the tree refinement. The straight line
indicates the Black—Scholes solution. For the binomial calculations we mark each computation and draw
a connecting line to emphasize the changing results. Equally for all three models we find oscillations
and wave patterns. There occur intervals with decreasing error but followed by intervals with again
increasing error. 2 Crucially, the accuracy of approximation is influenced by a property, inherent in all
these tree models, illustrated by an example. In figure 2 the vertical dashed lines mark the terminal nodes
of a 10-step binomial tree. The smooth line gives the continuous density function along a continuous
set of asset prices. The rectangulars surrounding the terminal nodes form a histogram indicating the
connection of continuous and discrete density. But contrary to this illustration these probability masses
are concentrated at the terminal nodes, implying that splitting the probability mass with the exogenous
fixed strike price occurs in whole rectangulars only. Translating into a binomial distribution function

we have a piecewise constant function with jumps at each terminal node. But the set of binomial asset

2We didn’t depict calculations of an at-the-money option with the CRR-model, because the homogenous convergence

pattern there represents a unique exception.
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FiGUure 1. typical pattern resulting from option price calculations with binomial mod-
els: example with CRR-Model and the following selection of parameters: S = 100, K =
110, 7=1,r=0.05,0=0.3, n = 10,...,150
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FI1GURE 2. a histogram usually depicts the connection to the continuous density function;
separation of the probability mass only with whole rectangulars gives a distribution

function with steps; example drawn from a 10-step binomial tree

prices shifts with each iteration of the tree refinement. Fluctuating locations of jumps in the distribution
function result. The separation of the probability mass bounces back and forth with changing step
patterns. Thus, the binomial structure itself in combination with a strike price located independently of
the tree grid induces irregularities which distort the approximation result. Except of special cases, the
computed option prices oscillate and converges wavy to the Black-Scholes solution?.

Alternatively, in order to visualize that solely the fluctuating separation causes existing convergence
patterns take the Black-Scholes formula and adapt the strike price in the normal components to the
implicite separation rule of the binomial models, which is a continuity correction of one half. Interestingly,
any existing convergence patterns can be reproduced, displaced with respect to the distribution error only.
Consequently, merely the separation problem signs responsible for all existing convergence patterns. The
distribution error can be quantified indeed by adapting the Black-Scholes formula once more, now with a
series expansion. Thus, binomial option prices can be duplicated by this twofold adaptation. Oscillation
is produced because the strike jumps over rectangulars with even and odd refinements, waves describe

the relative movement between surrounding terminal nodes, which itself change in value though.

3this property is sometimes called ” even-odd-problem”
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Examining Convergence

Now suppose we take one sequence of lattices in particular. We see already in figure 1 that discrete and
continuous prices do not match in general; we find an error e, = |c(0, Sg) — ¢, (0, So)|.

Due to the central limit theorem we have lim, _ o €, = 0, which means prices calculated by a sequence
of lattices converges to its respective Black—Scholes price.

From (4) and (7) our error takes the form:
(10) en = e T NE[f(S2)] = E [f(Snn)] |

We remember when observing calculations with refinement n, one typically observes wavy patterns. The
adequate formal description of the approximation quality is to characterize convergence by convergence
of the worst case. That means we are looking for a description of a reasonable upper bound for error e,.
For this we use the mathematical concept of “order of convergence”. Restated in our specific case here,

we make the following

Definition. Let f : 2z — (z — K)* be a European call option. A sequence of lattices converges with

order p > 0 if there exists a constant x > 0 such that
K
(11) VnEIN:enSE

A lattice—approach converges with order p > 0 if for all Sy, K, r, o, T the specified sequence of lattices
converges with order p > 0.

In the sequel we will often write shortly e, = (’)(nl—p) for this, too.

Please note that convergence of prices is implied by any order greater than 0. Moreover we remark that
higher order means “quicker” convergence. Thus the theoretical concept of order of convergence is not
unique: a lattice approach with order p has also order p < p.

At first glance the concept of order of convergence may seem very theoretical. In fact it is very easy to
observe in actual simulations: in figures we plot the error e, against the refinement n on a log-log-scale.
Because of log - = logx — plogn the bounding function ;% becomes a straight line with slope equal

(—p) and shift «.

For example in figure 3 obviously order of convergence 1 is suggested. We could present lots of these

1 7 T 7 7 1]

0.1

0.01

000t b Y XYY Y

error

1e-7 ; ; R S S S S O ; ; A S S
10 100 1000
refinement n

FiGUure 3. graphical representation and examination of the error bound; x—axis and y—
axis with log—scale; example with CRR-Model and the following selection of parameters:

S =100, K=110,T =1, r = 0.05, ¢ = 0.3,n = 10, ..., 1000

figures. All suggest order of convergence 1. Our aim is to identify unique criteria which determine the
order of convergence of a specific lattice—approach under consideration in mathematical terms. As a

starting point we make the following
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Definition. For a sequence of lattices (E”)ne]N we call for all n € IN:

(12) m, = E[Ry1-1]—E[R,1—1]
(13) m, = F[(Rar—1)°] = F |[(Run - 1)"]
(14) m o= [(RM - 1)3] _E [(Rm1 - 1)3]

moments and

(15) o = B[(0Rn1) R —1)°]

pseudo—moment

Here and in the sequel for any n € IN we denote by R, = (R ;)i=1,.. » the continuous return between
times ¢} and t7,;. They are iid random variables on (2, F, P) such that Stz = So Hle R,; Yk =
0,...,n.

Our moments are a generalisation of the ordinary moments as they are mainly the difference between the
ordinary moments of discrete and continuous approach. The form of the pseudo—-moment is of technical
nature as it results from our proof of the following theorem. We defined m!, too. In the case here,
however, we always get m. = 0 because of the risk neutrality argument of Harrison and Pliska[81].

The ordinary moments are of great importance in the probabilistic literature. For example they play a
central role in the central limit theorem, as by means of the Ljapunoff condition weak convergence can
be checked easily by checking convergence of the first two and one higher moment.

In the case here, where we have a discrete approximation of a continuous framework, it is not surprising
that order of convergence is determined by the difference of the ordinary moments,; that is by that of our

moments. This is exactly what the following theorem says.

Theorem 1. Let (En)ne]N be a sequence of lattices and m2, m2, p,, its respective (pseudo-) moments.
The order of convergence is the smallest order contained in m2, m2 and p,, reduced by 1, but not smaller
than 1, that is :

(16) HK(SQ,I(,T,O',T):en§ﬁ~{n.<mi+mi+pn)+%}

Proof. * Denote by (Q F, ]5) the product space of (Q,F, P) and (Q,F,P). For alln € IN and k =
0,...,nlet Ay p = o(Snili < k).
Since f(Sn.n) = ¢(T,Spn) we can write
E[f(Snn)] E[e(T,Snn)
eTEf(S1)] = ¢(0,S) = E[e(0,S)]

and

Therefore we have:
= | B [T (T, 50 n) — (0, 50) | An] ‘

Discretization of time—axis :
n—1
en = |F Ze“”z {e“’Atc(tz+1,§n7k+1) — (R, Snr)} ‘ An i
k=0

1 At first glance an easy description of the order of convergence seems possible as follows: With the theorems of Berry[41]
and Esséen[45] the order of convergence of the approximation of a normal by a binomial distribution—function can be
calculated. Then, immediately by formulas (3) and (9) we get the order of convergence of e,. However from this we get
the order % for CRR, whereas we observe higher order of convergence in simulations. Other approaches as that by Butzer
and Hahn[75] apply a Taylor-expansion. But this approach is not applicable since the payoff-function of the European call
option is well known to be not differentiable at S = K. In our proof we proceed in a very specific way to circumvent this
problem. It relies on the observation that for times ¢ < T c(t,-) € C'°°(IR). Therefore we apply a trick used by Kloeden and
Platen[92] to a different setting: a discretization of time-axis and the representation of the error e, as a sum of relative

errors at each time 7.
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The Black—Scholes price is locally riskless, that means :
E [e_TAtC(tZ.Ha Rn,k+1 Fn,k) - C(tgagn,k) | An,k] =0

Now it follows:

en =|E

Ti:le_”:ﬂ {E [C(t;gﬂ,?n,kﬂ) An,k]_E[C(tgﬂ,?n,kﬂnw)‘An,k]}H

k=0

The last time point k = n — 1 <}, = 1" must be evaluated separately as O (%) This is an easy,
however lengthy and technical matter.

All other time points 0 < k < n — 1 can be evaluated by a one-dimensional Taylor series expansion of
¢(t?,-) around S, ;. If we denote its remainder term by Rs, the error e, is bounded by O(1/n) plus the
following term:

i

n—1
S et {E et Snkan) = eltign Sne) | An]
k=0

_E [C(t;;H,?n,k R p41) — c(t 11, Sn i) ‘ An,k]}

[ s . o/ — — (iR — — -
o \lk+1rOnk nk+1 — Onk aa2 \Yk+1)9n,k n,k+1 — Onk
Bl Y emin{ Bl So(tisn San)(® Sui) + 55 (tE 1, Sn)(S S k)
k=0
o — — — .3 R _
+ﬁ(tk+175n,k)(5n,k+l — Snk)” + R3(th g1, Snkt1, Snk) ‘ An,k]
. G/ — — — G — — —
- E[ ﬁ( k+1aSn,k)(Sn,kRn,k+1_Sn,k)‘i‘@( a1 Snk)(Snk Bnpg1 — Snp)?
aSC n rad rad rad 3 n rad rad
+ﬁ(tk+175n,k)(5n,k Rn,k+1 - Sn,k) + RS(tk+1a Sn,k Rn,k+1a Sn,k) ‘ An,k]}
One has:
~[0c, . = — — = O, = PR
£ [%( F19n,k)(Sn k41 — Sn k) ‘ An,k] = Snk%( k1 Snk) B [Rn,k+1 - 1]
B 241 B )G - Rugr— 5 ) Awe| = 3 0 (e Sk) B[R g — 1]
oS k+1)9n,k n,k n,k+1 n,k n,k — n,kaS k41> °n,k n,k+1
8%c 8¢

Analogous results can be obtained for terms with functions S ﬁ(’ S) and S ﬁ(’ S).

Therefore we can bound e, by O(1/n) plus the following:

2 0%

n—2
L —rty = ac n — . n _
E kzzoe tk+1{ S”kﬁ( P10 Sn k) -y +Sn,kW( i1 Snk) Mo

B 0% n K< 3 n n K< <
+ Snkﬁ( kel Snk) M + E[RB(tk+1:Sn,k+1;Sn,k) ‘ An,k]

’

_ E[RS(tZ+1¢ Sk * B4, Sn k) ‘ Anyk] }] ‘
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By a detailed (very lengthy and technical) observation of the derivatives one proves:

n—2 1
—rt? all k< dc n T
Ze bt [ I:Sn,k%( ht1sSnk) = 0O(n)
k=0 .
n—2 1
—rt™, . |52 dc n K<
Z e [S"’k@( ponp) || = O(n)
k=0 .
n—2 1
—rt® ~ | =3 636 n <
Ee et I:Sn,kﬁ( k+1aS”7k) = O(n)
k=0 }
R n—2 1
FE Z k+1 [R?’( k+1:Sn k+1a ) | "4” k] = 0(pn ’ n)
k=0 -
. n—2 | 1
D Z _Mk‘*‘l [RS( k+17 Sn & R, k-I-l: ) | An k] = O(;)
k=0 -

These proofs and the evaluation of the last time point — mentionend above — are available upon request

from the authors.

If we set v, = exp{02%} we know that £ [thl] =k vE (k=112 Applying the binomial-formulas
k . .
(z+y)k = (f) z/y™~J one immediatly gets the following equivalent form of theorem 1 which is the
j=0
useful form in concrete applications:

Theorem 2. Conditions as in Theorem 1. Let m2 := E[(R, 1) —riv,, md = F[(Rnyl)?’] -3

Then the conclusions of Theorem 1 hold with m2, m3 instead of m2, m3.

Notably we proved only that order of convergence equals at least one, possibly higher order could be
contained, though simulations indicate the opposite, entirely. To achieve order of convergence one, the
theorem states that the approximating moments of the discrete asset dynamics must converge with order
two towards the moments of the continuous asset dynamics, because one degree is lost with summation
over time. Furthermore, one needs the same order of convergence in the pseudomoments®.

With the theorem we obtain a characterisation of the error boundary which only relies on for all binomial
models equally well measurable properties. Thus, there is a unique criterium to compare these models
with respect to convergence speed. Virtually, the theorem reduces the answer to the order of convergence
of the moments and pseudo—moments.

Now, the results of the theorem can be applied readily to the binomial models under consideration.
Proposition 1. The lattice—approach proposed by CRR[79] converges with order 1.
Proposition 2. The lattice—approach proposed by JR[83] converges with order 1.

Proposition 3. The lattice—approach proposed by Tian[93] converges with order 1.

Using theorem 2 all these proofs are an easy application of the series expansion of the exponential
function. They are given in Appendix B. In the following the three lattice approaches are depicted with
three different strikes. One can recognize in the simulations that the error can always be dominated by
an upper bound of order % Please note, that the lattice approach by Tian has explicitely fixed the first
three moments, thus being exactly 0. Moreover we remark that the method of determining the order
of convergence from that of the moments and pseudomoments works very well. Remarkably, with the

moments there occur no distorting irregularities whatsoever.

5This is not only a technical matter but explains why the model proposed by Tian actually does not perform better.
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Fi1GURE 4. illustration to the result of proposition 1: order of convergence one because
second and third moment and pseudo-moment have order of convergence two: example
with CRR-Model and the following selection of parameters: S = 100, K = 90,7 =
1,»=10.05,0=0.3, n=10,...,1000
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Ficure 5. illustration to the result of proposition 2: order of convergence one be-
cause pseudo—moment has order of convergence two: example with Tian-Model and the
following selection of parameters: S = 100, K = 100, 7 = 1,r = 0.05, 0 = 0.3, n =
10,...,1000

4. CONSTRUCTION OF BINOMIAL MODELS WITH IMPROVED CONVERGENCE PROPERTIES

So far, we examined the problem of convergence in existing lattice approaches. We derived a general
theorem to measure the order of convergence. Applying the theorem to the considered binomial models
we see no significant difference in terms of convergence to the Black—Scholes solution. In this second
main part of the paper we present a method to achieve improved approximation trees for the calculation
of option prices. Here our aim is twofold: On the one hand, we desire to obtain binomial trees without
irregularities, on the other hand we want faster convergence speed. Unfortunately, the theorem indicates
that improved order of convergence as resulting from the properties of the binomial process would require
higher order of convergence for the moments and pseudomoment. In principle, this cannot be achieved
with a two—point random variable. Now, the only possible recipy consists of utilizing structural properties
of the considered option contract.

We call the resulting method an extended lattice approach to emphasize the difference to the standard

lattice approach.
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F1GURE 6. illustration to the result of proposition 3: order of convergence one because
second and third moment and pseudo-moment have order of convergence two: example
with JR-Model and the following selection of parameters: S = 100, K = 110, T =1, r =
0.05, ¢ = 0.3, n = 10,...,1000

CRR showed convergence of their model to the Black—Scholes formula by examining the two binomial
terms in (9) separately. Equivalently, one can view the valuation of a European call option as two
approximations of type ®[a; n,p] — N (z), which we desire to improve here.

Despite of the simplicity, the calculation of binomial probabilities is cumbersome, because it might in-
volve factorials of large integers or the sumation of a large number of individual terms. Therefore, normal
approximations to the binomial distribution were derived. Especially, the method by Camp and Paul-
son[51] and the approximations of Peizer and Pratt[68] reveal a remarkable quality of accuracy®. With
all these approaches, basically a binomially calculated true probability P is approximated with the stan-
dard normal function N(z), where the input is determined by some adjustment function z = h(a;n, p),
where in our setting a is the number of up—movements of the asset price in a n—step binomial tree with
martingale measure equal to p. In the simplest case we have the de Moivre-Laplace theorem where
a—np

np(l—p)
plementary binomial distribution function of (9). But our option pricing problem here represents the

P = 1— ®[a;n,p] is approximated by P ~ N (h(a;n,p) = ), where ®[a;n, p] is the com-

opposite direction. Computation of binomial option prices eventually involves that normal components
are approximated by binomial components. Thus, for a given binomial tree refinement the adjustment
function h(a;n,p) from above inverted specifies the distribution parameter h=1(z) = p to approximate
P = N(z) with P ~ 1 — ®[a; n, p]. Peizer and Pratt derived the inversion formula to the Camp-Paulson
method and specified the inversion formula of their method in the case with identical number of successes
and fails”.

(A) Camp—Paulson—Inversion: (universally valid)

1

hY(z) = (g)Z ([91‘ — 1)[9y — 1]+ 3z[x(9y — 1)% + y(9z — 1)? — 91‘yz2]%) 3

x [9y — 1]% — 9yz?

with  =n —a, y = a + 1, z as input of the standard normal function.

8The reader will find some remarks to the derivation of these approximations and the citation of literature in the
appendix
" Otherwise the inversion could be achieved numerically. Since this inversion is generally valid to any parameter selection,

it could be tabulated or approximated polynomially for fixed n similar to the proceeding with the standard normal function.
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(B) Peizer—Pratt—Method—1-Inversion [case: a4+ + =n— (a+3), n=2a+ 1]

2
z 1
.25 —0.25 - — - -
0.25—-10.25 exp{ <n—|—%) <n+6)}

(C) Peizer—Pratt—Method—2-Inversion [case: a++ =n— (a+ 1), n = 2a+1]

1
2

R (z) =057F

2
1
A z)=05F [025—-025 expd — | —— ~<n+—)
“ IR Ep ;

So far, we talked about approximation only. Now, we will demonstrate how these findings can be used
to construct CRR-like binomial models. For the construction of a binomial tree we continue similarily to
the Tian approach. We setup an equation system to determine uniquely tree parameters which assure
convergence. First, with d; and d3 as inputs from equation (3) in h=1(z), we obtain p and p’ as distribution
parameters of the two binomial components in the binomial option pricing formula using approximation
rule A, B, or C.

Then, we derive tree parameters u, and d, by a simple trick. The noarbitrage condition implies that
pn = (rn — dp)/(un — dy) holds. Furthermore, p), is defined to p|, = u,/ry, - p,. Taking these two rela-
tions as equation system which can be solved uniquely with respect to u, and d,,, we succeed to acquire

a new binomial model. The formulas below sum up the model parameters.

pn =h71(dy)
Pn =ht (d2)
/
'un p— ’r’n . p_n
Pn
Tn — Pn " Un

d _

" 1- Pn

In the paper here, we consider only three inverted normal approximations. The method is general with
respect to the chosen method. In particular one could invert the simple continuity correction and apply
it as approximation rule.

Taking adjustment function h(a;n,p) the parameter z for the standard normal function is uniquely
determined with given a,n, and p. But vice versa having parameter z, for each pair of (a,n) we get a
distribution parameter p. Thus we can make a choice of the parameter a(n) ex ante. The parameter
a(n) is chosen such that the strike price K is located in the center of the binomial tree. Regarding
that usual interest focuses almost entirely on at—the-money and near—the—-money options, this selection
doesn’t really distort the tree significantly.

In example calculations, the resulting binomial tree parameters diverge only very little from those of
previous models, but astonishingly, the convergence properties with the computation of option prices
change dramatically. Nevertheless, within this class of models the particular theoretical building blocks
for which the CRR-model became famous are entirely preserved by construction. We have completeness
and a unique replicating strategy can be derived. But moreover, this model construction profits from
the attributes of the chosen normal approximation. Below, the figures demonstrate the strength of the
method in approximating option prices in comparison to previously existing models.

Figure 7 shows an example of the results for the binomial model using the Camp—Paulson method.
Notably, the y—axis of the lefthand figure has a range of two pennies. The approximation error declines
monotonically with order of convergence one and the constant is approximately equal to one instead of
four (compare with figures 4, 5, and 6). Beforehand, the parameter a(n) can be chosen freely since it
is determined implicitely from the , we decided to locate the strike in the center of the binomial tree.

Regarding that usual interest focuses almost entirely on at—the-money and near-the-money options, this
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FiGURE 7. illustration of the results with the improved binomial construction theme
using the inverted normal approximation of Camp—Paulson; following selection of pa-
rameters: S = 100, K = 110,7 = 1,r = 0.05,0¢ = 0.3,n = 10,...,150 (n =
10,...,1000)

selection doesn’t really distort the tree significantly. Checking the results with strike location relatively

to the deviation to the initial asset price no significant differences occur. Figure 8 depicts an example
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FiGURE 8. illustration of the results with the improved binomial construction theme
using both inverted normal approximations of Peizer—Pratt; following selection of pa-
rameters: S = 100, K = 110, 7 = 1,r = 0.05,0¢ = 0.3,n = 10,...,150 (n =
10,...,1000)

of the results with the Peizer—Pratt methods. There are two methods, which don’t show significant
differences in the application. Here, we take odd refinements only due to the restricted domain of the
explicit inversion formula. This doesn’t diminish the results because there is no meaning to any specific
refinement except serving for approximation purposes. Here, we need also the center location of the
strike. Again the approximation error declines monotonically but now with order of convergence two and
constant approximately one. Indeed, the use of the superior inverted normal approximation improves the
calculation of option prices. The remarkable performance here allows for a considerable reduction of the
tree refinement to save computation time. Looking at the moments and pseudomoments, the error only
declines with order of convergence one. This confirms that the improvement is achieved by utilisation of
structural properties of the chosen contract type. Namely, the location of the strike within the tree grid
is controlled. Consequently, we are not able to give a strict proof of the greater order of convergence in

line with our theorem.
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5. NUMERICAL RESULTS

Now we compare directly the three binomial methods considered in section two with those newly devel-
oped. Below, there is a table containing example computations for European call and put options with
a specific selection of parameters. Computing binomial prices for a fixed tree refinement represents only
a small window of the whole approximation theme with accidental degrees of accuracy. Nevertheless, we
give a table to the convenience of those readers intending the implementation of methods. Even with the
very low tree refinement of n = 25, the outstanding performance of models using normal approximations
can be recognized . More digits must be displayed to catch the degree of accuracy. Notably, care must
be taken of the method to calculate the standard normal function in order to avoid distortion by the
supposedly true solution. Thus, the chosen method guarantees accuracy of 7 digits. Although the tree
adjustment primarily served for the improved approximation of European standard options, we show that
valuable improvements for the pricing of American type options are contained. True American option

values were derived using the CRR-method using 15000 tree—steps.

Strike CRR JR Tian CcP PP1 PP2 True

value

European Call Options

80 23.74082 | 23.76300 | 23.70657 | 23.76050 | 23.75822 | 23.75875 | 23.75799
90 16.13376 | 16.08486 | 16.12494 | 16.09619 | 16.09941 | 16.10037 | 16.09963
100 | 10.21317 | 10.20142 | 10.20418 | 10.12545 | 10.13316 | 10.13440 | 10.13377
110 6.01218 | 6.02481 | 6.01304 | 5.94162 | 5.94889 | 5.95015 | 5.94946
120 3.31890 | 3.33429 | 3.33318 | 3.27993 | 3.28258 | 3.28366 | 3.28280

European Put Options

80 0.98926 | 1.01143 | 0.95500 | 1.00893 | 1.00665 | 1.00719| 1.00642
90 3.03825 | 2.98934 | 3.02943 | 3.00068 | 3.00390 | 3.00486 | 3.00412
100 6.77371 | 6.76196 | 6.76472 | 6.68599 | 6.69370 | 6.69494 | 6.69431
110 | 12.22878 | 12.24141 | 12.22963 | 12.15821 | 12.16548 | 12.16675 | 12.16606
120 | 19.19155 | 19.20694 | 19.20583 | 19.15258 | 19.15523 | 19.15631 | 19.15545

American Put Options

80 1.01842 | 1.03864 | 0.98396 | 1.04231 | 1.04264 | 1.04317 1.037
90 3.16580 | 3.12447 | 3.14640 | 3.11786 | 3.12832 | 3.12928 3.123
100 7.10823 | T7.10415| 7.08701 | 7.00982 | 7.02858 | 7.02981 7.035
110 | 13.00108 | 13.01511 | 12.98978 | 12.90304 | 12.93136 | 12.93253 12.955
120 | 20.73344 | 20.74479 | 20.73566 | 20.65254 | 20.67576 | 20.67649 20.717

TABLE 2. a table with numerical results, a small window of the whole approximation
theme with accidental degrees of accuracy, but useful for those readers intending the im-
plementation of methods; parameters S = 100, r = 0.07,0 = 0.3, 7 = 0.5 years, n =
25 for all

Each considered simulation result may depend significantly on an accidentically chosen parameter set.
Thus we looked for a procedure to test simultaneously across a whole set of parameters. We stick to an
analysis recently conducted by Broadie and Detemple [1994] who tested several methods for the pricing of

American options. There, within one analysis several methods using a large sample of randomly selected
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parameters are compared simultaneously over refinements with measurement of computation speed and
approximation error. Computation speed is expressed by the number of option prices calculated per
second. Since we stick to tree models with identical structure except for the tree parameters, for all
models here, we use the speed results of Broadie, Detemple for CRR. Thus, we need not care on tuning
our computer implementation of methods. The approximation error is measured by the relative root—
mean-squared (RMS) error. RMS-error is defined by

RMS =

where e; = (¢; — ¢;)/¢i is the relative error, ¢; ist the true option value. ¢; ist the estimated option value.
To make relative error meaningful, that is to avoid senseless distortions because of very small option
prices, the summation is taken over options in the dataset satisfying ¢; > 0.50.

We chose the following distribution of parameters. Volatility is distributed uniformly between 0.1 and
0.6. Time to maturity is, with probability 0.75, uniform between 0.1 and 1.0 years and, with probability
0.25, uniform between 1.0 and 5.0 years. We fix the strike price at K = 100 and take the initial asset
price S = Sy to be uniform between 70 and 130. Relative errors do not change if S and K are scaled by
the same factor, i.e.; only the ratio S/ K is of interest. The riskless rate r is, with probability 0.8, uniform
between 0.0 and 0.10 and, with probability 0.2, equal to 0.0. Each parameter is selected independently
of the others. This selection of parameters matches the choice of Broadie, Detemple except for dividends
which we donot regard here..

Figure 9 reports the results for European call options to which the analysis was devoted especially so far.

Of course, similar results could be presented for European put options. Amazingly, the newly developed
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FiGURE 9. testing efficiency of binomial models for European call options: rela-
tive mean squared error in calculations with a large parameter sample, sample size
m = 2500, versus computation speed as expressed by the number of option prices
calculated per second, calculations at marked points with tree refinements: n; =

{25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}; x—axis and y—axis with log—scale
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methods outperform all tested approximations in terms of accuracy. We reproduced the finding that
the speed—accuracy line for the CRR-model is linear in appearance. These findings take over to the
JR-model, Tian-model, and our approaches. Objecting, the smooth line develops from the averaging
over the results of the whole sample. Taking only a single parameter constellation yields a picture, where
the convergence patterns described earlier emerge again, whereas the lines for the new methods remain

stable. Finally, figure 10 reports speed—accuracy results with the calculation of American type options.
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FiGUure 10. testing efficiency of binomial models for American put options: rela-

tive mean squared error in calculations with a large parameter sample, sample size
m = 2500, versus computation speed as expressed by the number of option prices
calculated per second, calculations at marked points with tree refinements: n; =

{25, 50, 100, 200, 300,400, 500, 600, 700, 800, 900, 1000} ; x—axis and y—axis with log—scale

Similar results are obtained for the previous models. Interestingly, the CRR dominates JR and Tian.
With CRR we have the property ud = 1. Generally the early exercise boundary approaches a constant
line with movement towards ¢y in the tree. Consequently, we expect less distorting crossing of node
layers and early exercise boundary. The new models contain order of convergence one here only but
with smaller initial error. Naturally, the design solely assured high accuracy with respect to the terminal
payoff distribution. Approximation of early exercise premiums produces partially again original sources of
irregularities. Nevertheless, the unexpectable stability shows that the approximation error chiefly arises
from deficiencies in connection with the terminal payoff distribution.

Similarily, the so—called modified binomial model (e.g. see Broadie, Detemple) corrects for the disconti-
nuity with the strike by taking the Black—Scholes continuous prices at the second—final node layer instead
the first backward induction step with the terminal payoffs. But for certain, this procedure is slower than
our method. Furthermore, this mixture of discrete and continuous models does not represent a consistent

model from the theoretical point of view.
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6. CONCLUSION

For the application of numerical methods to option pricing it is of prime importance to classify the
approximation quality. We point to unsatisfactory convergence patterns and speed. Our theorem char-
acterises the order of convergence in terms of the by one reduced highest order contained in first, second,
and third moments and a pseudomoment. This allows for a comparison of methods with well measurable
and quantifiable criteria. For three previously existing lattice approaches we find order of convergence
one generally. Then we present a general approach for the construction of binomial trees where the
cumulated probabilities approximate better the standard normal functions of the Black—Scholes formula.
We acquire a smoothly converging model with order of convergence two. The neat theoretical proper-
ties, namely the arbitrage relationships which imply the replicating portfolio, are retained entirely in the
newly established models with improved approximation properties. Finally, we list simulation results.
Especially we conduct an examination of computation speed and accuracy for a large sample of randomly
selected parameter constellations. The true usage of binomial models consists in the flexibility to cover
the valuation of numerous option types. But transfer of our findings to the valuation of other possibly

complex option types remains to be done.
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APPENDIX A: NORMAL APPROXIMATIONS

Camp-Paulson Approzimation. 8 This approximation proceeds from the equivalence of a cumulative
binomial probability to an incomplete beta-function ratio (Kendell, Stuart[77], p. 131) and thence to a
probability integral of the variance ratio , ' (Kendall, Stuart[77], p. 407). Using an approximation to
the integral of F' developed by Paulson[42] (Kendall, Stuart[77], p. 410) who in turn used Wilson and
Hilferty’s[31] approximation for the distribution of chi-square(Kendall, Stuart[77], p. 399) and the result
obtained by Fieller[32] and Geary[30] concerning the ratio of two normally distributed variates (Kendall,
Stuart[77], p. 288), Camp[51] developed an explicit expression which may be written as follows:

Bla,nip) = N (3-_33:—2>

r; = [(n—a)a+1~(1—}?)]3'[9_nia] ail
Tz = [(”_a)a+1(1_p)]%nia+ail

see also Gebhardt[69] and Peizer, Pratt[68]. Peizer and Pratt[68] derived the inversion formula presented

in section 4.

9 Let z be the true but functionally unknown input of the standard

Peizer - Pratt Approximations.
normal function to approximate a value of the cumulative binomial distribution function. Starting with
approximation z* = [(a + %) — npl]//npq, where a + % denotes the number of successes in n Bernoulli

trials with continuity correction, they correct for misplacement of the median by
- lat s —np+ BE]
\V1Pq

and further investigations suggest replacing n by n + % in the denominator. Thorough investigation of

approximation patterns with z/z* reveal functionally expressable simple patterns, which eventually lead

to the following adjustment:

2 = [(a+3) —np+ 2] [1+q.g<a+§)+p.g<w)]%

V(n+ Lpg np n

where g(z) = (1 — )7%(1 — 2% + 2z - Inz)

G

Further modification to the first part delivers a second approximation
- -05
{lar ) —mpr 5521002 (5t - o)}

(n+ §)pg

Z9 =

In the case where a + % =n—(a+ %) these formulas reduce to

5 = i(n+%){M}%

n+ é
1, [ —In(4pq) H
- 4 S i W' < 74
o= s {5 :
where the sign is to be chosen to agree with the sign of ¢ — 0.5.

Only then, inversion formulas as presented in section 4 can be derived.

8this description is obtained mainly from Raff[56], especially references to Kendall, Stuart[77] were supplemented

9see Peizer, Pratt[68] and Pratt[68] for these approximations
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APPENDIX B: PROOFS OF PROPOSITION 1, 2, AND 3

We remember r, := exp{rAt,}, v, := exp{o?At,} and forallk e N : £ [Rﬁyl] =rk pE(h=1/2

Proof of Proposition 1. From theorem 2 we know that we only have to verify the following three terms:

(1) m2=0 (%)

Since ppuy + gnd, = 7, one gets:

-2 2 2 2 _ , -1
= m, = |pnun—|—qndn—rnvn| = rn|un—|—dn—rn —rnvn|

1
= o (z)

from a series expansion of the Exponential-Function.

_ 1
is proven the same way.

1
® pm=0()
From a series expansion of the Exponential-Function one immediately gets:
1 1
n—1=0— ], dy—1 = 0| —
! <\/ﬁ ) <\/ﬁ)
Since Inu, = —Ind, = o+/At, one getsp, = O (nl—Q)

Proof of Proposition 2. From theorem 2 we know that we only have to verify the following three terms:

1
_9
(1) my =0 (ﬁ)
As in the previous theorem one gets:
Pt + d) = (undy) = ra(un +do) — A0

2 2 2
|pnun + qndn - rnvn|

pnu2 + Qndi

= m

I
_ T,ne,u At,

, 1
= T’neu At . 0 <—2)
n
1
°(#)
by a series expansion of the Exponential-Function.

@) m=0 (%)

is proven the same way.

® p=0()

From a series expansion of the Exponential-Funktion one immediately gets:

Uy —1 = (9<\/A—tn), dy— 1 = 0(\/A—tn)

Since lnu, = O (\/Atn), Ind, = O («/Atn) this proves: p, = O (Ati).

1 I 1 2
une—,u At, + dne—,u At, et Atne—rAtne—(2r+o )At,




Proofs of Proposition 1, 2, and 3

S

Proof of Proposition 3. Since Tian has explicitely fixed the first three moments: m} = m
only need to verify p, = O (711—2)

From Abramowitz and Stegun [68] we know the following:

3 3
V0<2z<05828:|In(l —2)| < 37 = V0.4172§z<1:|1nz|§§|z—1|

3
Vz>0:In(l+2)<z = Vz>1: |1nz|<§(z—1)

21

=m3 =0, we

This is fulfilled for sufficiently high n with 0.4172 < d,, < 1 < u, thus yielding (Inu,)? < %(un - 1)?

(lmdn)2 < %(dn — 1)2.
Therefore

o = F|[0Resr) (Resr—1)°]
. . i 311
< F [(ln Rk+1) ] B [(Rk+1 — 1) ] ’ by Holders Inequality
9— 71 — 217 —[,—= 3
< zE [(Rk+1 —1) ] B [(Rk+1 —1) ]
Thus it is sufficient to prove: u,, — 1 = O ( Atn), d,—1=0 (\/Atn)
Forming a series expansion:
V2420, —3 = 1+ O(At,) + 2+ O(At,) —3 = O(At,)

and

Uy, —1 = r”;” <vn+l+\/v%+20n—3)—l

Tn ’U2

= D+ 1+ 0(/AT) — 1 = T T 1 0(/AR) -
_ 1HOWAL) 1+ OWAL) Lo /Ay g

2 2
= O(/Aty)

In the same way one proves: d, — 1 = O(\/At,).
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