Generalized Binomial Trees
by
Jens Carsten Jackwerth
First draft: August 19, 1996
This version: May 12, 1997
C:\paper6\PAPER3.DOC
Abstract
We consider the problem of consistently pricing new optyiventhe prices of related options on
the samestock. TheBlack-Scholes formula anstandardbinomial trees caronly accommodate
one related European optiavhich then effectively specifieghe volatility parameter. Iiplied
binomialtrees can accommodately related European options with teame time-to-expiration.

The generalizedinomial trees introduced here can accommodatg kind ofrelated options

(European, American, or exotic) with different times-to-expiration.

* Jens Carsten Jackwerth is a post-doctoral visiting scholar at the Haas School of Business, University of California

at Berkeley. For helpful discussions, | would like to thank Mark Rubinstein.



Generalized Binomial Trees

In order tomotivate the method afeneralizedinomialtrees for optiorpricing, let us consider a
rathercommon problem.You are asked tprice a new equity option and yawe alsagiven the
prices of related options on tsamestock. Ifyou believe in efficienimarkets, then you want to
price your new option in a consistent manner withgileen prices othe related options. Wil
introduce additional related optiomsme at atime and sed¢hat our common models caonly
handle rathespecificcases. Generalizdshomialtreesenable us tancorporate pricénformation

on any kind of related options (European, American, or exotic) with different times-to-expiration.

Standard Binomial Trees

Say youare working an options desk andalagént asks you to price Buropean call witlstriking
price 1 expiring intwo years. Fortunately, you have some additional information. sfidek is at
1, there are ndlividends, andhe interest rate is zero. Easy enough, aftar estimate the
volatility of the stockyou can price the option with the Black-Schofesmula or a standard
binomialtree. But inreallife, you often know about thgrices ofother related options traded on
the samestock. Hereyou are aware of a Europeaalavith striking price 1 and expiring ifree
years whichtrades at .4815. Of course, you use Bieck-Scholes formula téind the implied
volatility of your given call andhen price youclient’s call. Or equivalently, you camork it out

in a standardinomialtree (Cox, Rossand Rubinsteirf1979)) with,say, three timesteps. After
some search you establish the implied volatility of your given calo@1. The up-move u for the

stock price is therefore given by%!'* = 2 and your tree for the stock itself looks as follows:



Exhibit 1:

Stock price in the standard binomial tree.
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You evaluate the transitioprobability p =((r/®) - d) / (u - d) = ((1/1) - .5) / (1.5 - .5) = .3333
where ris 1 plus the interest rate per sdeig,1 plus the dividend yielger step, u is the up-move,

and d is the down-move. Next, you use the recursive relation C 3 #(C - p) Gowr] / r- YOU

then evaluate your given call as:

Exhibit 2:

Your given call in the standard binomial tree.
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You see that you priced your given call correctly. Next, you evaluate your client’s call:



Exhibit 3:

Your client’s call in the standard binomial tree.
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Your result is .3333 and you think your problem is solved.

Implied Binomial Trees

However, atthis point your desk manager hgeat news. Judy foundout thatthere is also a
European put traded with striking price .95 and three years to expir#tisoralue is.445 and she
asks you what thealue of yourclient’s call is, given this addition&formation. Evaluating the
put onyour oldtreegives you a value a##444 and youealizethat you ardooking atpart of a
volatility smile. This meanghat theimplied volatilities ofoptions withdifferent striking prices
(but thesame time-to-expiratiorgre notidentical. Thereforghe standardinomialtree does not
work any longer and thesamegoes for theBlack-Scholes formula.But you don’t despair yet
since you remember that you can build an implied binomial tree (Rubif&8£4))which you can
fit to your and Judy’'gjivenoptionssince they expire dhe same time.But before you caruild
the implied binomialtree,you have tdfind a set ofrisk-neutral (nodal) probabilitieshich price

the two given options, the stock itself, and which sum to 1:



(Ponodalo + Plnodalo +P2nodal 1 + I%nodal7 ) / r3 = 4815
(P .825 +R™@ .45 +R™@0  +R™0 )/P = .445
(Ponodal 125 + Hnodal 5 +Enodalz + I%nodal8 ) / (r /6)3 =1
(Ponodal 1 + Plnodal 1 +P2nodal 1 + %nodal 1 ) =1

This system of equations can be solved for the desired (nodal) probahjltiésP3111, "% =
4185, ™% = 2352, and P°** = .0352 associatedith stock prices of.125, .5, 2,and 8,
respectively. If you had been faced with more potest@tkprices than equations, assrmally
the case, you would have hadrésort to one of the mogeneral methods to derive risk-neutral
probabilities givenyour set of stockorices in year threg¢e.g. Shimko (1993), Jackwerth and
Rubinstein(1996)). These methodsffectively interpolate and extrapolate thexisting option
prices tofind hypothetical option prices at striking prices correspondinglitgotential stock
prices. You can theninfer the nodal probabilities from such aet of optionsprices by
differentiating twice with respect to the striking price and multiplying the resuft@reeden and

Litzenberger (1978)). You can now unravel the implied stock price tree:



Exhibit 4:

Stock price in the implied binomial tree.
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To do soyou calculate patprobabilities athe end of théreebased on your nodakobabilities

The nodal probabilitieare the totaprobability of reaching a giverode in a tree. However, in a

binomialtree there arseveral paths to reaeamysuch givemode. The exaatumber ofpaths is

the binomial coefficient(ji) = j!(};)! where i = 0, .., nis the step of the tremd j = 0, ..., i is the

level within that step. Anmplied binomialtree assumes that eagath isequally likely to be
taken. You thereforealculate the patiprobabilities by dividing eachodal probability by the
number ofpathsleading up tothat node. Thelodal probabiliiesare B™% = .3111, % =
4185, B% = 2352, and $°* = .0352. Afterdividing by 1, 3, 3and 1, youind that the path
probabilitiesare RF*"= .3111, P"*"= .1395, P"*"= .0784, and #" = .0352 for the stoclevels

of .125, .5, 2, and 8, respectively.

Last, you derive the transition probabilities p for the recursion which will now be differegdch
node. Schematically, yoware concerned witlinding the preceding nodgiven the two later

nodes:



| (Puppath’ Slp)
(Ppath’ S) _I
D (Pdownpath, Sjown)

First, you calculate "= P> + Pypu/™™

Second, you calculate the transitiprobability as p = B/ P2 = R,/ (R"™ + Paou™™).

Third, you calculate the stock price S = [p (1 - p) Sowr / (1/0).

For thehighlighted node in exhibit 4 witthe stockprice 3.8587 thecalculationsare p = .0352 /

(.0352 + .0784) = .3098. The stock price is thus S = [.3098 8 + (1 - .3098)3)]+ @/8587.

You now evaluate yougiven call by usinghe same transition probabilities p as above and the

recursion C =[p G+ (1 - p) Gowr / r as:

Exhibit 5:

Your given call in the implied binomial tree.
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You see that yopriced yourgiven callcorrectly. Youalso check fodudy’s giverput which you

evaluate as:



Exhibit 6:

Judy’s given put in the implied binomial tree.
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After you realizethat Judy’s giverput isalso priced correctly, you go on to evaluate ydignt's

call:

Exhibit 7:

Your client’s call in the implied binomial tree.

——2.8587
——1.0056]

342 ——.0397
L0129 {
L0

Your result is .342 and again you think your problem is solved.



Generalized Binomial Trees

But asluck would have itthe situation changeagain, andhe head ofderivatives finds even
another option. Tonmforms you that there islso another Europeguut tradedwith striking
price 1.05 and two years to expiration. Its value is .4029 and he asks you whaieydsrcall is
worth giventhe prices ofill 3 givenoptions. Thevalue of Tom’s giverput based on themplied
binomial tree above isonly .369 and you cannot use timaplied binomialtree approach any
longer. So you are wonderiragpout a morgeneral framework. Ideally, it would preserve the
simplicity of binomialtreeswhile allowingthe tree tdit options withdifferentimplied volatilities

and different times-to-expiration.

You go to thelibrary and peruse the relevant literature. rban andKani (1994) andDupire
(1994) suggest relatachplied treeswhich are calibrated to a larget of option pricesFor each
node, they need a corresponding option price with striking price equal to thestomdadrice and
expiring atthe time associated with thaiode. Since theyare faced with far fewegiven option
prices than required, they need to interpolate and extrapolate from given option prices. Their trees
are rathesensitive tahe interpolation and extrapolation method and require adjustments to avoid
arbitrage violations. Also, Lagnado and Os[E396) suggest a method odlibrating a finite
difference grid tooptions prices. Their methadems to beathercomputationally intensive. In
comparison, th@nplied binomialtreeyou used so far is always arbitrage-freasy to understand,

and fast to compute. Alhis point youwonder if it is notpossible to generalize your althplied
binomial tree. A natural candidate for generalization would the assumptiorthat all paths

leading tothe same nodeare equally likely to betaken. Thatassumption giveshe implied



binomial tree much structure but at theame time limitgts flexibility to fit additional options

which expire earlier.

Now it is time for you to retrace your steps and you look at the nodal probabilities, that is the total
risk-neutral probabilitythat you reaclsome node.For the standar8iinomial tree, thetransition

probabilities were .3333 throughout the tree. The nodal probabilities are therefore:

Exhibit 8:

Nodal probabilities in the standard binomial tree.

——.037
——.1111
——.3333 ——2222
1 ——.4444 |
L6666 ——.4444
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You askyourselfhow much ofthe uppermosénding probability(.037) ends up agpart of the
probability atthe preceding nodeWell, all of it since ithas nootherway togo. Thatmeanghat
1111 - .037 = .0741 must have come from the second uppezntbsgnode. Inrelative terms,
1/3 of .2222 (= .0741) went up and that leaves 2/3 of .2222 (= .1481) to go down into the .4444
probability atthe center node of step 2. Thamaining.4444 - .1481 = .2963 must hageme
from the third uppermostndingnode. Inrelative terms2/3 of .4444 (= .2963) went up atitat
leaves 1/3 of .4444 (= .1481) to go dowfinally, all of the fourth uppermostnding nodgthe

bottom node) must have gone sipce it had no way to ggown. Amazingly, thispatternholds
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for the wholetree atall steps: If yonumberthe stepsi =0, 1,., nand the nodes in eastep |
=0, 1, ..., 1, then the portion of nodal probability going down will be w(j /i) = j /i and the portion
of probability going up will be 1 - w(j / i).You can depict these down portiongely as a linear

function across different j /i ratios in the following graph:

Exhibit 9:

The weight function in the standard and implied binomial trees.

w( /i)

0.91
0.8r up weight

o7 Q-w(/i)
0.er
0.5r
0.41
0.3r
0.2r
0.1

down weight
w(j /i)

/i

Effectively, you can summarizéhe entirestock process throughis weight function. A standard
binomial tree isthen completely described by an approximately lognormal engliogability
distribution and the abovinear weight function. Also, it turneut thatyou cancompletely
describe an implied binomial tree by an arbitrary ending probability distributiothaisdme linear

weight function as in the standard binomial tree.
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So far you havenot gained much inerms of generalizatiobut someinsight into standard and
implied binomialtrees. Butyou see a way t@ut this insight togooduse. The standard and

implied binomialtrees are expressed in terms_of patbbabilities.You can now use the above

weight function to express them in terms of nqutababilities. You would obtain thesametree

butfinally you couldhopefullychoose more general weight functiamsich are notlinear. This is

exactly how you proceed.

Now, youwork outhow to express the standard amglied trees in terms of nodgkrobabilities.
Schematically, yoare concerned withnding the preceding nodgiventhe two later nodes, but
now in terms of nodgbrobabilities. In addition, you have to keeack of where you are in the

tree in terms of steps and levels since the weights depend on the location of the node in the tree.

— (Pupmdal’ Sp W)
(Pnodal, S) _I
L (PdownnOdal, S:Iown, Wdown)

After working out the detailed proofs in the appendix, you find the following three steps.
First, you calculate P = wy, Py + (1 - Wiown) Paown ™™ Here you note that theeights
recursively break ughe nodalprobabilities and reassemble themtla¢ precedingstep. The
cumulative probability is preserved at 1 at every step.

Second, you calculate the transitiprobability as p = w P,/ P Here you not¢hat, as
long as the weights are between 0 and 1, the trangitatability pwill also be between 0 and 1.

That means there cannot be any arbitrage violations in a generalized binomial tree with an arbitrary

weight function.
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Third, you calculate thstockprice S=[p & + (1 - p) Sowr / (r/d). Here you note that you can

rewrite the stoclprice formula as S = [wy, P Syp + (1 - Wiown) Paown ™ Suowr] / (/D).
The weights also recursively break tie products ohodal probabilities andtock prices and
reassemble them dhe precedingstep. Therisk-neutral presenvalue of the stock is thus
preserved at every step.

These are thequivalent formulas t@onstruct standard anchplied binomialtrees expressed in

terms of nodal probabilities.

Next, you consider morgeneral weight functions. lorder to add one degree foéedom, you
can choose one weiglgayw(.5), arbitrarily. You also knowthat w(0) = Osince atthe bottom
node you cannot move down any further and w(1) = 1 since at the top node you must move down.
Finally, you draw gpiecewise linear functiothrough those points. The weidhnction for w(.5)

= .75 looks as follows:

13



Exhibit 10:

Linear and generalized weight functions.

w(j /i)

0.91 up weight w(.5) = .75
osl  @-wG/i)

down weight
w(j /i)

t t t !

0 0.2 0.4 0.6 0.8 i/ 1
Looking at the above concave weidhhction withw(.5) = .75, you wonder whdahis weight
functiondoes to the patprobabilities. In amnmplied binomialtree,any pathleading from today’s
stock price to some givemode at the end would be taken with egpadbability. With the
concave weight function you figuteat a pathooping down first and thenoming back up is
morelikely to betaken than a path looping up and tleeming backdown. The reverskolds of
course for convex weight functions. A quick check based on the Euromstoptions on the
S&P500 in the post-crash period (1987-1994) shows you that concave Wweigfidns explain

the observed option prices better than either linear or convex weight functions.

Each weight function describes a differdrge and you use this feature fa the prices of

additional related options. In particular, you can now vary w(.5) from 0 to 1 and find the value for

14



w(.5) which pricesTom’s givenoption correctly. After some optimization, ydind that w(.5)
should be75. Nowyou construct thgeneralizedinomialtreegiven this weight function. You

can unravel the implied stock price tree as:

Exhibit 11:

Stock price in the generalized binomial tree.
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To do so,you need theending nodal probabilities again which didt change fronthe implied
binomialtree. Thatlso insureshat yourand Judy’s givemptions wll be priced correctly. The
nodal probabilities are,®™' = .3111, %= 4185, P°%'= 2352, and £°*= .0352. Next you
need the weights at thendingnodes. Given the newkinked weight functionthe weights are
w0 /3)=0,w(1/3)=.5 w(2/3)=.8338nd w(3/3) = 1 for thetockprices of.125, .5, 2,
and 8, respectively. First, you focus the highlightednode inexhibit 11 withthe stockprice
4.8382and calculate ' = wy, Py + (1 - Wiown) Poown™®® = 1 .0352 + (1 - .8333) .2352 =
.0744. Second, yoealculate the transitioprobability as p = y P/ P°%'= 1 .0352 / .0744

= .4730. Third, yocalculate thestockprice S=[p & + (1 - p) Sowd / (r/0) = [.4730 8 + (1 -

.4730) 2] / (rb) = 4.8382.
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You now evaluate yougiven call by usinghe same transition probabilities p as above and the

recursion C =[p G+ (1 - p) Gowr / r as:

Exhibit 12:

Your given call in the generalized binomial tree.
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You see that yopriced yourgiven callcorrectly. Youalso check fodudy’s giverput which you

evaluate as:

Exhibit 13:

Judy’s given put in the generalized binomial tree.

—O0
—O0
——.134 ——o0
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L 825

After you realize that Judy’s given put is also priced correctly syibunave tocheck Tom'’s given

put:
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Exhibit 14:

Tom’s given put in the generalized binomial tree.

——0
—o0 A
4029 | —o0
L4887 {
L7742

Tom'’s put is also priced correctly and you finally go on to evaluate your client’s call:

Exhibit 15:

Your client’s call in the generalized binomial tree.

——3.8382

——1.7549
3769 ——2254

L——.0831
L—20
Your result is .3769 andgain you think your problem is solvetfou arejust about tagive your
client a ring before you call it a night when you #eemanaging director headirtgwards your
desk. Throughout theéay you already acquired sorfanearound thecubiclesfor being able to
fit these given options, and you are worried that Helen is going to test that in some way. And so it
is. Helen foundut thatyours, Judy’s, and Tomgivenoptions wereall misquoted as European

optionswhile theyarereally Americanoptions. Moreover, the interest rated dividendyield are

both predicted to be .01 pgear forthe next three yearddelen asks you whahe client’s call is

17



worth given this new information.You point out that it probably does not mattesince the
interest rateand dividendyield are so low, bushe insists, ever so gently, on a méanal
approach. Aftenll, the question of how tgalue anoption giventhe prices of relateAmerican

options is of general interest.

After you sit down again, yostartassessingpow much information youeally have: three given
options which have to be priced correctly, the stock itself which has to be priced correctly, and the
ending probabilities which have to sumdoe. Thaimakesfive pieces of information which need

to be matched bfive degrees of freedom. Next you look at ygeneralizedree. That tree is
completely specified by the ending probability distribution and the weight function. By picking the
four ending probabilities you could matébur pieces of information.And for the lastpiece of
information you could choose the weight w(.5) again. The necessary eqladimathemmessy,

and you resort to an optimization method.

First, you use the set abdal probabilities anthe weightfunction withw(.5) = .75from above.
Then youconstruct the trewith interestreturn r = 1.01dividend yieldd = 1.01,and for pricing

the options you have to check for #erly exercise condition your new recursion C max {S -

K, [p Cp+ (1 -p) Gowd / 1} where K is thestriking price. Yours, Judy’s, and Tom’s given
options are now somewhat underpriced by .0142, .0131,0018] respectively, because of the
discounting at an interesate of .01 peryear. Thestock price isstill correct at land the
probabilities sum to one, too. Next you need a measure for the misfit of your model and you use a

simple squared error measure in your optimization:

18



Minimize {(.4815 - your given option’s price based on thedelf + (.445 -Judy’s giveroption’s
price based on thmodely + (.4029 - Tom’s givemption’s price based on tmeodelf + (1 - the
stock price based on thmodelf + (1 - thesum of ending nodal probabilitiés)by varying the
ending nodal probabilities anthe weightw(.5) under the constraints that teeding nodal

probabilities are non-negative and that the weight w(.5) is between 0 and 1.

You briefly contemplate abowtriting an optimization code based tire Polak-Ribiere algorithm
from scratch, but aftexhecking your watch you settle asing astandard non-linear optimization
package. It soon returns your final results as w(.5) = .73¥*R .3181, P = 4356, P"°% =

.2047, and P°*=.0416. You can now unravel the stock price tree as:

Exhibit 16:

Stock price in the generalized binomial tree with American options.

—8
—5.189 {
—2.87 —2
1 ——1.1439
L 5795 — 5
L2751
L 125

To do soyou follow the method for thgeneralizedinomialtree butyou use theptimal ending
nodal probabilities and weights #te ending nodes based on the nesptimal kinked weight

function withw(.5) = .731. First, you focus on theghlighted node in exhibit 16 witthe stock
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price5.189and calculate ' = wy, Py + (1 - Wiowr) Poown ™™ = 1 .0416 + (1 - .8207) .2047 =

.0783. Second, yoealculate the transitioprobability as p = v Py °®/ P°% = 1 .0416 / .0783
= .5315. Third, yowalculate thestockprice S=[p & + (1 - p) Sowrd / (r/0) = [.5315 8 + (1 - .

5315) 2]/ (1.01/1.01) = 5.189.

You now evaluate yougiven call by usinghe same transition probabilities p as above and the

augmented recursion for American options C = max {S - K, jpr@1 - p) Gowr] / I} as:

Exhibit 17:

Your given call in the generalized binomial tree with American options.

|—7
——4.1475)
——1.9935{ —1
4815 [——425
L1474 | ——o0
L0 g
L—o0

You see that yopriced yourgiven callcorrectly. Youalso check fodudy’s giverput which you

evaluate as:
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Exhibit 18:

Judy’s given put in the generalized binomial tree with American options.

—0
—O0 4
——.1443 | —o0
445 ——.2543 |
L 518 | ——.45
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L 825

After you realize that Judy’s given put is also priced correctly syibunave tocheck Tom'’s given

put:

Exhibit 19:

Tom'’s given put in the generalized binomial tree with American options.

——0
—o0 A
4029 —o0
L 4984 {
L 7749

Tom'’s put is also priced correctly and you finally go on to evaluate your client’s call:
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Exhibit 20:

Your client’s given call in the generalized binomial tree with American options.

——4.189
——1.8514
3769 ——.1439

L——.0499
L—0
Your result is .376%gain and, indeedhe price of yourlient’s call didnot change even after
reworking your tree. The reason for graallchanges in thénal version ofthe tree is thahone
of the Americanoptions should be exercisedrly andonly the small change in the interesate

and thedividend yieldhad to be accommodated. However, you allowedherarly exercise in

principle and could have handled it.

Conclusion

As you look upfrom yourwork you realizethat everybody went home alreadfut, ratherthan

leavingright now, youget alast cup of coffee and recdipe day. In getting aystematic picture

of how the different trees are all related to each other you draw the following table:
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Exhibit 21:
Relationship between standard, implied, andyeneralized binomial trees in terms of ending

nodal probability distributions and weight functions.

Binomial Tree Ending Nodal Probability Distributipn Weight Function
Standard (CRR 1979) Lognormal Linear

Implied (Rubinstein 1994) Arbitrary Linear
Generalized Arbitrary Arbitrary

It nicely shows you that iall startswith the standardree which has approximately lognormal
ending probabilities and a linear weight function to desdhbestructure of the tree. Timaplied
binomial tree allows the ending distribution to be arbitrargut keeps theigid linear weight
function to describeghe structure of the tree. Thgeneralizedbinomial tree allows arbitrary
ending distributionsbut also arbitrary weight functions. Thus, #&ucture of the tree is

significantly more flexible.

In looking forward, youealizethatbiggertrees aresasilyconstructed. The simplaechanics of
binomial trees are preserved, thduition is still straightforward, and the computations ardy

marginallymoreinvolvedthan the ones for a standdiomialtree ofequal size.Moreover, you
note thatinstead ofonly usingEuropean andmericanoptions you can also calibratige tree to

exotic options as long as you can evaluate them lmnamialtree altogether.Also, you make a

23



note about talking to the people in fixed income and foreign exchange. After all, you are confident

that you can adapt your generalized binomial trees to their calibration problems as well.

One long thought you give to the elegance of the tree. All the fitting and tweaking is done and the
tree still guarantees that there are no arbitragdations. Ofcourse, the secrdies with the

weight functionbut you arestill a little bit amazed of howvell it works. And also, you did not

need anyinterpolation or extrapolation routine acrdgse and striking prices to come up with
hypothetical options agpposed to Derman and Kani (1993) or Dupire (1993)thistpoint, you
understand that in choosing a piecewise linear weight function, you match one option kipleach

in the weightfunction andthe connecting segments are a reasonahleto givestructure to the

remaining tree.

After taking a deep breath you call yathient and evegethim onthe phone. Theatl would be
cost .376%lus commissions and feggu tell him. He replieghat he willthink about itsome
more. “Great”, you think as you shdbwn the computer andavefor the night. But onyour

way out you already marvel at the beauty of generalized binomial trees.
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Appendix: Proof of 3-Step Solution Technique with Nodal Probabilities

dal
I— R,r}(ila’ S,j+1
dal
TETRE RTINS
] anodal, S,j

Given the nodal probabilities and stock prices at time i, you can &wltee nodaprobability and

stock price at the preceding node in three steps:

Step One: PO = (1-w ) PP+ wy,, P (A-1)
_n_odal

Step Two: Poss = W, 1 o = P (A-2)
i1,

Step Three: Sl—l,j =[(1- p—lj) SJ T Ry i§+]]/( £9) (A-3)

where: W, = j/1 is the fraction of nodal probability which is going down from a

subsequent node to its preceding lower node

Proof of Step One: PO = () RE = (7 (R + PRED) (A-4)
nodal nodal i-1 i-1
- Pnodal — (i—l)( i + I:i),jw‘l ) — ( j ) Pnodal+ (j ) Pnodal (A _ 5)
i-1,j j i i i i, i i,j+1
: SR ) I %) I ¢ IR ()
(i-1)! (i-)! .. .
- Rfi?al L _i|l_j)! Fi)r}odal+ LG —iIl—J')! Fi)yr}idlal — | _J Rr}odal+ J +1 R'r}zidlal (A _ 6)
7G-1)! (Dl -] ! !
. -
- prote = (1- ) s (L pres (A-7)
, i . i ,
- Rgz(;ial - (1_ W]) Fi){;odal+ W,j+1 Iij,j]?tdlal (A _ 8)
RS (R,
Proof of Step Two: Py =W, P’n'odlal =W, (‘i_i)P;a; = p=p (A-9)
-1, [EPANEEN i
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