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Abstract

We consider the problem of consistently pricing new options given the prices of related options on

the same stock.  The Black-Scholes formula and standard binomial trees can only accommodate

one related European option which then effectively specifies the volatility parameter.  Implied

binomial trees can accommodate only related European options with the same time-to-expiration.

The generalized binomial trees introduced here can accommodate any kind of related options

(European, American, or exotic) with different times-to-expiration.

                                                       

* Jens Carsten Jackwerth is a post-doctoral visiting scholar at the Haas School of Business, University of California

at Berkeley.  For helpful discussions, I would like to thank Mark Rubinstein.
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Generalized Binomial Trees

In order to motivate the method of generalized binomial trees for option pricing, let us consider a

rather common problem.  You are asked to price a new equity option and you are also given the

prices of related options on the same stock.  If you believe in efficient markets, then you want to

price your new option in a consistent manner with the given prices of the related options.  We will

introduce additional related options one at a time and see that our common models can only

handle rather specific cases.  Generalized binomial trees enable us to incorporate price information

on any kind of related options (European, American, or exotic) with different times-to-expiration.

Standard Binomial Trees

Say you are working an options desk and a client asks you to price a European call with striking

price 1 expiring in two years.  Fortunately, you have some additional information.  The stock is at

1, there are no dividends, and the interest rate is zero.  Easy enough, after you estimate the

volatility of the stock you can price the option with the Black-Scholes formula or a standard

binomial tree.  But in real life, you often know about the prices of other related options traded on

the same stock.  Here, you are aware of a European call with striking price 1 and expiring in three

years which trades at .4815.  Of course, you use the Black-Scholes formula to find the implied

volatility of your given call and then price your client’s call.  Or equivalently, you can work it out

in a standard binomial tree (Cox, Ross, and Rubinstein (1979)) with, say, three timesteps.  After

some search you establish the implied volatility of your given call at .6931.  The up-move u for the

stock price is therefore given by e.6931 √1 = 2 and your tree for the stock itself looks as follows:
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Exhibit 1:

Stock price in the standard binomial tree.

ÚÄÄÄÄ8
ÚÄÄÄÄ4 ´

ÚÄÄÄÄ2 ´ ÃÄÄÄÄ2
1 ´ ÃÄÄÄÄ1 ´

ÀÄÄÄÄ.5 ´ ÃÄÄÄÄ .5
ÀÄÄÄÄ.25 ´

ÀÄÄÄÄ.125

You evaluate the transition probability p = ((r/δ) - d) / (u - d) = ((1/1) - .5) / (1.5 - .5) = .3333

where r is 1 plus the interest rate per step, δ is 1 plus the dividend yield per step, u is the up-move,

and d is the down-move.  Next, you use the recursive relation C = [p Cup + (1 - p) Cdown] / r.  You

then evaluate your given call as:

Exhibit 2:

Your given call in the standard binomial tree.

ÚÄÄÄÄ7
ÚÄÄÄÄ3 ´

ÚÄÄÄÄ1.2222́ ÃÄÄÄÄ1
.4815 ´ ÃÄÄÄÄ.3333 ´

ÀÄÄÄÄ.1111 ´ ÃÄÄÄÄ0
ÀÄÄÄÄ0 ´

ÀÄÄÄÄ0

You see that you priced your given call correctly.  Next, you evaluate your client’s call:



4

Exhibit 3:

Your client’s call in the standard binomial tree.

ÚÄÄÄÄ3
ÚÄÄÄÄ1 ´

.3333 ´ ÃÄÄÄÄ0
ÀÄÄÄÄ0 ´

ÀÄÄÄÄ0

Your result is .3333 and you think your problem is solved.

Implied Binomial Trees

However, at this point your desk manager has great news.  Judy found out that there is also a

European put traded with striking price .95 and three years to expiration.  Its value is .445 and she

asks you what the value of your client’s call is, given this additional information.  Evaluating the

put on your old tree gives you a value of .4444 and you realize that you are looking at part of a

volatility smile.  This means that the implied volatilities of options with different striking prices

(but the same time-to-expiration) are not identical.  Therefore, the standard binomial tree does not

work any longer and the same goes for the Black-Scholes formula.  But you don’t despair yet

since you remember that you can build an implied binomial tree (Rubinstein (1994)) which you can

fit to your and Judy’s given options since they expire at the same time.  But before you can build

the implied binomial tree, you have to find a set of risk-neutral (nodal) probabilities which price

the two given options, the stock itself, and which sum to 1:
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(P0
nodal 0 + P1

nodal 0 +P2
nodal 1 + P3

nodal 7 ) / r3 = .4815

(P0
nodal .825 + P1

nodal .45 +P2
nodal 0 + P3

nodal 0 ) / r3 = .445

(P0
nodal .125 + P1

nodal .5 +P2
nodal 2 + P3

nodal 8 ) / (r / δ)3 = 1

(P0
nodal 1 + P1

nodal 1 +P2
nodal 1 + P3

nodal 1 ) = 1

This system of equations can be solved for the desired (nodal) probabilities P0
nodal = .3111, P1

nodal =

.4185, P2
nodal = .2352, and P3

nodal = .0352 associated with stock prices of .125, .5, 2, and 8,

respectively.  If you had been faced with more potential stock prices than equations, as is normally

the case, you would have had to resort to one of the more general methods to derive risk-neutral

probabilities given your set of stock prices in year three (e.g. Shimko (1993), Jackwerth and

Rubinstein (1996)). These methods effectively interpolate and extrapolate the existing option

prices to find hypothetical option prices at striking prices corresponding to all potential stock

prices.  You can then infer the nodal probabilities from such a set of options prices by

differentiating twice with respect to the striking price and multiplying the result by r3 (Breeden and

Litzenberger (1978)).  You can now unravel the implied stock price tree:
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Exhibit 4:

Stock price in the implied binomial tree.

ÚÄÄÄÄ8
ÚÄÄÄÄ3.8587́

ÚÄÄÄÄ2.0056́ ÃÄÄÄÄ2
1 ´ ÃÄÄÄÄ1.0397́

ÀÄÄÄÄ.5014 ´ ÃÄÄÄÄ .5
ÀÄÄÄÄ.2411 ´

ÀÄÄÄÄ.125

To do so, you calculate path probabilities at the end of the tree based on your nodal probabilities.

The nodal probabilities are the total probability of reaching a given node in a tree.  However, in a

binomial tree there are several paths to reach any such given node.  The exact number of paths is

the binomial coefficient ( ) !
!( ) !j

i i
j j i

 = −  where i = 0, ..., n is the step of the tree and j = 0, ..., i is the

level within that step.  An implied binomial tree assumes that each path is equally likely to be

taken.  You therefore calculate the path probabilities by dividing each nodal probability by the

number of paths leading up to that node.  The nodal probabilities are P0
nodal = .3111, P1

nodal =

.4185, P2
nodal = .2352, and P3

nodal = .0352.  After dividing by 1, 3, 3, and 1, you find that the path

probabilities are P0
path = .3111, P1

path = .1395, P2
path = .0784, and P3

path = .0352 for the stock levels

of .125, .5, 2, and 8, respectively.

Last, you derive the transition probabilities p for the recursion which will now be different for each

node.  Schematically, you are concerned with finding the preceding node given the two later

nodes:
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ÚÄÄÄÄ (Pup
path,    Sup)

(Ppath, S) ´
ÀÄÄÄÄ (Pdown

path, Sdown)

First, you calculate Ppath = Pup
path + Pdown

path.

Second, you calculate the transition probability as p = Pup
path / Ppath = Pup

path / (Pup
path + Pdown

path).

Third, you calculate the stock price S = [p Sup + (1 - p) Sdown] / (r/δ).

For the highlighted node in exhibit 4 with the stock price 3.8587, the calculations are p = .0352 /

(.0352 + .0784) = .3098.  The stock price is thus S = [.3098 8 + (1 - .3098) 2] / (r/δ) = 3.8587.

You now evaluate your given call by using the same transition probabilities p as above and the

recursion C = [p Cup + (1 - p) Cdown] / r as:

Exhibit 5:

Your given call in the implied binomial tree.

ÚÄÄÄÄ7
ÚÄÄÄÄ2.8587́

ÚÄÄÄÄ1.2160́ ÃÄÄÄÄ1
.4815 ´ ÃÄÄÄÄ.3598 ´

ÀÄÄÄÄ.1173 ´ ÃÄÄÄÄ0
ÀÄÄÄÄ0 ´

ÀÄÄÄÄ0

You see that you priced your given call correctly.  You also check for Judy’s given put which you

evaluate as:
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Exhibit 6:

Judy’s given put in the implied binomial tree.

ÚÄÄÄÄ0
ÚÄÄÄÄ0 ´

ÚÄÄÄÄ.1894 ´ ÃÄÄÄÄ0
.445 ´ ÃÄÄÄÄ.2881 ´

ÀÄÄÄÄ.5717 ´ ÃÄÄÄÄ.45
ÀÄÄÄÄ.7089 ´

ÀÄÄÄÄ.825

After you realize that Judy’s given put is also priced correctly, you go on to evaluate your client’s

call:

Exhibit 7:

Your client’s call in the implied binomial tree.

ÚÄÄÄÄ2.8587
ÚÄÄÄÄ1.0056́

.342 ´ ÃÄÄÄÄ.0397
ÀÄÄÄÄ.0129 ´

ÀÄÄÄÄ0

Your result is .342 and again you think your problem is solved.
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Generalized Binomial Trees

But as luck would have it, the situation changes again, and the head of derivatives finds even

another option.  Tom informs you that there is also another European put traded with striking

price 1.05 and two years to expiration.  Its value is .4029 and he asks you what your client’s call is

worth given the prices of all 3 given options.  The value of Tom’s given put based on the implied

binomial tree above is only .369 and you cannot use the implied binomial tree approach any

longer.  So you are wondering about a more general framework.  Ideally, it would preserve the

simplicity of binomial trees while allowing the tree to fit options with different implied volatilities

and different times-to-expiration.

You go to the library and peruse the relevant literature.  Derman and Kani (1994) and Dupire

(1994) suggest related implied trees which are calibrated to a large set of option prices.  For each

node, they need a corresponding option price with striking price equal to the nodal stock price and

expiring at the time associated with that node.  Since they are faced with far fewer given option

prices than required, they need to interpolate and extrapolate from given option prices.  Their trees

are rather sensitive to the interpolation and extrapolation method and require adjustments to avoid

arbitrage violations.  Also, Lagnado and Osher (1996) suggest a method of calibrating a finite

difference grid to options prices.  Their method seems to be rather computationally intensive.  In

comparison, the implied binomial tree you used so far is always arbitrage-free, easy to understand,

and fast to compute.  At this point you wonder if it is not possible to generalize your old implied

binomial tree.  A natural candidate for generalization would be the assumption that all paths

leading to the same node are equally likely to be taken.  That assumption gives the implied
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binomial tree much structure but at the same time limits its flexibility to fit additional options

which expire earlier.

Now it is time for you to retrace your steps and you look at the nodal probabilities, that is the total

risk-neutral probability that you reach some node.  For the standard binomial tree, the transition

probabilities were .3333 throughout the tree.  The nodal probabilities are therefore:

Exhibit 8:

Nodal probabilities in the standard binomial tree.

ÚÄÄÄÄ.037
ÚÄÄÄÄ.1111 ´

ÚÄÄÄÄ.3333 ´ ÃÄÄÄÄ.2222
1 ´ ÃÄÄÄÄ.4444 ´

ÀÄÄÄÄ.6666 ´ ÃÄÄÄÄ.4444
ÀÄÄÄÄ.4444 ´

ÀÄÄÄÄ.2963

You ask yourself how much of the uppermost ending probability (.037) ends up as part of the

probability at the preceding node?  Well, all of it since it has no other way to go.  That means that

.1111 - .037 = .0741 must have come from the second uppermost ending node.  In relative terms,

1/3 of .2222 (= .0741) went up and that leaves 2/3 of .2222 (= .1481) to go down into the .4444

probability at the center node of step 2.  The remaining .4444 - .1481 = .2963 must have come

from the third uppermost ending node.  In relative terms, 2/3 of .4444 (= .2963) went up and that

leaves 1/3 of .4444 (= .1481) to go down.  Finally, all of the fourth uppermost ending node (the

bottom node) must have gone up since it had no way to go down.  Amazingly, this pattern holds
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for the whole tree at all steps:  If you number the steps i = 0, 1, ... , n and the nodes in each step j

= 0, 1, ... , i, then the portion of nodal probability going down will be w(j / i) = j / i and the portion

of probability going up will be 1 - w(j / i).  You can depict these down portions nicely as a linear

function across different j / i  ratios in the following graph:

Exhibit 9:

The weight function in the standard and implied binomial trees.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

w(j / i)

up weight
(1 - w(j / i))

down weight
w(j / i)

j / i

Effectively, you can summarize the entire stock process through this weight function.  A standard

binomial tree is then completely described by an approximately lognormal ending probability

distribution and the above linear weight function.  Also, it turns out that you can completely

describe an implied binomial tree by an arbitrary ending probability distribution and the same linear

weight function as in the standard binomial tree.
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So far you have not gained much in terms of generalization but some insight into standard and

implied binomial trees.  But you see a way to put this insight to good use.  The standard and

implied binomial trees are expressed in terms of path probabilities. You can now use the above

weight function to express them in terms of nodal probabilities.  You would obtain the same tree

but finally you could hopefully choose more general weight functions which are not linear.  This is

exactly how you proceed.

Now, you work out how to express the standard and implied trees in terms of nodal probabilities.

Schematically, you are concerned with finding the preceding node given the two later nodes, but

now in terms of nodal probabilities.  In addition, you have to keep track of where you are in the

tree in terms of steps and levels since the weights depend on the location of the node in the tree.

ÚÄÄÄÄ (Pup
nodal,    Sup,    wup)

(Pnodal, S) ´
ÀÄÄÄÄ (Pdown

nodal, Sdown, wdown)

After working out the detailed proofs in the appendix, you find the following three steps.

First, you calculate Pnodal = wup Pup
nodal + (1 - wdown) Pdown

nodal.  Here you note that the weights

recursively break up the nodal probabilities and reassemble them at the preceding step.  The

cumulative probability is preserved at 1 at every step.

Second, you calculate the transition probability as p = wup Pup
nodal / Pnodal.  Here you note that, as

long as the weights are between 0 and 1, the transition probability p will also be between 0 and 1.

That means there cannot be any arbitrage violations in a generalized binomial tree with an arbitrary

weight function.
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Third, you calculate the stock price S = [p Sup + (1 - p) Sdown] / (r/δ).  Here you note that you can

rewrite the stock price formula as S Pnodal = [wup Pup
nodal Sup + (1 - wdown) Pdown

nodal Sdown] / (r/δ).

The weights also recursively break up the products of nodal probabilities and stock prices and

reassemble them at the preceding step.  The risk-neutral present value of the stock is thus

preserved at every step.

These are the equivalent formulas to construct standard and implied binomial trees expressed in

terms of nodal probabilities.

Next, you consider more general weight functions.  In order to add one degree of freedom, you

can choose one weight, say w(.5), arbitrarily.  You also know that w(0) = 0 since at the bottom

node you cannot move down any further and w(1) = 1 since at the top node you must move down.

Finally, you draw a piecewise linear function through those points.  The weight function for w(.5)

= .75 looks as follows:



14

Exhibit 10:

Linear and generalized weight functions.
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w(.5) = .5

w(.5) = .75

Looking at the above concave weight function with w(.5) = .75, you wonder what this weight

function does to the path probabilities.  In an implied binomial tree, any path leading from today’s

stock price to some given node at the end would be taken with equal probability.  With the

concave weight function you figure that a path looping down first and then coming back up is

more likely to be taken than a path looping up and then coming back down.  The reverse holds of

course for convex weight functions.  A quick check based on the European index options on the

S&P500 in the post-crash period (1987-1994) shows you that concave weight functions explain

the observed option prices better than either linear or convex weight functions.

Each weight function describes a different tree and you use this feature to fit the prices of

additional related options.  In particular, you can now vary w(.5) from 0 to 1 and find the value for
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w(.5) which prices Tom’s given option correctly.  After some optimization, you find that w(.5)

should be .75.  Now you construct the generalized binomial tree given this weight function.  You

can unravel the implied stock price tree as:

Exhibit 11:

Stock price in the generalized binomial tree.

ÚÄÄÄÄ8
ÚÄÄÄÄ4.8382́

ÚÄÄÄÄ2.7549́ ÃÄÄÄÄ2
1 ´ ÃÄÄÄÄ1.2254́

ÀÄÄÄÄ.6259 ´ ÃÄÄÄÄ .5
ÀÄÄÄÄ.2758 ´

ÀÄÄÄÄ.125

To do so, you need the ending nodal probabilities again which did not change from the implied

binomial tree.  That also insures that your and Judy’s given options will be priced correctly.  The

nodal probabilities are P0
nodal = .3111, P1

nodal = .4185, P2
nodal = .2352, and P3

nodal = .0352.  Next you

need the weights at the ending nodes.  Given the new kinked weight function, the weights are

w(0 / 3) = 0, w(1 / 3) = .5, w(2 / 3) = .8333, and w(3 / 3) =  1 for the stock prices of .125, .5, 2,

and 8, respectively.  First, you focus on the highlighted node in exhibit 11 with the stock price

4.8382 and calculate Pnodal = wup Pup
nodal + (1 - wdown) Pdown

nodal = 1 .0352 + (1 - .8333) .2352 =

.0744.  Second, you calculate the transition probability as p = wup Pup
nodal / Pnodal = 1 .0352 / .0744

= .4730.  Third, you calculate the stock price S = [p Sup + (1 - p) Sdown] / (r/δ) = [.4730 8 + (1 -

.4730) 2] / (r/δ) = 4.8382.
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You now evaluate your given call by using the same transition probabilities p as above and the

recursion C = [p Cup + (1 - p) Cdown] / r as:

Exhibit 12:

Your given call in the generalized binomial tree.

ÚÄÄÄÄ7
ÚÄÄÄÄ3.8382́

ÚÄÄÄÄ1.9038́ ÃÄÄÄÄ1
.4815 ´ ÃÄÄÄÄ.4836 ´

ÀÄÄÄÄ.1783 ´ ÃÄÄÄÄ0
ÀÄÄÄÄ0 ´

ÀÄÄÄÄ0

You see that you priced your given call correctly.  You also check for Judy’s given put which you

evaluate as:

Exhibit 13:

Judy’s given put in the generalized binomial tree.

ÚÄÄÄÄ0
ÚÄÄÄÄ0 ´

ÚÄÄÄÄ.134 ´ ÃÄÄÄÄ0
.445 ´ ÃÄÄÄÄ.2324 ´

ÀÄÄÄÄ.5113 ´ ÃÄÄÄÄ.45
ÀÄÄÄÄ.6742 ´

ÀÄÄÄÄ.825

After you realize that Judy’s given put is also priced correctly, you still have to check Tom’s given

put:



17

Exhibit 14:

Tom’s given put in the generalized binomial tree.

ÚÄÄÄÄ0
ÚÄÄÄÄ0 ´

.4029 ´ ÃÄÄÄÄ0
ÀÄÄÄÄ.4887 ´

ÀÄÄÄÄ.7742

Tom’s put is also priced correctly and you finally go on to evaluate your client’s call:

Exhibit 15:

Your client’s call in the generalized binomial tree.

ÚÄÄÄÄ3.8382
ÚÄÄÄÄ1.7549́

.3769 ´ ÃÄÄÄÄ.2254
ÀÄÄÄÄ.0831 ´

ÀÄÄÄÄ0

Your result is .3769 and again you think your problem is solved.  You are just about to give your

client a ring before you call it a night when you see the managing director heading towards your

desk.  Throughout the day you already acquired some fame around the cubicles for being able to

fit these given options, and you are worried that Helen is going to test that in some way.  And so it

is.  Helen found out that yours, Judy’s, and Tom’s given options were all misquoted as European

options while they are really American options.  Moreover, the interest rate and dividend yield are

both predicted to be .01 per year for the next three years.  Helen asks you what the client’s call is



18

worth given this new information.  You point out that it probably does not matter since the

interest rate and dividend yield are so low, but she insists, ever so gently, on a more formal

approach.  After all, the question of how to value an option given the prices of related American

options is of general interest.

After you sit down again, you start assessing how much information you really have: three given

options which have to be priced correctly, the stock itself which has to be priced correctly, and the

ending probabilities which have to sum to one.  That makes five pieces of information which need

to be matched by five degrees of freedom.  Next you look at your generalized tree.  That tree is

completely specified by the ending probability distribution and the weight function.  By picking the

four ending probabilities you could match four pieces of information.  And for the last piece of

information you could choose the weight w(.5) again.  The necessary equations look rather messy,

and you resort to an optimization method.

First, you use the set of nodal probabilities and the weight function with w(.5) = .75 from above.

Then you construct the tree with interest return r = 1.01, dividend yield δ = 1.01, and for pricing

the options you have to check for the early exercise condition in your new recursion C = max {S -

K, [p Cup + (1 - p) Cdown] / r} where K is the striking price.  Yours, Judy’s, and Tom’s given

options are now somewhat underpriced by .0142, .0131, and .008, respectively, because of the

discounting at an interest rate of .01 per year.  The stock price is still correct at 1 and the

probabilities sum to one, too.  Next you need a measure for the misfit of your model and you use a

simple squared error measure in your optimization:
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Minimize {(.4815 - your given option’s price based on the model)2 + (.445 - Judy’s given option’s

price based on the model)2 + (.4029 - Tom’s given option’s price based on the model)2 + (1 - the

stock price based on the model)2 + (1 - the sum of ending nodal probabilities)2} by varying the

ending nodal probabilities and the weight w(.5) under the constraints that the ending nodal

probabilities are non-negative and that the weight w(.5) is between 0 and 1.

You briefly contemplate about writing an optimization code based on the Polak-Ribiere algorithm

from scratch, but after checking your watch you settle on using a standard non-linear optimization

package.  It soon returns your final results as w(.5) = .731, P0
nodal = .3181, P1

nodal = .4356, P2
nodal =

.2047, and P3
nodal = .0416.  You can now unravel the stock price tree as:

Exhibit 16:

Stock price in the generalized binomial tree with American options.

ÚÄÄÄÄ8
ÚÄÄÄÄ5.189 ´

ÚÄÄÄÄ2.87 ´ ÃÄÄÄÄ2
1 ´ ÃÄÄÄÄ1.1439́

ÀÄÄÄÄ.5795 ´ ÃÄÄÄÄ .5
ÀÄÄÄÄ.2751 ´

ÀÄÄÄÄ.125

To do so, you follow the method for the generalized binomial tree but you use the optimal ending

nodal probabilities and weights at the ending nodes based on the new optimal kinked weight

function with w(.5) = .731.  First, you focus on the highlighted node in exhibit 16 with the stock
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price 5.189 and calculate Pnodal = wup Pup
nodal + (1 - wdown) Pdown

nodal = 1 .0416 + (1 - .8207) .2047 =

.0783.  Second, you calculate the transition probability as p = wup Pup
nodal / Pnodal = 1 .0416 / .0783

= .5315.  Third, you calculate the stock price S = [p Sup + (1 - p) Sdown] / (r/δ) = [.5315 8 + (1 - .

5315) 2] / (1.01/1.01) = 5.189.

You now evaluate your given call by using the same transition probabilities p as above and the

augmented recursion for American options C = max {S - K, [p Cup + (1 - p) Cdown] / r} as:

Exhibit 17:

Your given call in the generalized binomial tree with American options.

ÚÄÄÄÄ7
ÚÄÄÄÄ4.1475́

ÚÄÄÄÄ1.9935́ ÃÄÄÄÄ1
.4815 ´ ÃÄÄÄÄ.425 ´

ÀÄÄÄÄ.1474 ´ ÃÄÄÄÄ0
ÀÄÄÄÄ0 ´

ÀÄÄÄÄ0

You see that you priced your given call correctly.  You also check for Judy’s given put which you

evaluate as:
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Exhibit 18:

Judy’s given put in the generalized binomial tree with American options.

ÚÄÄÄÄ0
ÚÄÄÄÄ0 ´

ÚÄÄÄÄ.1443 ´ ÃÄÄÄÄ0
.445 ´ ÃÄÄÄÄ.2543 ´

ÀÄÄÄÄ.518 ´ ÃÄÄÄÄ.45
ÀÄÄÄÄ.6682 ´

ÀÄÄÄÄ.825

After you realize that Judy’s given put is also priced correctly, you still have to check Tom’s given

put:

Exhibit 19:

Tom’s given put in the generalized binomial tree with American options.

ÚÄÄÄÄ0
ÚÄÄÄÄ0 ´

.4029 ´ ÃÄÄÄÄ0
ÀÄÄÄÄ.4984 ´

ÀÄÄÄÄ.7749

Tom’s put is also priced correctly and you finally go on to evaluate your client’s call:
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Exhibit 20:

Your client’s given call in the generalized binomial tree with American options.

ÚÄÄÄÄ4.189
ÚÄÄÄÄ1.8514́

.3769 ´ ÃÄÄÄÄ.1439
ÀÄÄÄÄ.0499 ´

ÀÄÄÄÄ0

Your result is .3769 again and, indeed, the price of your client’s call did not change even after

reworking your tree.  The reason for the small changes in the final version of the tree is that none

of the American options should be exercised early and only the small change in the interest rate

and the dividend yield had to be accommodated.  However, you allowed for the early exercise in

principle and could have handled it.

Conclusion

As you look up from your work you realize that everybody went home already.  But, rather than

leaving right now, you get a last cup of coffee and recap the day.  In getting a systematic picture

of how the different trees are all related to each other you draw the following table:



23

Exhibit 21:

Relationship between standard, implied, and generalized binomial trees in terms of ending

nodal probability distributions and weight functions.

Binomial Tree Ending Nodal Probability Distribution Weight Function

Standard (CRR 1979) Lognormal Linear

Implied (Rubinstein 1994) Arbitrary Linear

Generalized Arbitrary Arbitrary

It nicely shows you that it all starts with the standard tree which has approximately lognormal

ending probabilities and a linear weight function to describe the structure of the tree.  The implied

binomial tree allows the ending distribution to be arbitrary but keeps the rigid linear weight

function to describe the structure of the tree.  The generalized binomial tree allows arbitrary

ending distributions but also arbitrary weight functions.  Thus, its structure of the tree is

significantly more flexible.

In looking forward, you realize that bigger trees are easily constructed.  The simple mechanics of

binomial trees are preserved, the intuition is still straightforward, and the computations are only

marginally more involved than the ones for a standard binomial tree of equal size.  Moreover, you

note that instead of only using European and American options you can also calibrate the tree to

exotic options as long as you can evaluate them on a binomial tree altogether.  Also, you make a
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note about talking to the people in fixed income and foreign exchange.  After all, you are confident

that you can adapt your generalized binomial trees to their calibration problems as well.

One long thought you give to the elegance of the tree.  All the fitting and tweaking is done and the

tree still guarantees that there are no arbitrage violations.  Of course, the secret lies with the

weight function but you are still a little bit amazed of how well it works.  And also, you did not

need any interpolation or extrapolation routine across time and striking prices to come up with

hypothetical options as opposed to Derman and Kani (1993) or Dupire (1993).  At this point, you

understand that in choosing a piecewise linear weight function, you match one option by each kink

in the weight function and the connecting segments are a reasonable way to give structure to the

remaining tree.

After taking a deep breath you call your client and even get him on the phone.  The call would be

cost .3769 plus commissions and fees, you tell him.  He replies that he will think about it some

more.  “Great”, you think as you shut down the computer and leave for the night.  But on your

way out you already marvel at the beauty of generalized binomial trees.
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Appendix: Proof of 3-Step Solution Technique with Nodal Probabilities
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Given the nodal probabilities and stock prices at time i, you can solve for the nodal probability and

stock price at the preceding node in three steps:
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