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The Black-Scholes formula assumes that log share prices follow a continuous 
normal distribution. All options are valued in a risk-neutral environment, mirror-
ing the insight behind the BS formula that a risk-free hedge portfolio can be cre-
ated. The option value is then estimated as the discounted expectation of the op-
tion payoff. 
 
The original Black-Scholes paper is littered with stochastic calculus and partial 
differential equations and, to my mind, this obscures the assumptions made about 
asset returns and, to a lesser extent, risk-neutrality. We’re going to provide an al-
ternative derivation free from any mention of Ito’s lemma, integral signs and 
mathematical gobbledygook (such as add the exponents by using the trick known 
as completing the square). This alternative derivation highlights the key role 
played by the assumption that asset returns are lognormal and, in so doing, leads 
on to models that use higher moments such as skewness and kurtosis to reflect 
the volatility smile. 
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NOTE 1 – DERIVING BLACK-SCHOLES FROM LOGNORMAL ASSET RETURNS 
 

Mike Staunton 
 
 
The Black-Scholes formula assumes that log share prices follow a continuous normal distribution. All 
options are valued in a risk-neutral environment, mirroring the insight behind the BS formula that a risk-
free hedge portfolio can be created. The option value is then estimated as the discounted expectation of the 
option payoff. 
 
The original Black-Scholes paper is littered with stochastic calculus and partial differential equations and, 
to my mind, this obscures the assumptions made about asset returns and, to a lesser extent, risk-neutrality. 
We’re going to provide an alternative derivation free from any mention of Ito’s lemma, integral signs and 
mathematical gobbledygook (such as add the exponents by using the trick known as completing the 
square). This alternative derivation highlights the key role played by the assumption that asset returns are 
lognormal and, in so doing, leads on to models that use higher moments such as skewness and kurtosis to 
reflect the volatility smile. 
 
 
Risk-neutral pricing 
 
Let us start by assuming that the correct way to value a call option is by discounting the expected option 
payoff at expiry, where the expectation is calculated in a risk-neutral world. We will also assume that log 
share prices follow a normal distribution with mean M and standard deviation √V; hence ln ST ~ N (M,V). 
Along the way we will define d2 to equal (M-ln(X)) / √V and use a standard normal random variable ZT ~ N 
(0,1). 
 
The call has a value equal to the discounted expectation of it’s payoff, under the risk-neutral probability 
measure Q: 
 

c = exp(-rT) EQ [ max (ST – X, 0) ] 
 
This can be divided into two terms: 
 

c = exp(-rT) EQ [ST | ST > X] - exp(-rT) EQ [X | ST > X] 
 
We will first consider the expectation in the second term: 
 
EQ [X | ST > X]  = X Prob [ln ST > ln X] 
   = X Prob [(ln ST – M) / √V > (ln X – M) / √V ] 
   = X Prob [ZT > (ln X – M) / √V ] 
   = X N(d2) 
 
The variable ln ST has been converted into a standard normal variable by subtracting its mean and dividing by 
its standard deviation. Then the left-hand tail probability has been converted into the right-hand tail 
probability, here the cumulative distribution function of the standard normal distribution (using the symmetry 
of the normal distribution function). 
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The expectation in the first term is more difficult since ST is both the subject of the expectation and the 
conditional statement within the expectation.  Instead we rely on two standard results, one obscure and one 
familiar, for lognormal and normal variables. 
 
The obscure result says that if ln ST ~ N (M,V) then E [ST | ST > X] = E [ST ] N(√V -{ln(X)-M}/√V), where 
X is a number and N() is the cumulative normal  distribution function. This result breaks the conditional 
expectation into an ordinary expectation times a normal distribution function.  
 
The familiar result says that if ln ST ~ N (M,V) then E[ST] = exp(M+0.5V). This allows us to calculate the 
ordinary expectation and thus complete the simplification of the conditional expectation in the first term: 
 
EQ [ST | ST > X]  =  EQ [ST ] N(√V -{ln(X)-M}/√V) 
   =  EQ [ST ] N(d2 + √V) 
   =  EQ [ST ] N(d1) 
   =  exp(M+0.5V) N(d1) 
 
Combining the two terms from the risk-neutral value now gives us the lognormal call option valuation 
formula:  
 

c = exp(-rT) [exp(M+0.5V) N(d1) - X N(d2)] 
    
where we have defined d1 as d2 + √V. 
 
We see that N(d2) is the probability in the risk-neutral world that the option will be exercised, whereas N(d1) 
is the ratio of two risk-neutral expectations, the expectation of ST conditional on option exercise divided by 
the unconditional expectation of ST. 
 
All we now need to derive the familiar Black-Scholes formula (extended to allow for continuous dividends) is 
to replace M and V. Let us assume that M = ln S + (r-q-0.5σ2)T and V = σ2 T. 
 
c  =  exp(-rT) [exp(M+0.5V) N(d1) - X N(d2)] 
  =  exp(-rT) [S exp((r-q)T) N(d1) - X N(d2)] 
  =  S exp(-qT) N(d1) - X exp(-rT) N(d2) 
 
Though this is not the route that Black and Scholes followed in their original derivation, you should now 
see how risk-neutral pricing is combined with the assumption of normal log share prices to give the 
lognormal option valuation formula. Adding the parameter values for the normal distribution then leads to 
the Black-Scholes formula. The next section shows how the parameters of the lognormal and normal 
distributions are linked. 
 
 
Linking normal and lognormal distributions 
 
In finance, a standard assumption is that share prices follow a lognormal distribution – as a consequence 
log share prices will follow a normal distribution. Equivalently we can say that log share returns follow a 
normal distribution – as a consequence share returns will follow a lognormal distribution. Hence it doesn’t 
matter if we talk of lognormal share prices or normal log share returns, as these are just two sides of the 
same assumption.  
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Asset Prices : ST Log Prices : ln ST 
 Returns : ST/S – 1 Log Returns : ln (ST/S) 
   
Distribution Lognormal Normal 
   
First moment M1 M 
Second moment M2 V 
   
First moment link M1 = exp (M + 0.5V) M = 2 ln (M1) - 0.5 ln (M2) 
Second moment link M2 = exp (2M + 2V) V = -2 ln (M1) + ln (M2) 
 
We can characterise a distribution through its moments about the mean (as for the normal distribution in 
the above table) or equivalently through its moments about zero (as for the lognormal distribution). The 
first moment of any distribution is its mean (denoted M1 or simply M), while the second moment (about 
the mean) is the variance, V as opposed to the second moment about zero, M2. 
 
This equivalence allows us to translate parameters between the equivalent exact normal and lognormal 
distributions.  Let us assume that the log share returns have a normal distribution with mean M and 
variance V. Then we can find the central moments (M1 and M2) of the equivalent lognormal distribution 
for returns using the link given at the bottom of the second column in the table. We can reverse this 
process by finding formulas for the mean and variance of the normal distribution (M and V) in terms of the 
central moments of the equivalent lognormal distribution using the link given at the bottom of the third 
column in the table. 
 
 
The spreadsheet layout 
 

 
 
 
 

1
2
3
4
5
6

7

8

9

10
11
12
13
14
15

A B C D E F G H
MikeWF01.XLS Deriving Black-Scholes from Lognormal Asset Returns

Share price (S) 100.00 M 4.6188
Exercise price (X) 98.00 V 0.0128
Int rate-cont (r) 5.00%
Dividend yield (q) 1.00% d2 0.2988

Option life (T,years) 0.50 d1 0.4119

Volatility (σ) 16.00%

N (d2) 0.6174 EQ[ST] 102.02

N (d1) 0.6598 EQ[ST | ST>X] 67.31

call (LN) 6.6352

via LN fn 6.6352
via BS fn 6.6352  
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Writing VBA functions 
 
Once you are familiar with Excel, writing code for VBA functions is relatively straightforward – the 
following table shows how to translate mathematical expressions into Excel and then into VBA. The code 
for functions is then entered into a VBA module sheet (hit Alt+F11 from Excel) – you should find the code 
for the functions I have written by looking for the module sheet contained in the project named as the 
spreadsheet MikeWF01.xls. To create your own module sheet, use Insert / Module from the VBA menu in 
the Project Explorer window and Alt+F11 will return you to Excel. 

 
 
Translation Table 
 
Expression Excel VBA 
   
xy x*y x*y 
x2 x^2 x^2 
   
log e x LN(x) Log(x) 
exp(x) EXP(x) Exp(x) 
√x SQRT(x) Sqr(x) 
3! FACT(3) Application.Fact(3) 
   
N(d1) NORMSDIST(d1) Application.NormSDist(d1) 
N’(d1) or n(d1) NORMDIST(d1,0,1,FALSE) Application.NormDist(d1,0,1,FALSE) 
   
Φ[a:n,p] 1-BINOMDIST(a-1,n,p,TRUE) 1-Application.BinomDist(a-1,n,p,TRUE) 
   
Uniform (0,1) RAND() Rnd 
Normal (0,1) NORMSINV(RAND()) Application.NormSInv(Rnd) 
Normal (M,V) M+SQRT(V)* NORMSINV(RAND()) M+Sqr(V)* Application.NormSInv(Rnd) 
   
 
 
The VBA Code 
 
The Option Explicit line forces you to declare all variables (apart from input parameters) using Dim 
statements, while the Option Base 1 line ensures that VBA arrays are numbered starting from 1 (to 
conform with Excel). The Dim statement declares the variables with the default Variant type. The VBA 
functions, Sqr, Log and Exp, must be used in place of their Excel equivalents. Excel functions are used 
with the preface Application. (alternatively the newer WorksheetFunction. preface will do). Once written, 
the function can be called from the Function Wizard (in the User Defined category) just like any ordinary 
Excel functions. 
 
Option Explicit 
Option Base 1 
 
Function LNCallValue(M, V, X, r, tyr) 
'   Returns LogNormal Call Value 
    Dim d1, d2, Nd1, Nd2 
    d2 = (M - Log(X)) / Sqr(V) 
    d1 = d2 + Sqr(V) 
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    Nd1 = Application.NormSDist(d1) 
    Nd2 = Application.NormSDist(d2) 
    LNCallValue = Exp(-r * tyr) * (Exp(M + 0.5 * V) * Nd1 - X * Nd2) 
End Function 
 
For completeness, I have written another function with the more traditional inputs – note how I have 
incorporated the LNCallValue function in the code. 
 
Function BSCallValue(S, X, r, q, tyr, sigma) 
'   Returns Black-Scholes Call Value 
    Dim M, V 
    M = Log(S) + (r - q - 0.5 * sigma ^ 2) * tyr 
    V = (sigma ^ 2) * tyr 
    BSCallValue = LNCallValue(M, V, X, r, tyr) 
End Function 
 
 
Next steps 
 
There are two important directions that this alternative derivation of the Black-Scholes formula points 
towards. The first is using higher moments to allow for deviations from strict normality (this can be seen in 
the Gram-Charlier expansion for vanilla options below and also can be used to derive analytic 
approximations for Asian and Basket options). The second is that the valuation of European options 
simply involves the calculation of a mathematical expectation – so showing why standard mathematical 
techniques such as Monte Carlo simulation and numerical integration have found their way into option 
valuation. 
 
 
Exercise 
 
In recent years, more interest has been shown in allowing for deviations from strict lognormality 
(motivated by the existence of volatility smiles). One way is to incorporate third and fourth moments that 
differ from normality (skewco=0, kurtco=3) and Corrado & Su use the Gram-Charlier expansion to adjust 
the normal density function. Their call option formula adds two terms to the standard LN/Black-Scholes 
option value. You might also like to write a user-defined function for the Gram-Charlier call option value. 
 
C(GC) = C(BS) + skewco Q3 + (kurtco-3) Q4 
Q3 = (1/3!) S exp(-qT) σ √T [ (2 σ √T - d1) n(d1) + (σ √T)2 N(d1) ] 
Q4 = (1/4!) S exp(-qT) σ √T [ (d1

2 - 1 - 3 σ √T d2) n(d1) + (σ √T)3 N(d1) ] 
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