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Abstract 
 

Laplace transformation is one of the most popular methods of solution of diffu-
sion equations in many areas of science and technology. It is much less used in 
financial engineering. One reason is obvious: it is not supposed to be a way to 
solve a Nobel Prize winning problem. Another one is technical: not many people 
know that all that they need to do is to make simple calculations in the Laplace 
domain. Three years before Black-Scholes formula, the famous (in other areas) 
Stehfest algorithm of numerical inversion of Laplace transforms was published 
(Stehfest, 1970). The performance of the numerical procedure is comparable with 
evaluation of cumulative density functions: your solution in Laplace domain will 
be calculated in 10-14 predefined points on a real axes to achieve 5-6 digits accu-
racy. 
 
It took more then 10 years to “discover” Stehfest algorithm in Hydrodynamics of 
porous media. In short time employing of the algorithm dramatically improved 
the quality of well testing analysis in the 80s. 
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Laplace transformation is one of the most popular methods of solution of diffusion equations in 
many areas of science and technology. It is much less used in financial engineering. One reason is obvious: 
it is not supposed to be a way to solve a Nobel Prize winning problem. Another one is technical: not many 
people know that all that they need to do is to make simple calculations in the Laplace domain. Three years 
before Black-Scholes formula, the famous (in other areas) Stehfest algorithm of numerical inversion of 
Laplace transforms was published (Stehfest, 1970). The performance of the numerical procedure is 
comparable with evaluation of cumulative density functions: your solution in Laplace domain will be 
calculated in 10-14 predefined points on a real axes to achieve 5-6 digits accuracy. 

It took more then 10 years to “discover” Stehfest algorithm in Hydrodynamics of porous media. In 
short time employing of the algorithm dramatically improved the quality of well testing analysis in the 80s. 

 
Double-Barrier Option Pricing as a General First Boundary Problem 

 
Laplace transform has an advantage over other analytical approaches e.g. Fourier or Green’s 

function methods in solving of many practical problems in finance. The most obvious one is a barrier 
options pricing.         
For Call Options (Laplace space, Black-Scholes world) the system of equation and boundary conditions is: 
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where prices are normalized by the strike.  

Let  )(ξvV  be the Laplace transform of a value of plain vanilla call option (unbounded solution of a non-

homogeneous diffusion equation). Then a complete solution can be presented as: 
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To make a solution smooth at strike price we need 
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)(ξbV  is a solution of homogeneous equation 
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with the boundary conditions 
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Substituting the general solution in boundary conditions we finally find constants 3C  and 4C  
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    That is it for the general first (Direchlet) boundary problem. The formulae above plus the put-call 
symmetry and reflection principle give us a number of different exotic options values in Laplace domain. 
Then, in a split of a second they could be converted into real prices. 

Another advantage of Laplace transform method is in straightforward constructing of replications 
of complex options. Thus the results for double barrier options can be expanded in power series of small 
parameter 

1))(( 21 <= −−− due ξξκκε  
and represented as a series of one side barrier options.  
  The second (Neumann) and the third (mixed) boundary problems are not harder to solve. 
Unfortunately, it is much easier to solve these problems than to find proper examples in financial practice. 
One and yet not pure application is an option on the underlying with the supported price due to the stock 
issuer repurchasing policy or governmental currency regulations. It means that we have an impenetrable 
wall at this level.   
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where q is the full (convection and diffusion) flow rate. 
If currency is kept in a corridor, then we have zero flow rates at both walls.  

To generalize the case we can put a membrane instead of a wall. The value of option has a break, 
proportional to delta and coefficient of “skin” effect.  

sqVV −=− −+ ,   dξξ =  

where s is a “skin” coefficient. Passing over “sacred” round numbers could be another example of skin 
effect.  

From Microbiology and Porous Hydrodynamics, we turn to Kinetic Theory of Gases with “jump” 
and “slip” conditions on surfaces as useful abstractions to obtain second order approximations for 
concentration and temperature distributions. Market manipulations with barrier options could make their 
prices behave as if 

qkV jump−= ,   dξξ =  

while actually options have zero value at that barrier. 
  All these parameters might look very artificial, but they are not more artificial than implied 
volatility and much easier to integrate in flexible pricing models. 
 
Beyond Barriers and a Nutcracker’s Smile 

 
Double-barrier step options lose their prices proportionally to the time the underlying is beyond a 

prescribed barrier level.  (I wonder why there are no American options amortizing their principal all the 
time or options with the payoff equal to max(0,exp(-Dt)S-E) which mimic options on a stock providing 
continuous dividend yield?)  The pricing of double-barrier step options can be described as a 3-zone 
problem. We have standard initial condition and distributed sinks/sources outside of the corridor with the 

power density proportional to option value: },0,{ dudd VVQ ρρ −−= . The system of equations and 
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boundary conditions in Laplace domain can be obtained by subtracting a source term from the right side of 
Black-Scholes equation and applying continuity conditions for the function and its space derivative (delta).  
 We can apply the results of previous point to option pricing with the volatility smile. The simplest 
approach would be 3-zone model with three different but constant inside of each zone diffusion coefficients 
(Nutcracker’s smile). As before, we need to obtain similar solutions in each zone and calculate arbitrary 
coefficients applying continuity conditions. Note, that continuity for the flow rate cannot be reduced to 
continuity for delta in this case. Generalization that makes a smile less ugly is obvious. A combination with 
numerical methods for ordinary differential equations is also a possibility.  

Diffusion equation with time-dependent coefficients also would not be an obstacle for our method 
as far as we stay with the fixed boundary conditions (see P. Wilmott, 1999 for the transformations).  
 
Numerical Algorithms 
 

H. Stehfest’s algorithm was the first fast and accurate method to convert smooth functions. 
Fortunately, it is almost always true for the diffusion equation solutions.      

Recently  other powerful algorithms of numerical inversion of Laplace transforms were introduced 
(J. Abate, W. Whitt, 1995). Abate and Whitt approaches are a little slower than  the Stehfest one, but 
provide a better precision and give us an additional opportunity to control the accuracy of calculations (see 
Appendix  for a short description of EULER algorithm).  

Euler binomial summation and Stehfest linear combination accelerates convergence dramatically. 
Try to apply a brute force (Abate and Whitt EULER algorithm is reduced to trapezoidal-rule approximation 
of the Bromwich inversion integral by setting parameter m  to zero) and feel the difference!      

High precision (up to 1110−  with the 8 bytes float point arithmetic) and excellent performance 
seems a useless luxury if all we need is to solve Black-Scholes equation with the known coefficients, but I 
expect, that they would be greatly appreciated  for multi-parameter fitting and optimization purposes, 
especially in  real-time environment.               
 
H. Stehfest provided ALGOL code and J. Abate and W. Whitt provided BASIC code in their articles. 
Do not hesitate to ask me for C++ code. 
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Appendix 
 
Abate and Whitt EULER algorithm is specified by 
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Euler summation was used as an acceleration technique that can be described as the weighted average of 
the last m partial sums by a binomial probability distribution with parameters m and p=1/2.  
For better performance, we changed the order of summation and used pre-calculated sum of binomial 
coefficients.  
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Parameter A defines discretization error: approximately, to produce k−10  accuracy A=k*log10 should be 
taken. However, with A too high round-off errors increase. Authors of the algorithm used k=8, m=11, and 
n=15 to convert their functions. Our calculations (VC++ compiler, 8 bytes double and long double types) 
achieve the best precision with k=10, m is from 12 to 17 and n is in the range of 35 - 45. Therefore 10, 12 
and 35 were chosen as the default values. 
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