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Part I – Summary

In preparing our approach to pricing barrier and
lookback options in the Black-Scholes framework, we
shall consider the following tools:

T1. Binary Options (digitals)

T2. Gaussian Shift Theorem (GST)

T3. Static Replication

T4. Parity Relations

T5. Image Options and the Method of Images

T6. Equivalent European Payoffs

Not all of these tools are restricted to the Black-Scholes
world.
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Basic Pricing Methodology

It is well-known that there are two distinct, but
equivalent approaches to arbitrage free pricing in the
Black-Scholes framework.

1. The PDE approach

2. The EMM approach

Depending on the type of option, it is sometimes
better to use the PDE method and at other times the
EMM method. The trick is to use both methods in
an integrated way that captures their most expedient
features.

We briefly review the two methods.
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Black-Scholes PDE

If V (x, t) denotes the arbitrage-free present value of
a European-style derivative with expiry payoff function
f(x). Then V (x, t) satisfies the BS-pde:

Vt = rV − (r − q)xVx − 1
2σ

2x2Vxx

in t < T, x > 0 and subject to the terminal value,
V (x, T ) = f(x).

Examples:
European call option
f(x) = (x − k)+ = (x − k)I(x>k)

European put option
f(x) = (k − x)+ = (k − x)I(x<k)

We shall write the BS-pde in the operational form:

LV = 0
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Equivalent Martingale Measure

Theorem: (Feynman-Kac) Subject to regularity
conditions on f(x), the unique solution of the terminal
value BS-pde LV = 0, V (x, T ) = f(x) is given by

V (x, t) = e−rτ
EQ{f(XT )|Ft}

where, under Q,

XT
d
= xe(r−q−1

2σ2)τ+σ
√

τZ

and τ = T − t, Z ∼ N(0, 1).

The FK-formula is identical to the First Fundamental
Theorem on Asset Pricing (Harrison & Pliska 1981)
which states:

If the market is arbitrage-free, the discounted price of
any derivative is a martingale wrt the measure Q.

Further, if the market is complete, then the EMM Q
is unique.
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T1. Binary Options

Contract Expiry T Present Value
Payoff f(x) Notation

Zero Coupon Bond 1 B(x, t)
Unit asset x A(x, t)

Up-Bond Binary I(x>ξ) B+
ξ (x, t)

Down-Bond Binary I(x<ξ) B−
ξ (x, t)

Up-Asset Binary xI(x>ξ) A+
ξ (x, t)

Down-Asset Binary xI(x<ξ) A−
ξ (x, t)

It is easy to show:

A(x, t) = xe−qτ

B(x, t) = e−rτ ; τ = T − t

. . . but how shall we price the binaries (digitals) ?

Answer: EMM + GST
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T2. Gaussian Shift Theorem

Theorem: (Uni-variate GST)
Let Z ∼ N(0, 1), c a real constant and F (Z) a
measurable function. Then

E{ecZ F (Z)} = e
1
2c2

E{F (Z + c)}

Proof: With φ(y) = 1√
2π

e−
1
2y2

,

RHS = e
1
2c2

∫ ∞

−∞
F (y + c)φ(y) dy

= e
1
2c2

∫ ∞

−∞
F (z)φ(z − c) dz; (z = y + c)

=

∫ ∞

−∞
eczF (z)φ(z) dz

= E{ecZF (Z)} = LHS

The third line above comes from the identity

φ(z − c) =
e−

1
2(z−c)2

√
2π

= ecz−1
2c2

φ(z) �
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Multi-Variate Gaussian Shift Theorem

Theorem: (Multi-variate GST)
Let Z ∼ N(0, 1; R) be a standard Gaussian random
vector with correlation matrix R, c any real constant
vector and F (Z) any measurable function of Z with
finite expectation. Then

E{ec
′
Z F (Z)} = e

1
2c

′Rc
E{F (Z + Rc)}

Note that the multi-variate GST does reduce to the
uni-variate GST, since in the uni-variate case, R = 1
and c is a scalar.

The multi-variate GST is used to price elementary
contracts for the dual-expiry options, rainbow options
and also for multi-period, multi-asset exotics in general.

One should not under-estimate the importance for
option pricing of this simple yet powerful result. It
obviates the need for Girsanov’s Theorem, the Esscher
Transform and Change of Numeraire.
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Pricing the Asset Binary

For a down-type asset binary, we calculate, using

XT = xe(r−q−1
2σ2)τ+σ

√
τZ

A−
ξ (x, t) = e−rτ

EQ{XT I(XT <ξ)}

= xe−(q+1
2σ2)τ

EQ{eσ
√

τZ
I(Z <−d′

ξ)};
= xe−qτ

EQ{I(Z + σ
√

τ <−d′
ξ)}; by GST

= xe−qτ
EQ{I(Z <−d′

ξ − σ
√

τ)}
= xe−qτ

EQ{I(Z <−dξ)}; dξ = d′
ξ + σ

√
τ

= xe−qτ N (−dξ) �

The BS formula for the general asset binary can be
written as:

As
ξ(x, t) = xe−qτ N (sdξ)

where s = + for up-type, and s = − for a down-type.
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Pricing the Asset/Bond Binary

In the previous slide, observe that:

dξ, d
′
ξ =

log(x/ξ) + (r − q ± 1
2σ

2)τ

σ
√

τ

and that the condition XT ≷ ξ is equivalent to:

Z ≷ −d′
ξ(x, τ); τ = T − t

A similar calculation yields the result for the bond-
binary as:

Bs
ξ(x, t) = e−rτ N (sd′

ξ)

This is where the hard work is done. The rest is really
nothing but algebraic manipulation.

School of Maths & Stats USYD & School of Finance & Economics, UTS 8



Barriers, Lookbacks & other Exotica 9th October 2006

T3. Static Replication

Theorem: (Principle of Static Replication)
Let Vi(x, t) for i = 1, . . . , n denote the present value
of a set of elementary derivatives with given expiry
T payoffs Vi(x, T ) = fi(x). Then the arbitrage-free
present value of a derivative contract with payoff

V (x, T ) = f(x) =
n

∑

i=1

αi fi(x)

is given by

V (x, t) =
n

∑

i=1

αi Vi(x, t).

This principle is equivalent to saying that: ‘if a
derivative contract has a payoff expressible as a
portfolio of elementary contracts, then its fair price
is the present value of the replicating portfolio’. �

Proof: Use linearity of BS-pde (Duhamel’s Principle)
or apply simple arbitrage arguments.
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Pricing a Gap (Threshold) Call Option

The expiry T payoff is:

Ch,k(x, T ) = (x − k)I(x>h); h ≥ k

= xI(x>h) − kI(x>h)

= A+
h (x, T ) − kB+

h (x, T )

The option is seen to be equivalent to a portfolio
containing a long position in an up-type asset binary of
exercise price h, and a short position in k up-type bond
binaries of exercise price h. So by Static Replication

Ch,k(x, t) = xe−qτN (dh) − ke−rτ N (d′
h)

When h = k, this is recognised as the celebrated BS
formula for a European call option.

School of Maths & Stats USYD & School of Finance & Economics, UTS 10



Barriers, Lookbacks & other Exotica 9th October 2006

T4. Parity Relations

Let V0(x, t) denote the present value of a general
European style derivative with expiry payoff f(x).
Define two related binary options, V +

ξ (x, t) and

V −
ξ (x, t) with corresponding payoffs:

V +
ξ (x, T ) = f(x)I(x>ξ) i.e. up-type

V −
ξ (x, T ) = f(x)I(x<ξ) i.e. down-type

Theorem: (Up-Down Parity Relation)
For all x > 0 and all t ≤ T ,

V +
ξ (x, t) + V −

ξ (x, t) = V0(x, t)

Proof: (By static replication). At expiry T ,

V +
ξ (x, T ) + V −

ξ (x, T ) = f(x)I(x>ξ) + f(x)I(x<ξ)

= f(x)[I(x>ξ) + I(x<ξ)]

= f(x)

= V0(x, T ) �
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Some Well-Known Parity Relations

Parity relations can be applied to the elementary
contracts considered previously to give the following:

A+
ξ (x, t) + A−

ξ (x, t) = xe−qτ

B+
ξ (x, t) + B−

ξ (x, t) = e−rτ

Q+
k (x, t) + Q−

k (x, t) = xe−qτ − ke−rτ

where τ = T − t and

Qs
k(x, t) = As

k(x, t) − kBs
k(x, t)

Hence:

Q+
k (x, t) = Ck(x, t) and Q−

k (x, t) = −Pk(x, t)

The third equation above is of course the put-call
parity relation.
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Second Order Binaries

Second-order Binary Payoff Table

Payoff at T1 Payoff at T2

B
s2
ξ2

(x1, T1)I(s1x1 >s1ξ1) I(s1x1 >s1ξ1)I(s2x2 >s2ξ2)

A
s2
ξ2

(x1, T1)I(s1x1 >s1ξ1) x2I(s1x1 >s1ξ1)I(s2x2 >s2ξ2)

x1, x2 are the asset prices at times T1 and T2. The
first order binaries above expire at time T2 and since
s1,2 = ±, there are four different types of second-order
binaries:

up-up
up-down
down-up
down-down

Second-order binaries are ‘binaries of first-order binary
options’ (i.e. compound binaries).
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Pricing the Second-Order Binaries

Theorem: (Second-order Asset and Bond Binaries)
Second-order asset and bond binaries have pv (in terms
of the bi-variate normal):

As1s2
ξ1ξ2

(x, t) = xe−qτ2 N (s1d1, s2d2; s1s2ρ)

and

Bs1s2
ξ1ξ2

(x, t) = e−rτ2 N (s1d
′
1, s2d

′
2; s1s2ρ)

where for i = 1, 2,

[di, d
′
i] =

log(x/ξi) + (r − q ± 1
2σ

2)τi

σ
√

τi
; ρ =

√

τ1

τ2

and τi = Ti − t denote the time intervals from the
present time t to T1 and T2 respectively.

Proof: EMM + GST-2D
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2nd-order Q-Options

Suppose the payoff at T1 is a binary Q-option with
expiry T2. That is:

V (x1, T1) = Qs2
k2

(x1, T1;T2)I(s1x1>s1k1)

Then the present value at time t < T1 < T2 is

V (x, t) = Qs1s2
k1k2

(x, ; τ1, τ2); τi = Ti − t

= As1s2
k1k2

(x; t) − k2B
s1s2
k1k2

(x; t)
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Barrier Options

The pde for a down-and-out barrier option is:

LVdo(x, t) = 0; x > b, t < T
Vdo(x, T ) = f(x); ∀ x > b
Vdo(b, t) = 0; ∀ t < T







The presence of the BC at x = b makes a significant
difference.

Parity Relations
There are 3 parity relations for barrier options:

Vdo(x, t) + Vdi(x, t) = V0(x, t)
Vuo(x, t) + Vui(x, t) = V0(x, t)

Vui(x, t) =
∗
V di(x, t)

V0 is the pv of a standard option with the same payoff.

So knowing one (e.g. the D/O barrier option), we
immediately get the remaining three.
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T5(i). Image Options

Let V (x, t) be an option price. Then the associated

image option relative to x = b, denoted by
∗
V (x, t),

satisfies the properties:

Image Properties

1.
∗∗
V (x, t) = V (x, t)

2. LV (x, t) = 0 with V (x, T ) = f(x) implies

L
∗
V (x, t) = 0 with

∗
V (x, T ) =

∗
f(x)

3. V =
∗
V when x = b

4. If x > b (or x < b) is the active domain of V (x, t),

x < b (or x > b) is the active domain of
∗
V (x, t).

Theorem: For the BS-pde:

∗
V (x, t) = (b/x)α V (b2/x, t)

where α = 2(r − q)/σ2 − 1.

School of Maths & Stats USYD & School of Finance & Economics, UTS 17



Barriers, Lookbacks & other Exotica 9th October 2006

T5(ii). Method of Images

To solve the D/O pde, consider first the related
terminal value pde

LVb(x, t) = 0; x > 0, t < T
Vb(x, T ) = f(x)I(x>b)

}

This is simply a European up-binary option where the
payoff at expiry is adjusted so that it pays nothing if
the asset price finishes below the barrier level, and the
standard payoff f(x) if above. It is usually easy to
obtain by EMM or static replication.

Theorem: (Method of Images)
The unique solution of the D/O pde is given by

Vdo(x, t) = Vb(x, t) −
∗
V b(x, t); x > b
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Proof: To see that this is indeed the required solution,
observe that the representation

Vdo(x, t) = Vb(x, t) −
∗
V b(x, t); x > b

certainly satisfies the BS-pde, because both Vb and
∗
V b do and the BS-operator L is linear. Furthermore,

Vdo(b, t) = 0 since Vb =
∗
V b at x = b and at expiry:

Vdo(x, T ) = f(x)I(x>b) − [f(x)I(x>b)]∗

= f(x)I(x>b) −
∗
f(x)I(x<b)

= f(x); for x > b

Note that the solution is valid only in the active domain
x > b; obviously for x < b we must have Vdo(x, t) = 0.
�
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All the Barrier Options

Using the parity relations, the following representation
for all barrier options in terms of the underlying
standard option V0(x, t), its corresponding up-binary
Vb(x, t) and their images, is obtained:

Vdo(x, t) = Vb −
∗
V b

Vdi(x, t) = V0 − (Vb −
∗
V b)

Vui(x, t) =
∗
V 0 + (Vb −

∗
V b)

Vuo(x, t) = (V0 −
∗
V 0) − (Vb −

∗
V b)

It is remarkable that such a set of formulae exists,
considering the complexity of barrier options. We
need only price two European options: V0(x, t) and
its related binary Vb(x, t), and all four barrier option
prices can then be determined.
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T6. Equivalent European Payoffs

Barrier options are examples of path-dependent
options. European options have payoffs which depend
only on the asset price at T and are therefore path-
independent options. It is possible, using the Method
of Images, to write the price of any barrier option as
an equivalent European option. All that is required
is to find an equivalent payoff at T for an otherwise
path-independent option, that replicates the price of
the barrier option.

Let f(x) be the payoff of any barrier option with barrier
price at x = b. Then recall

V0(x, T ) = f(x)

Vb(x, T ) = f(x)I(x>b)
∗
V b(x, T ) =

∗
f(x)I(x<b)
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So applying the barrier parity relations at t = T we
get:

V eq
do (x, T ) = f(x)I(x>b) −

∗
f(x)I(x<b)

V eq
di (x, T ) = [f(x) +

∗
f(x)] I(x<b)

V eq
ui (x, T ) = [f(x) +

∗
f(x)] I(x>b)

V eq
uo (x, T ) = f(x)I(x<b) −

∗
f(x)I(x>b)

where, recall,

∗
f(x) = (b/x)α f(b2/x); α =

2(r − q)

σ2
− 1

While barrier options exist only in restricted domains
(either x > b or x < b), it is very important to realise
that their equivalent payoffs are defined for all values
of x > 0.
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D/O Call Barrier Option Price

Use the EEP (Equiv Euro Payoff):
For a call option of strike price a, barrier price b:

Ceq
do(x, T ) = (x − a)+I(x>b) − its image

=

{

(x − a)I(x>a) − its image if a > b
(x − a)I(x>b) − its image if a < b

Hence, for all t < T , by static replication,

Cdo(x, t) =

{

Ca(x, t) −
∗
Ca(x, t) if a > b

Cb,a(x, t) −
∗
Cb,a(x, t) if a < b

where

Ca(x, t) = pv(strike a call option)

and

Cb,a(x, t) = pv(strike a, exercise b gap-call option)
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European Call Barrier Prices
Option Case a > b Case a < b

D/O Ca −
∗
Ca Cb,a −

∗
Cb,a

D/I
∗
Ca Ca − (Cb,a −

∗
Cb,a)

U/I Ca

∗
Ca + (Cb,a −

∗
Cb,a)

U/O 0 (Ca −
∗
Ca) − (Cb,a −

∗
Cb,a)

where Ca(x, t) is the pv of a strike a call option and
Cb,a(x, t) is the pv of a strike a, exercise b threshold
call option.

Note that it makes perfect sense that the up-and-out
call barrier option is worthless if a > b; such an option
can never finish in-the-money if the strike price is above
the barrier price.
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A similar analysis for the put barrier options yields the
table:

European Call and Put Barrier Prices
Option Case a > b Case a < b

D/O (Pa −
∗
P a) − (Pb,a −

∗
P b,a) 0

D/I
∗
P a + (Pb,a −

∗
P b,a) Pa

U/I Pa − (Pb,a −
∗
P b,a)

∗
P a

U/O Pb,a −
∗
P b,a Pa −

∗
P a

where Pa(x, t) is the pv of a strike a put option and
Pb,a(x, t) is the pv of a strike a, exercise b threshold
put option.

Do not fail to see that these 16 different prices
(including all calls and puts) can be written down
virtually by inspection, once the tools of barrier option
pricing (i.e. images, parity and static replication) are
at ones disposal.
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Lookback Options

Define

Yt = min
0≤s≤t

{Xs} and Zt = max
0≤s≤t

{Xs}

where Xs denotes the underlying asset price process
(gBm). Thus Yt represents the running minimum asset
price up to time t, and Zt the running maximum.

The payoffs for standard floating strike and fixed strike
lookback calls and puts are shown in the following
table.

Standard Lookback Payoffs
Floating Normal Reverse
Strike Fixed Strike Fixed Strike

Call (XT − YT )+ (ZT − k)+ (YT − k)+

Put (ZT − XT )+ (k − YT )+ (k − ZT )+

Floating strike LB’s are always exercised at expiry.

School of Maths & Stats USYD & School of Finance & Economics, UTS 26



Barriers, Lookbacks & other Exotica 9th October 2006

BS-pde’s for Lookback Options

For a min-type LB option with running min y:

LU = 0; U(x, y, T ) = f(x, y); U ′(y, y, t) = 0

in x > y; t < T , where U ′(x, y, t) = Uy(x, y, t).

For a max-type LB option with running max z:

LV = 0; V (x, z, T ) = F (x, z); V ′(z, z, t) = 0

in the domain x < z; t < T and V ′(x, z, t) =
Vz(x, z, t).

Key Observation:
These can be transformed into the pde’s for KO barrier
options through:

Ū(x, y, t) = U ′(x, y, t); V̄ (x, z, t) = V ′(x, z, t)
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Equivalent Payoffs for Looback Options

These can be obtained by simply integrating the
equivalent payoffs for D/O and U/O barrier options.

(a) The equivalent European payoff for a min-type LB
option with expiry payoff U(x, y, T ) = f(x, y) is given
by

Ueq(x, y, T ) = f(x, y)I(x>y) + g(x, y)I(x<y)

g(x, y) = f(x, x) −
∫ y

x

∗
fξ(x, ξ) dξ

(b) The equivalent European payoff for a max-type LB
option with expiry payoff V (x, z, T ) = F (x, z) is given
by

Veq(x, z, T ) = F (x, z)I(x<z) + G(x, z)I(x>z)

G(x, z) = F (x, x) +
∫ x

z

∗
F ξ(x, ξ) dξ
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Generic Min/Max Lookbacks

These are lookback options which simply pay the min
and max asset price over the lookback window and
have expiry payoffs:

f(x, y) = y and F (x, z) = z

The equivalent payoff formulation then quickly leads
to

m(x, y, t) = (1 + β)A−
y + y[B+

y − β
∗
B+

y ]

and

M(x, z, t) = (1 + β)A+
z + z[Bz − β

∗
B−

z ]

where β = σ2

2(r−q).
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Pricing the Standard Lookbacks1

1. The Floating Strike LB’s

Vc(x, y, t) = x − m(x, y, t)

Vp(x, z, t) = M(x, z, t) − x

2. The Normal Fixed Strike LB’s

Vc(x, z, t) = M(x, z ∨ k, t) − ke−rτ

Vp(x, y, t) = ke−rτ − m(x, y ∧ k, t)

3. Reverse Fixed Strike LB’s

Vc(x, y, t) = m(x, y, t) − m(x, y ∧ k, t)

Vp(x, z, t) = M(x, z ∨ k, t) − M(x, z, t)

1PB/OK 2005, A new method of pricing lookback options, Mathematical
Finance, 15(2), 245-259.
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Conclusions

• The only prices formally calculated are the
elementary building block contracts, such as first
and higher-order asset and bond binaries.

• These calculations are greatly facilitated using the
Gaussian Shift Theorem in the EMM method.

• Exotic option prices are then computed using static
replication, parity relations, the image option and
for barrier and lookback options, the notion of
Equivalent European Payoffs.

• Once these tools are in place, many exotic options
can be priced virtually by inspection.

—oOo—
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Part II: Partial Barrier Options

• First considered in Heynen and Kat (1994)

• Also known as early-ending barrier options

• Barrier monitoring window a subset of the full
lifetime of the option, t ∈ [0, T1]

• Two expiry times T1 and T2, with T2 > T1

• At T1, reverts to a standard option over t ∈ [T1, T2]

– provided the barrier has not been breached in the
knock-out case,

– or alternatively is knocked-in to a standard option
in the knock-in barrier case.

• There are four partial barrier call options, D/O, D/I,
U/O & U/I as well as four corresponding puts.

• We can price the D/O barrier, get the other three
(D/I, U/I, U/O) by parity.
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D/O Partial Barrier Call Option

D/O window

0 t T1

τ

T2

(x − k)+

We derive the price of the down-and-out partial barrier
call option.

At t = T2, the holder of a partial barrier call option
receives a standard call payoff with strike k:

Vdo(x, T2) = (x − k)+

Provided that the stock price remains above the barrier
level x = a over t ∈ [0, T1].

Arbitrage arguments require the price at time t = T1

is that of a standard call option with τ = T2 − T1 to
expiry:

Vdo(x, T1) = Ck(x, τ)
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Over t ∈ [0, T1] we therefore have

• a down-and-out barrier option with non-standard
payoff Ck(x, τ) at t = T1.

The partial barrier call therefore satisfies the PDE:

LVdo(x, t) = 0 for x > a and t < T1

Vdo(x, T1) = Ck(x, τ) = Q+
k (x, τ)

Vdo(a, t) = 0 for t < T1

With related terminal-value problem for Va(x, t):

LVa(x, t) = 0 for x > 0 and t < T1

Va(x, T1) = Q+
k (x, τ)I(x>a)

The payoff of Va at time t = T1 is recognised as that of
a second order Q option, so that by static replication
we can write down the solution for t < T1:

Va(x, t) = Q++
ak (x, τ1, τ2)
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The solution for the required down-and-out partial
barrier call option price is therefore given by:

Vdo(x, t) = Q++
ak (x, τ1, τ2) −

∗
Q++

ak (x, τ1, τ2) (1)

where τi = Ti − t, i = 1, 2 and ∗ denotes the image
with respect to x = a.

The standard option associated with this down-and-out
barrier option over t ∈ [0, T1] is simply a call option
with time τ2 to expiry:

Vs(x, t) = Ck(x, τ2)

By parity, we can write down the solutions for the three
remaining related barriers over the window t ∈ [0, T1].
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These are:

The down-and-in partial barrier call option:

Vdi(x, t) = Ck(x, τ2) −
[

Q++
ak (x, τ1, τ2) −

∗
Q++

ak (x, τ1, τ2)
]

The up-and-in partial barrier call option:

Vui(x, t) =
∗
Ck(x, τ2) +

[

Q++
ak (x, τ1, τ2) −

∗
Q++

ak (x, τ1, τ2)
]

The up-and-out partial barrier call option:

Vuo(x, t) = Ck(x, τ2) −
∗
Ck(x, τ2)

−
[

Q++
ak (x, τ1, τ2) −

∗
Q++

ak (x, τ1, τ2)
]

where τi = Ti − t, i = 1, 2 and ∗ denotes the image
with respect to x = a.
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Partial Barrier Put Options

The down-and-out, down-and-in, up-and-in and up-
and-out partial barrier put options have respective
prices given by:

Vdo(x, t) = −
[

Q+−
ak (x, τ1, τ2) −

∗
Q+−

ak (x, τ1, τ2)
]

Vdi(x, t) = Pk(x, τ2) + Q+−
ak (x, τ1, τ2) −

∗
Q+−

ak (x, τ1, τ2)

Vui(x, t) =
∗
P k(x, τ2) −

[

Q+−
ak (x, τ1, τ2) −

∗
Q+−

ak (x, τ1, τ2)
]

Vuo(x, t) = Pk(x, τ2) −
∗
P k(x, τ2)

+Q+−
ak (x, τ1, τ2) −

∗
Q+−

ak (x, τ1, τ2)

where τi = Ti − t, i = 1, 2 and ∗ denotes the image
with respect to x = a.

These all agree with the published results of Heynen
and Kat (1994), after notational differences are
accounted for.
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Partial Time End Out Options

• These are the B1-type partial barrier options of
Heynen and Kat (1994).

• Have one barrier monitoring window.

• Monitoring doesn’t begin at the start of the option,
but rather at some time T1 after initiation.

• The option is converted at time t = T1 into a down-
and-out barrier option over t ∈ [T1, T2] if XT1 > b.

• Or converted into an up-and-out barrier option over
t ∈ [T1, T2] if XT1 < b.

where

• XT1 is the stock price at time T1, and

• x = b is the barrier monitoring level.
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Partial Time End Out Call Barrier

monitoring

0 t T1 T2

VT2 = (x − k)+

The payoff at time T2 is V eo
c (x, T2) = (x − k)+

At time t = T1 the partial time end-out call option will
be converted to either

• a down-and-out call barrier option over [T1, T2], if
the stock price x at T1 is above b,

• into an up-and-out call barrier option if x < b.
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Thus we can write the t = T1 price of the partial time
end-out call barrier option as:

V eo
c (x, T1) = Vdo(x, T1)I(x>b) + Vuo(x, t)I(x<b)

where

• Vdo(x, T1) is the price of a down-and-out call barrier
option with time τ = T2 − T1 to expiry.

• Vuo(x, T1) is the price of an up-and-out call barrier
option with time τ = T2 − T1 to expiry.

We have expressions for both of these, as obtained by
the MOI in the first half of the seminar.
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It follows that the t = T1 price of the partial time
end-out call barrier option is given by:

V eo
c (x, T1) =































































[

Q+
k (x, τ) − ∗

Q+
k(x, τ)

]

I(x>b)

if k > b

[

A+
b (x, τ) − kB+

b (x, τ)
]

I(x>b)

−
[ ∗
A+

b (x, τ) − k
∗
B+

b (x, τ)
]

I(x>b)

+
[

Q+
k (x, τ) −

∗
Q+

k(x, τ)
]

I(x<b)

−
[

A+
b (x, τ) − kB+

b (x, τ)
]

I(x<b)

+
[ ∗
A+

b (x, τ) − k
∗
B+

b (x, τ)
]

I(x<b) if k < b

where ∗ is the image with respect to x = b and
τ = T2 − T1.

We recognise these as the payoffs of second order
Asset, Bond and Q options, so that we can then apply
the principle of static replication:
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The price of the Partial Time End Out Call Barrier
Option for time t < T1 is thus given by:

V eo
c (x, t) =



















































































[

Q++
bk (x, τ1, τ2) −

∗
Q−+

bk (x, τ1, τ2)
]

if k > b

[A++
bb (x, τ1, τ2) − kB++

bb (x, τ1, τ2)]

−
[ ∗
A−+

bb (x, τ1, τ2) − k
∗
B−+

bb (x, τ1, τ2)
]

+ Q−+
bk (x, τ1, τ2) −

∗
Q++

bk (x, τ1, τ2)

− [A−+
bb (x, τ1, τ2) − kB−+

bb (x, τ1, τ2)]

+
∗
A++

bb (x, τ1, τ2) − k
∗
B++

bb (x, τ1, τ2) if k < b

where τi = Ti − t for i = 1, 2 and ∗ is the image with
respect to x = b.
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Similarly, we get the price of the Partial Time End Out
Put Barrier Option:

V eo
p (x, t) =



















































































− Q+−
bk (x, τ1, τ2) +

∗
Q−−

bk (x, τ1, τ2)

− [kB+−
bb (x, τ1, τ2) − A+−

bb (x, τ1, τ2)]

+
[

k
∗
B−−

bb (x, τ1, τ2) −
∗
A−−

bb (x, τ1, τ2)
]

+ [kB−−
bb (x, τ1, τ2) − A−−

bb (x, τ1, τ2)]

−
[

k
∗
B+−

bb (x, τ1, τ2) −
∗
A+−

bb (x, τ1, τ2)
]

if k > b

− Q−−
bk (x, τ1, τ2) +

∗
Q+−

bk (x, τ1, τ2) if k < b

where τi = Ti − t for i = 1, 2 and where ∗ is the image
with respect to x = b.

Allowing for notation, the above representations agree
with the published solutions of Heynen and Kat (1994).
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Theorem: MOI For Double Barriers

Given lower and upper barrier levels x = (a, b) and
arbitrary payoff f(x), the unique solution to:

LV (x, t) = 0 for a < x < b, t < T

V (x, T ) = f(x)

V (a, t) = V (b, t) = 0 for t < T

is given by:

V (x, t) =
∞
∑

n=−∞
λαn

[

U(λ2nx, t) −
∗
U(λ2nx, t)

]

with λ = b/a, α = 2(r − q)/σ2 − 1,

∗
U(λ2nx, t) =

(a

x

)α

U

(

λ2na2

x
, t

)

denotes the image function wrt x = a.
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And where U(x, t) is the solution to the
related terminal-value problem:

LU(x, t) = 0 for x > 0 and t < T

U(x, T ) = f(x) I(a<x < b)

Lemma:

The image can alternatively be taken wrt to x = b:

V (x, t) =
∞
∑

n=−∞
λαn

[

U(λ2nx, t) −
∗
U(λ2nx, t)

]

∗
U(λ2nx, t) =

(

b

x

)α

U

(

λ2nb2

x
, t

)

Proof: Replace a with b/λ and n − 1 with n in
the second term of the double-infinite sum. �
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Proof of the main result (MOI for Double Barriers):

U(λ2nx, t) and
∗
U(λ2nx, t) satisfy the Black Scholes

PDE for any n, hence V = U −
∗
U also does.

Since U =
∗
U when x = a, it follows that V (a, t) = 0.

Replacing the image in
∗
U wrt x = b, it follows that

V (b, t) = 0 as well.

When t = T , we obtain:

V (x, T ) =
n=∞
∑

n=−∞
λαn [fn(x)I(a<λ2nx<b)

−
(a

x

)α ∗
fn(x)I(a<λ2na2

x <b)

]

,

fn(x) = f(λ2nx) and
∗
fn(x) = f

(

λ2na2

x

)
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Note,

I(a<λ2nx<b) ≡ I( a
λ2n<x < b

λ2n)

≡
{

1 if n = 0
0 if n 6= 0

I(a<λ2na2

x <b) ≡ I(aλ2n−1<x <aλ2n)

≡ 0

for all n whenever a < x < b.

Only the n = 0 term remains, giving payoff f(x). �

Knock-In Double Barrier Options

In the domain a < x < b, the knock-out and knock-in
double barrier options satisfy:

V O(x, t) + V I(x, t) = Vs(x, t)

where Vs(x, t) is the standard European option.
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Knock-Out Double Barrier Call Option

x = a

x = b

0 t T

(x − k)+

• Lower barrier at x = a, upper at x = b

• Option knocked-out if either barrier breached for
t < T .

• If option survives, get standard call payoff (XT−k)+

The price V = V OC
DB (x, t) satisfies the PDE:

LV (x, t) = 0 in a < x < b, t < T

V (x, T ) = (x − k)+

V (a, t) = V (b, t) = 0, t < T
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Consider the related terminal-value problem for
Vab(x, t):

LVab(x, t) = 0 in x > 0, t < T

Vab(x, T ) = (x − k)+I(x>a)I(x<b)

Removing the plus superscript, the payoff of Vab can
be written as:

Vab(x, T ) = (x − k)I(x>k)I(x>a)I(x<b)

• If k > b,

I(x>k)I(x>a)I(x<b) ≡ 0

• If a < k < b,

I(x>k)I(x>a)I(x<b) ≡ I(x>k) − I(x>b)

• If k < a < b,

I(x>k)I(x>a)I(x<b) ≡ I(x>a) − I(x>b)
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By defining

k′ = k ∨ a = max(k, a)

when k < b, we can thus summarise the product of the
three indicator functions as:

I(x>k)I(x>a)I(x<b) ≡ I(x>k′) − I(x>b)

It follows that

Vab(x, T ) = (x − k) [I(x>k′) − I(x>b)]

For t < T , static replication therefore requires that

Vab(x, t) = A+
k′(x, τ) − A+

b (x, τ)

−k
[

B+
k′(x, τ) − B+

b (x, τ)
]
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By the MOI for double barriers, the price of the double
barrier knock-out call option is:

V OC
DB (x, t) =
∞
∑

n=−∞
λαn

[

A+
k′(λ

2nx, τ) − A+
b (λ2nx, τ)

]

−
∞
∑

n=−∞
λαn

[ ∗
A+

k′(λ
2nx, τ) −

∗
A+

b (λ2nx, τ)
]

−k
∞
∑

n=−∞
λαn

[

B+
k′(λ

2nx, τ) − B+
b (λ2nx, τ)

]

+k
∞
∑

n=−∞
λαn

[ ∗
B+

k′(λ
2nx, τ) − ∗

B+
b (λ2nx, τ)

]

where λ = b/a, ∗ denotes the image with respect to
x = a (or x = b), k′ = k ∨ a and α = 2r/σ2 − 1.

Similarly, we can price the double barrier knock-out
put option.

By parity, we get the knock-in barrier prices as well,
for both calls and puts.

School of Maths & Stats USYD & School of Finance & Economics, UTS 51



Barriers, Lookbacks & other Exotica 9th October 2006

• We get agreement with Ikeda and Kunitomo (1992)
in the case of flat barriers.

• We can apply the same procedure to obtain the
prices of the partial time double barrier options,
with early monitoring knock-out window t ∈ [0, T1]:

e.g. The price of the partial time knock-out double
barrier call option is:

Vo(x, t) =
∞
∑

n=−∞
λαn

[

Q++
ak (λ2nx, τ1, τ2) − Q++

bk (λ2nx, τ1, τ2)
]

−
∞
∑

n=−∞
λαn

[ ∗
Q++

ak (λ2nx, τ1, τ2) −
∗
Q++

bk (λ2nx, τ1, τ2)
]

where λ = b/a, τi = Ti − t, i = 1, 2 and ∗ denotes the
image with respect to x = a (or x = b).

New option not priced before by other methods, to our
knowledge.
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Partial Price Lookback Options

lookback window

0 t T

Y[0,t]

Recall,

y = min
[0,T ]

Xs and z = max
[0,T ]

Xs

• The standard methods of pricing lookbacks first
explored in Goldman Sossin and Gatto (1979).

• ‘Partial time’ lookbacks priced in Heynen and Kat (1995)

• ‘Partial price’ lookbacks first priced in Conze and
Viswanathan (1991)
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Partial Price Lookback Call Option

At expiry time t = T , this option pays

V c(x, y, T ) = (x − λy)+ and λ ≥ 1

thus satisfying the following PDE in t ∈ [0, T ]:

LV c(x, y, t) = 0 in x > y, t < T

V c(x, y, T ) = (x − λy)I(x>λy)

∂V c

∂y
= 0 at x = y

We now make the transformation

U(x, y, t) =
∂V c

∂y

to obtain the following D/O barrier problem for U :

LU(x, y, t) = 0 in x > y, t < T

U(x, y, T ) = −λ I(x>λy)

U = 0 at x = y
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We solve this using the MOI and Static Rep. for t < T :

Uy(x, y, t) = −λB+
λy(x, τ)

so that

U(x, y, t) = −λ
[

B+
λy(x, τ) − ∗

B+
λy(x, τ)

]

where ∗ is the image with respect to x = y.

We thus recover the price by quadratures:

V c(x, y, t) = V c(x, 0, t)

−λ

∫ y

0

[

B+
λξ(x, τ) −

∗
B+

λξ(x, τ)
]

dξ

= x − λ

∫ y

0

[

B+
λξ(x, τ) −

∗
B+

λξ(x, τ)
]

dξ

Evaluating the integrals at t = T , we obtain:

V c(x, y, t) = Q+
λy(x, τ) − λα+2D−

y/λ(x, τ) (2)

where τ = T−t, and D−
y/λ(x, τ) is a linear combination

of Asset and Bond binaries and their images
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Lookbarrier Options

barrier lookback

0 t T1 T2

• First defined in Bermin (1998), they’re a whole
family of options rather than one specific option.

• They combine a partial time barrier window, with a
forward starting lookback window.

• Many combinations, e.g. U/O barrier over [0, T1]
with Fixed Strike Lookback over [T1, T2], D/O
barrier with Floating Strike Lookback etc

• Rationale is to reduce the price from the standard
and expensive lookback price, which has the full
lookback window, [0, T2].

School of Maths & Stats USYD & School of Finance & Economics, UTS 56



Barriers, Lookbacks & other Exotica 9th October 2006

Up-and-Out Fixed Strike Lookbarrier Call Option

Over t ∈ [0, T1], we have an up-and-out barrier window
with barrier level x = h.

The t = T2 payoff is given by:

V c
uo(x, T2) = (Z[T1,T2] − k)+I(Z[0,T1]<h)

In t ∈ [0, T1], V c
uo(x, t) satisfies:

LV c
uo(x, t) = 0 in x < h, t < T1

V c
uo(x, T1) = F c(x, x, τ)

V c
uo(h, t) = 0

where τ = T2 − T1 and

F c(x, z, τ) = M(x, z ∨ k, τ) − ke−rτ

is the price of a fixed strike lookback call option over
the time window [T1, T2].
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We can write:

F c(x, x, τ) =

{

xg(τ) − ke−rτ if x > k
Ck(x, τ) + D+

k (x, τ) if x < k

for some function g(τ).

Hence over [0, T1], we have an up-and-out barrier
option with non-standard payoff given above.

The related terminal-value problem is given by:

LVh(x, t) = 0 in x > 0, t < T1

Vh(x, T1) = F c(x, x, τ)I(x<h)

with t = T1 payoff (after some simplification):

Vh(x, T1) =























[xg(τ) − ke−rτ ] [I(x>k) − I(x>h)]

+
[

Ck(x, τ) + D+
k (x, τ)

]

I(x<k) if h > k

[

Ck(x, τ) + D+
k (x, τ)

]

I(x<h) if h < k
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We can thus solve for Vh when t < T1 by Static Rep:

Vh(x, t) =























g(τ)
[

A+
k (x, τ1) − A+

h (x, τ1)
]

−ke−rτ
[

B+
k (x, τ1) − B+

h (x, τ1)
]

+Q−+
kk (x, τ1, τ2) + D−+

kk (x, τ1, τ2) if h > k

Q−+
hk (x, τ1, τ2) + D−+

hk (x, τ1, τ2) if h < k

The final expression for the Up-and-Out Fixed Strike
Lookbarrier Call Option is:

V c
uo(x, t) =















































































g(τ)
[

A+
k (x, τ1) −

∗
A+

k(x, τ1)
]

−g(τ)
[

A+
h (x, τ1) −

∗
A+

h(x, τ1)
]

−ke−rτ
[

B+
k (x, τ1) −

∗
B+

k(x, τ1)
]

+ke−rτ
[

B+
h (x, τ1) −

∗
B+

h(x, τ1)
]

+Q−+
kk (x, τ1, τ2) −

∗
Q−+

kk (x, τ1, τ2)

+D−+
kk (x, τ1, τ2) −

∗
D−+

kk (x, τ1, τ2) if h > k

Q−+
hk (x, τ1, τ2) −

∗
Q−+

hk (x, τ1, τ2)

+D−+
hk (x, τ1, τ2) −

∗
D−+

hk (x, τ1, τ2) if h < k
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where ∗ is the image with respect to x = h,
τi = Ti − t, for i = 1, 2, τ = T2 − T1 and

g(τ) = (1 + σ2

2r )N (a) + e−rτ(1 − σ2

2r )N (−a′)

[a, a′] =
(r ± 1

2σ
2)
√

τ

σ

This agrees with Bermin (1998).

• Bermin (1998) only gave expressions for two of the
lookbarriers.

• We can similarly price all of the lookbarriers,
including the Knock-In versions.

• We can extend the analysis and readily price Look
Double Barrier options, using the MOI for Double
Barriers.
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Bermin’s Extreme Spread Options

Bermin (1998) originally defined four extreme spread
options. Using the notation

Y[a,b] = min
t∈[a,b]

Xt and Z[a,b] = max
t∈[a,b]

Xt

they are:

Normal Reverse
Extreme Spread Extreme Spread

Call (Z[T1,T2] − Z[0,T1])
+ (Y[T1,T2] − Y[0,T1])

+

Put (Y[0,T1] − Y[T1,T2])
+ (Z[0,T1] − Z[T1,T2])

+

T2 payoffs of extreme spread lookback options

The time interval [0, T2] is divided into two contiguous
lookback windows [0, T1] and [T1, T2].

These options have payoffs determined by the minimum
and maximum asset prices within these two windows.

We can price all four of Bermin’s extreme spread
options in terms of m(x, y, τ) and M(x, z, τ)
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Lemma

For 0 < T1 < T2 the following identities hold:

(

Y[0,T1] − Y[T1,T2]

)+
= Y[0,T1] − Y[0,T2]

(

Y[T1,T2] − Y[0,T1]

)+
= Y[T1,T2] − Y[0,T2]

(

Z[T1,T2] − Z[0,T1]

)+
= Z[0,T2] − Z[0,T1]

(

Z[0,T1] − Z[T1,T2]

)+
= Z[0,T2] − Z[T1,T2].

Proof:
For the first identity:

(

Y[0,T1] − Y[T1,T2]

)+
= Y[0,T1] − min

(

Y[0,T1], Y[T1,T2]

)

= Y[0,T1] − Y[0,T2]

Similar proofs hold for the rest.
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We summarise the t < T1 prices of the generic lookback
options with the given payoffs at time t = T2.

Denoting τ = T2 − T1, we have:

Option Payoff at T2 Price at t < T1

V1(x, t) Y[0,T1] e−rτ m(x, y, τ1)
V2(x, t) Y[T1,T2] m(x, x, τ)
V3(x, t) Y[0,T2] m(x, y, τ2)
V4(x, t) Z[0,T1] e−rτ M(x, z, τ1)
V5(x, t) Z[T1,T2] M(x, x, τ)
V6(x, t) Z[0,T2] M(x, z, τ2)

We now price all of Bermin’s extreme spread options:

Option Payoff at T2 Price at t < T1

Normal Put (Y01 − Y12)
+

e−rτ m(x, y, τ1) − m(x, y, τ2)

Reverse Call (Y12 − Y01)
+ m(x, x, τ) − m(x, y, τ2)

Normal Call (Z12 − Z01)
+ M(x, z, τ2) − e−rτ M(x, z, τ1)

Reverse Put (Z01 − Z12)
+

M(x, z, τ2) − M(x, x, τ)
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Conclusions

• As emphasised before, the only prices we need to
formally calculate are the elementary building block
contracts, here being first and second-order asset
and bond binaries.

• Exotic options are statically replicated in terms of
these building blocks, and their images.

• With the Method of Images for Double Barriers, we
can easily extend the framework to price complicated
exotic options with Double Barrier features as well.

• Relatively simple integrals arise in the evaluation of
lookback option prices.

• Many complicated options can be priced by these
methods, including:

– partial price maximal spread options
– multi-dimensional barrier and lookback options.
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