

Feldstrasse 80 CH - 8180 Bülach © 01-872 35 40 Fax 01-872 35 32 Association suisse des analystes financiers et gestionnaires de fortune Schweizerische Vereinigung für Finanzanalyse und Vermögensverwaltung

Formulae

Foundation Examination

Derivatives Analysis and Valuation Portfolio Management

Table of contents

1.	Derivatives Analysis and Valuation	
1.1	1 Forwards and Futures	
1.2	2 Options	
1.4	4 Normal Distribution Table	7
2.	Modern Portfolio Theory	
2.1	1 Return	
2.2	2 Mean, Variance, Covariance, Volatility	
2.3	3 Linear Regression	
2.4	4 The portfolio concept	
2.5	5 The Capital Asset Pricing Model (CAPM)	
3.	Practical Portfolio Management	
3.1	1 Index and market models	
3.2	2 Hedging Strategies using Futures	
3.3	3 Minimum Variance Hedge Ratio	
3.4	4 Hedging with Stock Index Futures	
3.5	5 Static Portfolio Insurance	
3.6	6 Dynamic Portfolio Insurance	
4.	Performance Analysis	
4.1	1 Return	
4.2	2 Risk Adjusted Performance Measures	
	•	

1. Derivatives Analysis and Valuation

1.1 Forwards and Futures

1.1.1 General cost of carry relationship

$$F_{t,T} = S_t (1 + R_{t,T})^{T-t} + k(t,S) - FV(revenues)$$

where

$F_{t,T}$	forward or futures price at date t of a contract for delivery at date T
S _t	spot price of the underlying at date t
$R_{t,T}$	risk-free interest rate for the period t to T
FV(revenues)	future value of the revenues paid by the spot
k(t,S)	carrying costs, such as insurance costs, storage costs, etc.

1.1.2 Continuous time cost of carry relationship

$$F_{t,T} = S_t e^{(r_{t,T} - y) \cdot (T - t)}$$

where

 $F_{t,T}$ futures price at date t of a contract for delivery at date T

 S_t spot price of the underlying at date t

y continuous net yield (revenues minus carrying costs) of the underlying asset or commodity

 $r_{t,T}$ continuously compounded risk-free interest rate

1.1.3 Stock Index Futures

$$F_{t,T} = I_t \cdot (1 + R_{t,T}) - \sum_{i=1}^{I} \sum_{t_j=1}^{T} w_i \cdot D_{i,t_j} \cdot (1 + R_{t_j,T})$$

where:

 I_t current spot price of the index

 D_{i,t_j} dividend paid by firm i at date t_j

 w_i weight of firm i in the index

 $R_{t_j,T}$ interest rate for the time period t_j until T

1.1.4 Interest rates future cost of carry relationship

$$F_{t,T} = \frac{(S_t + A_t) \cdot (l + R_{t,T})^{T-t} - C_{t,T} - A_T}{Conversion \ Factor}$$

where

- $F_{t,T}$ quoted futures "fair" price at date t of a contract for delivery at date T
- $C_{t,T}$ future value of all coupons paid and reinvested between t and T
- S_t spot value of the underlying bond
- A_t accrued interest of the underlying at time t
- A_T accrued interest of the delivered bond at time T

Theoretical futures at the delivery date

$$F_{T,T} = \frac{\text{spot price of cheapest to deliver}}{\text{conversion factor}}$$

1.1.5 Forward exchange rates

The forward exchange rate is given by

$$F_{t,T} = S_t \left(\frac{1 + R_{dom}}{1 + R_{for}}\right)^{T - t}$$

with continuous compounding

$$F_{t,T} = S_t e^{\left(r_{dom} - r_{for}\right)(T-t)}$$

where

$F_{t,T}$	forward exchange rate (domestic per foreign currency)
S_t	spot exchange rate (domestic per foreign currency)
R _{dom}	domestic risk-free rate of interest for the period t to T
R _{for}	foreign risk-free rate of interest for the period t to T
r _{dom}	continuous domestic risk-free rate of interest for t to T
r _{for}	continuous foreign risk-free rate of interest for t to T

1.1.6 Commodity Futures

$$F_{t,T} = S_t \cdot (1 + R_{t,T}) + k(t,T) - Y_{t,T}$$

$F_{t,T}$	futures price at date <i>t</i> of a contract for delivery at date <i>T</i>
S_t	spot price of the underlying at date t
$R_{t,T}$	risk-free interest rate for the period $(T-t)$
k(t,T) $Y_{t,T}$	carrying costs, such as insurance costs, storage costs, etc. convenience yield

1.2 Options

1.2.1 Binomial model in one period

The option price at the beginning of the period is equal to the expected value of the option price at the end of the period under the probability measure π , discounted with the risk-free rate.

$$\begin{split} O &= \frac{O_u \cdot \pi + O_d \cdot (1 - \pi)}{1 + R} \\ \pi &= \frac{1 + R - d}{u - d}, \quad u = e^{\sigma \sqrt{\tau / n}}, \quad d = \frac{1}{u}, \quad d < 1 + R < u \end{split}$$

where

- *R* simple risk-free rate of interest for one period
- *O* value of the option at the beginning of the period
- O_u value of the option in the up-state at the end of the period
- O_d value of the option in the down-state at the end of the period
- σ volatility of the underlying
- τ time until expiry of the option
- *n* number of periods τ is divided in
- *u* upward factor of the underlying
- *d* downward factor of the underlying
- π risk neutral probability

1.2.2 Black and Scholes formula

The prices of European options on non dividend paying stocks are given by

$$C_E = S \cdot N(d_1) - Ke^{-r\tau} \cdot N(d_2)$$

$$P_E = Ke^{-r\tau} \cdot N(-d_2) - S \cdot N(-d_1)$$

$$d_1 = \frac{\ln(S/K) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}, \quad d_2 = d_1 - \sigma\sqrt{\tau}$$

where

 C_E value of Euroean call

- P_E value of Euroean put
- *S* current stock price
- au time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.
- N(x) cumulative distribution function for a standardised normal random variable (see Table 1.4), and

$$N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} ds$$

1.2.3 Put call parity for European and American options

$$\begin{split} P_E &= C_E - S + D + K e^{-r\tau} \\ C_{US} &- S + K e^{-r\tau} \leq P_{US} \leq C_{US} - S + K + D \end{split}$$

where

	. •	. • •	•	0.1	. •
τ	timo	until	ovniry	of the	ontion
L	unic	unun		or the	ODUOII
-					

- *K* strike or exercise price of the option
- *r* continuously compounded risk-free rate of interest
- *S* spot price of the underlying
- C_E value of European call option
- P_E value of European put option
- C_{US} value of American call option
- P_{US} value of American put option
- D present value of expected cash-dividends during the life of the option

1.2.4 Sensitivities of option prices

Sensitivity with respect to the stock price S (delta, Δ)

$$\Delta_c = \frac{\partial C}{\partial S} = N(d_1) \qquad (0 \le \Delta_c \le 1)$$
$$\Delta_P = \frac{\partial P}{\partial S} = N(d_1) - 1 \quad (-1 \le \Delta_P \le 0)$$

Sensitivity with respect to time τ (theta, θ)

$$\begin{aligned} \theta_C &= \frac{\partial C}{\partial t} = -\frac{\partial C}{\partial \tau} = -\frac{S \cdot \sigma}{2 \cdot \sqrt{\tau}} \cdot n(d_1) - K \cdot r \cdot e^{-r\tau} N(d_2) \quad (\theta_C \le 0) \\ \theta_P &= \frac{\partial P}{\partial t} = -\frac{\partial P}{\partial \tau} = -\frac{S \cdot \sigma}{2 \cdot \sqrt{\tau}} \cdot n(d_1) - K \cdot r \cdot e^{-r\tau} [N(d_2) - 1] \end{aligned}$$

where

N(x) cumulative distribution function

n(x) probability density function, and

$$n(x) = N'(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Derivatives Analysis and Valuation

Sensitivity with respect to the volatility $\sigma(\text{kappa}, \kappa)$

$$\kappa_{C} = \frac{\partial C}{\partial \sigma} = S \cdot \sqrt{\tau} \cdot n(d_{1}) \quad (\kappa_{C} \ge 0)$$

$$\kappa_{P} = \frac{\partial P}{\partial \sigma} = S \cdot \sqrt{\tau} \cdot n(d_{1}) = \kappa_{C} \quad (\kappa_{P} \ge 0)$$

Sensitivity with respect to the interest rate r (rho, ρ)

$$\rho_C = \frac{\partial C}{\partial r} = K \cdot \tau \cdot e^{-r \cdot \tau} \cdot N(d_2) \qquad (\rho_C \ge 0)$$
$$\rho_P = \frac{\partial P}{\partial r} = K \cdot \tau \cdot e^{-r \cdot \tau} \cdot (N(d_2) - 1) \qquad (\rho_P \le 0)$$

The second derivative with respect to the stock price S (gamma, Γ)

$$\Gamma_{C} = \frac{\partial^{2} C}{\partial S^{2}} = \frac{n(d_{1})}{S \cdot \sigma \cdot \sqrt{\tau}} \quad (\Gamma_{C} \ge 0)$$

$$\Gamma_{P} = \frac{\partial^{2} P}{\partial S^{2}} = \frac{n(d_{1})}{S \cdot \sigma \cdot \sqrt{\tau}} = \Gamma_{C} \quad (\Gamma_{P} \ge 0)$$

The leverage or elasticity of the option with respect to S (omega, Ω)

$$\Omega_C = \frac{\partial C}{\partial S} \cdot \frac{S}{C} \qquad \Omega_P = \frac{\partial P}{\partial S} \cdot \frac{S}{P}$$

1.2.5 Option pricing on stocks paying known dividends

The prices of European options on dividend paying stocks are given by

$$\begin{split} C_E &= S^* \cdot N(d_1^*) - K e^{-r\tau} \cdot N(d_2^*) \\ P_E &= K e^{-r\tau} \cdot N(-d_2^*) - S^* \cdot N(-d_1^*) \\ d_1^* &= \frac{\ln(S^*/K) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}, \quad d_2^* = d_1^* - \sigma\sqrt{\tau}, \quad S^* = S - \sum_{i=1}^{I} D_i \cdot e^{-r\tau_i} \end{split}$$

where

 τ_i time in years until *i*th dividend payment

 D_i dividend *i*

- *S* current stock price
- au time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.

1.2.6 Option pricing when the underlying stock pays a known dividend yield

The prices of European options on stocks paying a continuous dividend yield are given by

$$C_E = S \cdot e^{-y\tau} \cdot N(d_1) - Ke^{-r\tau} \cdot N(d_2)$$

$$P_E = Ke^{-r\tau} \cdot N(-d_2) - S \cdot e^{-y\tau} \cdot N(-d_1)$$

$$d_1 = \frac{\ln(S/K) + (r - y + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}, \quad d_2 = d_1 - \sigma\sqrt{\tau}$$

where

- y continuous dividend yield
- *S* current stock price
- τ time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.

1.2.7 Options on financial futures

The prices of European options on a financial future are given by

$$\begin{split} C_E &= e^{-r\tau} \big[F \cdot N(d_1) - K \cdot N(d_2) \big] \\ P_E &= e^{-r\tau} \big[K \cdot N(-d_2) - F \cdot N(-d_1) \big] \\ d_1 &= \frac{\ln(F/K)}{\sigma\sqrt{\tau}} + \frac{1}{2}\sigma\sqrt{\tau}, \quad d_2 = d_1 - \sigma\sqrt{\tau} \end{split}$$

where

- *F* current futures price
- τ time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the futures returns
- *r* continuously compounded risk-free rate p.a.

1.2.8 Options on foreign currencies

$$C_E = S \cdot e^{-r_{for}\tau} \cdot N(d_1) - Ke^{-r\tau} \cdot N(d_2)$$

$$P_E = Ke^{-r\tau} \cdot N(-d_2) - S \cdot e^{-r_{for}\tau} \cdot N(-d_1)$$

$$d_1 = \frac{\ln(S/K) + (r - r_{for} + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}, \quad d_2 = d_1 - \sigma\sqrt{\tau}$$

where

- *S* current exchange rate (domestic per foreign currency units)
- τ time in years until expiry of the option
- *K* strike price (domestic per foreign currency units)
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.

 r_{for} continuously compounded risk-free rate p.a. of the foreign currency

1.4 Normal Distribution Table

x	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Probability that a normal random variable is smaller than x.

2. Modern Portfolio Theory

2.1 Return

2.1.1 Holding Period Return

$$R_{t} = \frac{P_{t} - P_{t-1} + \sum_{j=1}^{J} D_{t_{j}} \cdot \left(1 + R_{t_{j},t}^{*}\right)^{t-t_{j}}}{P_{t-1}}$$

where

- R_t simple (or discrete) return of the asset over period t-1 to t
- P_t price of the asset at date t
- D_{t_i} dividend or coupon paid at date t_j between t-1 and t

 t_i date of the j^{th} dividend or coupon payment

- $R_{t_j,t}^*$ risk-free rate p.a. for the period t_j to t
- J number of intermediary payments

2.1.2 Compounded Returns

$$1 + R_{eff} = \left(1 + \frac{R_{nom}}{m}\right)^m$$

where

 R_{eff} effective rate of return over entire period

 R_{nom} nominal return

m number of sub-periods

2.1.3 Continuously compounded versus simple (discrete) returns

$$r_t = \ln \frac{P_t}{P_{t-1}} = \ln(1 + R_t)$$
$$R_t = e^{r_t} - 1$$

- r_t continuously compounded return between time t-1 and t
- R_t simple (discrete) return between time t-1 and t

2.1.4 Average return

Geometric average return over a holding period using discrete compounding

$$R_{A} = \sqrt[N]{(1+R_{1}) \cdot (1+R_{2}) \cdot ... \cdot (1+R_{N})} - 1$$

where

 R_A geometric average return over N sequential periods

 R_i discrete return for the period *i*

Arithmetic average return over a holding period using continuous compounding

$$r_A = \frac{1}{N} \sum_{i=1}^{N} r_i$$

where

- r_A average continuously compounded return over N sequential periods
- r_i continuously compounded return for the period *i*

2.1.5 Annualisation of returns

Annualising holding period returns (assuming 360 days per year) Assuming reinvestment of interests at rate R_{τ}

$$R_{ann} = (1 + R_{\tau})^{360/\tau} - 1$$

Euromarket convention, assuming no reinvestment of interests

$$r_{an} = (1 + r_{\tau})^{360 \, / \, \tau} - 1$$

where

 R_{ann} annualised simple rate of return

 R_{τ} simple return for a time period of τ days

Annualising continuously compounded returns (assuming 360 days per year)

$$r_{an} = \frac{360}{\tau} \times r_{\tau}$$

where

 r_{ann} annualised rate of return

 r_{τ} continuously compounded rate of return earned over a period of τ days

2.1.6 Nominal versus real returns

With simple returns

$$R_t^{real} = R_t^{nominal} - I_t - R_t^{real} \cdot I_t \approx R_t^{nominal} - I_t$$

With continuously compounded returns

$$r_t^{real} = r_t^{\text{nominal}} - i_t$$

where

R ^{real}	real rate of return on an asset over period t (simple)
R_t^{nominal}	nominal rate of return on an asset over period t (simple)
I_t	rate of inflation over period <i>t</i> (simple)
r _t real	real rate of return on an asset over period t (cont. comp.)
r_t^{nominal}	nominal rate of return on an asset over period t (cont. comp.)
i _t	rate of inflation over period <i>t</i> (cont. comp.)

2.2 Mean, Variance, Covariance, Volatility

Expectation value E(.), **variance** Var(.), **covariance** Cov(.) and **correlation** Corr(.) of two random variables X and Y if the variables take values x_k, y_k in state k with probability p_k

$$E(X) = \sum_{k=1}^{K} p_{k} \cdot x_{k}, \quad E(Y) = \sum_{k=1}^{K} p_{k} \cdot y_{k}$$
$$Var(X) = \sigma_{X}^{2} = E\left[(X - E(X))^{2}\right] = E(X^{2}) - E(X)^{2} = \sum_{k=1}^{K} p_{k}(x_{k} - E(X))^{2}$$
$$Cov(X, Y) = \sigma_{XY} = E\left[(X - E(X)) \cdot (Y - E(Y))\right] = \sum_{k=1}^{K} p_{k}(x_{k} - E(X)) \cdot (y_{k} - E(Y))$$

$$\operatorname{Corr}(X,Y) = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y}$$

where $\sum_{k=1}^{K} p_k = 1$, and

- p_k probability of state k
- x_k value of X in state k
- y_k value of Y in state k
- *K* number of possible states

The mean, the variance and the covariance of two random variables X and Y, in a sample of N observations of x_i and y_i , are given by

$$E(X) = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad Var(X) = \sigma_X^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
$$Cov(X, Y) = \sigma_{XY} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x}) \cdot (y_i - \bar{y})$$

where

x_i, y_i	observation <i>i</i>
$\overline{x}, \overline{y}$	mean of X and Y
σ_X , σ_Y	standard deviations
σ_{XY}	covariance of X and Y
Ν	number of observations

2.2.1 Volatility of returns

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{t=1}^{N} (r_t - \bar{r})^2}, \qquad \bar{r} = \frac{1}{N} \sum_{t=1}^{N} r_t$$

where

$$\sigma_{N}$$
$$r_{t} = \ln \frac{P_{t}}{P_{t-1}}$$

standard deviation of the returns (the volatility) number of observed returns

continuously compounded return of asset P over period t

2.2.2 Annualising volatility

Assuming that monthly returns are independent, then

$$\sigma_{ann} = \sqrt{12} \cdot \sigma_m = \frac{\sigma_\tau}{\sqrt{\tau}}$$

where

 σ_{ann} annualised volatility

 σ_m volatility of monthly returns

- σ_{τ} volatility of returns over periods of length τ
- au vength of one period in years

2.3 Linear Regression

2.3.1 Simple regression model (OLS)

$$Y_t = a + b \cdot X_t + \varepsilon_t$$

$$b = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}, \quad a = \overline{Y} - b \cdot \overline{X}$$

where

- Y_t dependent variable
- X_t independent variable
- \overline{Y} mean of Y
- \overline{X} mean of X
- ε_t error term
- *a* intercept
- *b* coefficient (slope) of the regression

2.3.2 Multiple regression model (OLS)

$$Y_t = \alpha + \beta_1 \cdot X_{1,t} + \dots + \beta_k \cdot X_{k,t} + \varepsilon_t$$

where

 Y_t dependent variable

 $X_{i,t}$ independent variable *i*

 ε_t error term (residual)

 α intercept

 β_i coefficients of the regression

2.3.3 Quality of the linear regression

2.3.3.1 Correlation Coefficient

$$\rho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

$$\rho_{XY}$$
correlation coefficient $Cov(X,Y)$ covariance between X and Y σ_X standard deviation of X σ_Y standard deviation of Y

2.3.3.2 Coefficient of determination

$$R^{2} = 1 - \frac{\sum_{t=1}^{T} \varepsilon_{t}^{2}}{\sum_{t=1}^{T} (Y_{t} - \overline{Y})^{2}} = \rho^{2}$$

where

- R^2 coefficient of determination
- ho correlation coefficient
- Y_t dependent variable
- \overline{Y} mean of dependent variable
- ε_t error term (residual)

2.3.3.3 Fisher F-statistic

$$F = \frac{R^2}{1 - R^2} \cdot \frac{n - k - 1}{k}$$

where

- F Fisher F-statistic
- R^2 coefficient of determination
- *n* number of observations
- k number of independent variables

2.4 The portfolio concept

2.4.1 Portfolio characteristics

Ex post return on a portfolio P in period t

$$\bar{r_p} = \sum_{i=1}^{N} x_i \bar{r_i} = x_1 \bar{r_1} + x_2 \bar{r_2} + \dots + x_N \bar{r_N}$$

where $\sum x_i = 1$

 $R_{P,t}$ return on the portfolio in period t

 $R_{i,t}$ return on asset *i* in period *t*

- x_i initial (at beginning of period) proportion of the portfolio invested in asset *i*
- N number of assets in portfolio P

Expectation of the portfolio return

$$E(R_P) = \sum_{i=1}^{N} x_i E(R_i) = x_1 E(R_1) + x_2 E(R_2) + \dots + x_N E(R_N)$$

where

 $E(R_P)$ expected return on the portfolio

 $E(R_i)$ expected return on asset *i*

 x_i relative weight of asset *i* in portfolio *P*

N number of assets in portfolio P

Variance of the portfolio return

$$\operatorname{Var}(R_P) = \sigma_P^2 = \sum_{i=1}^N \sum_{j=1}^N x_i x_j \sigma_{ij} = \sum_{i=1}^N \sum_{j=1}^N x_i x_j \rho_{ij} \sigma_i \sigma_j$$

where

variance of the portfolio return
covariance between the returns R_i and R_j
correlation coefficient between the returns R_i and R_j
standard deviations of the returns R_i and R_j
number of assets in portfolio P
initial proportion of the portfolio invested in asset i
initial proportion of the portfolio invested in asset j

2.5 The Capital Asset Pricing Model (CAPM)

2.5.1 The Capital Market Line (CML)

$$E(R_P) = R_f + \frac{E(R_M) - R_f}{\sigma_M} \sigma_P$$

where

 $\begin{array}{ll} {\rm E}(R_P) & {\rm expected \ return \ of \ portfolio \ P} \\ R_f & {\rm risk \ free \ rate} \\ {\rm E}(R_M) & {\rm expected \ return \ of \ the \ market \ portfolio} \\ \sigma_M & {\rm standard \ deviation \ of \ the \ return \ on \ the \ market \ portfolio} \\ \sigma_p & {\rm standard \ deviation \ of \ the \ portfolio \ return} \end{array}$

2.5.2 The Security Market Line (SML)

$$E(R_i) = R_f + [E(R_M) - R_f] \cdot \beta_i$$
$$\beta_i = \frac{\text{Cov}(R_i, R_M)}{\text{Var}(R_M)}$$

where

 $E(R_i)$ expected return of asset *i*

 R_f risk free rate

 $E(R_M)$ expected return on the market portfolio

 β_i beta of asset *i*

2.5.3 Beta of a portfolio

$$\beta_p = \sum_{i=1}^N x_i \beta_i$$

where

 β_P beta of the portfolio

 β_i beta of asset *i*

 x_i proportion of the portfolio invested in asset *i*

N number of assests in the portfolio

3. Practical Portfolio Management

3.1 Index and market models

3.1.1 The single-index model

Single-index model

$$R_{it} = \alpha_i + \beta_i \cdot R_{\text{index},t} + \varepsilon_{it}$$

Market model

$$R_{it} = \alpha_i + \beta_i \cdot R_{Mt} + \varepsilon_{it}$$

Market model in expectation terms

$$E(R_{it}) = \alpha_i + \beta_i \cdot E(R_{Mt})$$

where

R_{it}	return on asset or portfolio i over period t
$lpha_i$	intercept for asset or portfolio <i>i</i>
eta_i	sensitivity of asset or portfolio <i>i</i> to the index return
$R_{\text{index},t}$	return on the index over period t
R_{Mt}	return on the market portfolio
\mathcal{E}_{it}	random error term ($E(\varepsilon_{it}) = 0$)

Covariance between two assets in the market model or the CAPM context

$$\sigma_{ij} = \beta_i \cdot \beta_j \cdot \sigma_M^2$$

where

 σ_{ij} covariance between the returns of assets *i* and *j*

 β_i beta of portfolio *i*

 β_j beta of portfolio j

 σ_M^2 variance of the return on the market portfolio

3.1.2 Decomposing variance into systematic and diversifiable risk

In the case of a single security

$$\sigma_i^2 = \underbrace{\beta_i^2 \sigma_M^2}_{\text{market risk}} + \underbrace{\sigma_{\varepsilon_i}^2}_{\text{residual risk}}$$

where

 $\sigma_i^2: \quad \text{total variance of the return on asset or portfolio } i$ $\beta_i^2 \sigma_M^2: \quad \text{market or systematic risk (explained variance)}$ $\sigma_{\varepsilon_i}^2: \quad \text{idiosyncratic or residual or unsystematic risk (unexplained variance)}$

Quality of an index model: R^2 and ρ^2

$$R^{2} = \frac{\beta_{i}^{2} \cdot \sigma_{I}^{2}}{\sigma_{i}^{2}} = \frac{\beta_{i}^{2} \cdot \sigma_{I}^{2}}{\beta_{i}^{2} \cdot \sigma_{I}^{2} + \sigma_{\varepsilon_{i}}^{2}} = 1 - \frac{\sigma_{\varepsilon_{i}}^{2}}{\sigma_{i}^{2}} = \rho_{iI}^{2}$$

where

 $\begin{aligned} \sigma_i^2 &: & \text{total variance of the returns on asset } i \\ \beta_i^2 \sigma_M^2 &: & \text{market or systematic risk (explained variance)} \\ \sigma_{\varepsilon_i}^2 &: & \text{idiosyncratic or residual or unsystematic risk (unexplained variance)} \\ \rho_{iI} & & \text{correlation between asset } i \text{ and the index } I \\ R^2 & & \text{coefficient of determination in a regression of } R_i \text{ on } R_I \end{aligned}$

3.1.3 Multi-index models

Multi-index models

$$r_i = \alpha_i + \beta_{i1}I_1 + \beta_{i2}I_2 + \dots + \beta_{in}I_n + \varepsilon_i$$

where

 R_i return on asset or portfolio *i*

- β_{ij} beta or sensitivity of the return of asset *i* to changes in index *j*
- I_j index j
- \mathcal{E}_i random error term

Portfolio variance under a multi-index model (every index is assumed to be uncorrelated with each other)

$$\sigma_P^2 = \beta_{P,1}^2 \cdot \sigma_1^2 + \ldots + \beta_{P,L}^2 \cdot \sigma_L^2 + \sigma_{\varepsilon P}^2$$

where

 σ_i^2 :variance of the asset or portfolio i $\beta_{P,j}^2 \sigma_j^2$ systematic risk due to index j σ_{eP}^2 :residual risk

3.1.4 Tracking error

$$TE^{P,B} = \sqrt{V(R_A^{P,B})}$$

where

 $\begin{array}{ll} TE^{P,B} & Tracking \mbox{ error} \\ V\!\left(R_A^{P,B}\right) & Volatility \mbox{ of the active return} \end{array}$

3.2 Hedging Strategies using Futures

3.2.1 Hedge Ratio and Number of Futures Contracts

$$HR = \frac{\Delta S}{\Delta F} = -\frac{N_F \cdot k}{N_S} \qquad \qquad N_F = -HR \cdot \frac{N_S}{k}$$

where

HR hedge ratio

 ΔS change in spot price per unit

 ΔF change in futures price per unit

 N_F number of futures

N_S number of spot assets

3.2.2 The Perfect (Naive) Hedge

$$\begin{cases} HR = \pm 1 \\ N_F = \mp \frac{N_S}{k} \end{cases}$$

where

HR hedge ratio

 N_F number of futures

 N_S number of spot assets

k contract size

3.2.3 Hedged Profit

For a long position in the underlying asset

Hedged profit =
$$(S_T - S_t) - (F_{T,T} - F_{t,T})$$

where

 S_T spot price at the maturity of the futures contract

 S_t spot price at time t

 $F_{T,T}$ futures price at its maturity

 $F_{t,T}$ futures price at time t with maturity T

3.3 Minimum Variance Hedge Ratio

$$HR = \frac{\text{Cov}(\Delta S, \Delta F)}{\text{Var}(\Delta F)} = \rho_{\Delta S, \Delta F} \cdot \frac{\sigma_{\Delta S}}{\sigma_{\Delta F}}$$

HR	hedge ratio
$\operatorname{Cov}(\Delta S, \Delta F)$	covariance between the changes in spot price (ΔS) and the changes in
	futures price (ΔF)
Var(∆F)	variance of changes in futures price (ΔF)
$ ho_{\!\Delta\!S\!,\Delta\!F}$	coefficient of correlation between ΔS and ΔF
$\sigma_{\Delta S}$	standard deviation of ΔS
$\sigma_{\!\Delta\!F}$	standard deviation of ΔF

3.3.1 Hedging when Returns are Normally Distributed (OLS Regression)

$$\frac{\Delta S_t}{S_t} = \alpha + \beta \cdot \frac{\Delta F_t}{F_{t,T}} + \varepsilon_t$$
$$HR = \beta \cdot \frac{S_t}{F_{t,T}}$$

where

- ΔS_t changes in spot price at time t
- S_t spot price at time t
- α intercept of the regression line
- β slope of the regression line
- ΔF_t changes in the futures price at time t
- $F_{t,T}$ futures price at time t with maturity T
- ε_t residual term
- HR hedge ratio

3.4 Hedging with Stock Index Futures

3.4.1 Using OLS Regression

$$N_F = -\beta \cdot \frac{N_S \cdot S_t}{k \cdot F_{t,T}}$$

where

 β slope of the regression line

- N_F number of futures
- *N_S* number of spot assets
- S_t spot price at time t
- $F_{t,T}$ futures price at time t with maturity T
- *k* contract size

3.4.2 Adjusting the Beta of a Stock Portfolio

$$HR_{adj} = (\beta^{\text{actual}} - \beta^{\text{target}}) \cdot \frac{S_t}{F_{t,T}}$$
$$N_F = (\beta^{\text{target}} - \beta^{\text{actual}}) \cdot \frac{N_S \cdot S_t}{k \cdot F_{t,T}}$$

<i>HR_{adj}</i>	hedge ratio to adjust the beta to the target beta
$\beta^{\rm actual}$	actual beta of the portfolio
β^{target}	target beta of the portfolio
S_t	spot price at time t
$F_{t,T}$	futures price at time t with maturity T
N_F	number of futures contracts
N_S	number of the spot asset to be hedged
k	contract size

3.5 Static Portfolio Insurance

3.5.1 General

3.5.1.1 Floor

$$f = \frac{\Phi}{V_0}$$

where

f insured fraction of the initial total portfolio value

 Φ floor

 V_0 initial value of the portfolio

3.5.1.2 Price Index Return

$$r_{MC} = \frac{r_{PC} + r_{PD} - r_f \cdot (1 - \beta) - \beta \cdot r_{MD}}{\beta}$$

where

	•	• •	
r_{MC}	price	index	return

- r_{PC} capital gain of the portfolio
- r_{MD} dividend yield of the index
- r_{PD} dividend yield of the portfolio

 r_f risk-free rate

 β portfolio beta with respect to the index

3.5.2 Paying Insurance on Managed Funds

$$V_0 = N_S \cdot \left(S_0 + \beta \cdot P(S_0, T, K)\right)$$

where

V_0	total initial value of the portfolio
N_S	numbers of units of the risky assets
S_0	risky asset spot price
β	portfolio beta with respect to the underlying S
$P(S_0,T,K)$	put premium for a spot S_0 , a strike K and maturity T

3.5.2.1 Strike Price

$$K = f \cdot (S_0 + \beta \cdot P(S_0, T, K))$$

Κ	strike price
f	fraction of the initial total portfolio value
S_0	risky asset spot price
β	portfolio beta with respect to the underlying S
$P(S_0, T, K)$	put premium for a spot S_0 , a strike K and maturity T

3.5.3 Insurance Paid Externally

$$V_0 = N_S \cdot S_0$$

where

- V_0 total initial value of the portfolio (without puts)
- N_S numbers of units of the risky assets
- S_0 risky asset spot price

3.5.3.1 Strike Price

$$K = I_0 \cdot e^{r_{MC}^*}$$

where

Κ	strike price
I ₀	index level at the time the insurance is made
r_{MC}	return of the price index adjusted for the length of the insurance period

3.5.4 Number of contracts

$$N_P = \beta \cdot \frac{\text{Portfoliovalue}}{\text{Index level} \cdot \text{Option contract size}} = \beta \cdot \frac{N_S}{k}$$

where

 N_P number of options

- N_S number of units of the risky assets
- β portfolio beta with respect to the index
- *k* option contract size

3.6 Dynamic Portfolio Insurance

3.6.1 Price of a Put on an Index Paying a Continuous Dividend Yield y

3.6.1.1 Black&Scholes Model

$$P(S_t, T, K) = K \cdot e^{-r_f \cdot (T-t)} \cdot N(-d_2) - S_t \cdot \left(e^{-y \cdot (T-t)} \cdot N(-d_1)\right)$$
$$d_1 = \frac{\ln\left(\frac{S_t}{K}\right) + (r_f - y) \cdot (T-t)}{\sigma \cdot \sqrt{T-t}} + \frac{1}{2} \cdot \sigma \cdot \sqrt{T-t}$$

$$d_2 = d_1 - \sigma \cdot \sqrt{T - t}$$

where

$P(S_t,T,K)$	put premium for a spot S_t , a strike K and maturity T
S_t	risky asset spot price at time t
Κ	strike price
r_f	risk-free rate (continuously compounded, p.a.)
У	dividend yield (continuously compounded, p.a.)
σ	volatility of the risky asset (p.a.)
T-t	time to maturity (in years)

3.6.1.2 Delta of a European Put on an Index Paying a Continuous Dividend Yield y

$$\Delta_P = e^{-y \cdot (T-t)} \cdot \left[N(d_1) - 1 \right]$$

where

 Δ_P delta of a put on the portfolio

3.6.2 Dynamic Insurance with Futures

$$N_F = -e^{y \cdot (T^* - T)} \cdot e^{-r_f \cdot (T^* - t)} \cdot [1 - N(d_1)] \cdot \beta \cdot \frac{N_S}{k}$$

where

 N_F number of futures

 T^* maturity of the futures contract

T maturity of the replicated put

- β portfolio beta with respect to the index
- N_S number of units of the risky assets
- *k* futures contract size

3.6.3 Constant Proportion Portfolio Insurance (CPPI)

3.6.3.1 Cushion

 C_t

where

- cushion
- *Vt* value of the portfolio
- Φ floor

3.6.3.2 Amount Invested in Risky Assets

$$A_t = N_{S,t} \cdot S_t = m \cdot c$$

 $c_t = V_t - \boldsymbol{\Phi}$

where

- A_t total amount invested in the risky assets at time t
- $N_{S,t}$ number of units of the risky assets
- S_t unit price of the risky assets
- *m* multiplier
- c cushion

3.6.3.3 Amount Invested in Risk-free Assets

$$B_t = V_t - A_t$$

- B_t value of the risk-free portfolio at time t
- V_t value of the total portfolio at time t
- A_t value of the risky portfolio at time t

4. Performance Analysis

4.1 Return

4.1.1 Internal Rate of Return (IRR)

$$CF_0 = -\sum_{t=1}^{N} \frac{CF_t}{\left(1 + IRR\right)^t}$$

where

 CF_0 initial net cash flow

 CF_t net cash flow at the end of period t

- IRR internal rate of return (per period)
- N number of periods

4.1.2 Time Weighted Return (TWR)

Simple return:

$$TWR_{t/t-1} = \frac{MV_{end,t} - MV_{begin,t}}{MV_{begin,t}} = \frac{MV_{end,t}}{MV_{begin,t}} - 1$$

Continuously compounded return:

$$twr_{t/t-1} = \ln \frac{MV_{end,t}}{MV_{begin,t}}$$

where

 $TWR_{t/t-1}$ simple time weighted return for sub-period t

 $twr_{t/t-1}$ continuously compounded time weighted return for sub-period t

 $MV_{begin,t}$ market value at the beginning of sub-period t

 $MV_{end,t}$ market value at the end of sub-period t

Portfolio Management

Total period return:

Simple return:

$$1 + TWR_{tot} = \prod_{t=1}^{N} (1 + TWR_{t/t-1})$$

Continuously compounded return:

$$twr_{tot} = \sum_{t=1}^{N} twr_{t/t-1}$$

where

TWR _{tot}	simple time weighted return for the total period
$TWR_{t/t-1}$	$_{-1}$ simple time weighted return for sub-period <i>t</i>
twr _{tot}	continuously compounded time weighted return for the total period
$twr_{t/t-1}$	continuously compounded time weighted return for sub-period t
$twr_{t/t-1}$	continuously compounded time weighted return for sub-period t

4.1.3 Money Weighted Return (MWR)

4.1.3.1 Gain or loss incurred on a portfolio

Gain = (Ending Market Value – Beginning Market Value) – Net Cash Flow

4.2 Risk Adjusted Performance Measures

Sharpe Ratio or <i>Reward-to-Variability Ratio</i>	$RVAR_P = \frac{\overline{r_P} - \overline{r_f}}{\sigma_P}$
Treynor Ratio or <i>Reward-to-Volatility Ratio</i>	$RVOL_P = \frac{\overline{r_P} - \overline{r_f}}{\beta_P}$
Jensen's α	$\alpha_P = (\bar{r}_P - \bar{r}_f) - \beta_P \cdot (\bar{r}_M - \bar{r}_f)$
Treynor-Black Ratio or Appraisal Ratio	$AR_P = \frac{\alpha_P}{\sigma_{\mathcal{E}}}$

where

 \bar{r}_P average portfolio return

- \bar{r}_M average market return
- \bar{r}_f average risk-free rate
- α_P Jensen's alpha

 β_P portfolio beta

 σ_P portfolio volatility

 σ_{ε} standard deviation of the residuals