

Feldstrasse 80 Association suisse des analystes financiers CH - 8180 Bülach et gestionnaires de fortune © 01-872 35 40 35 AD Schweizerische Vereinigung für Finanzanalyse Fax 01-872 35 32 und Vermögensverwaltung

Formulae

Foundation Examination

Derivatives Analysis and Valuation ♦ Portfolio Management

Table of contents

1. Derivatives Analysis and Valuation

1.1 Forwards and Futures

1.1.1 General cost of carry relationship

$$
F_{t,T} = S_t (1 + R_{t,T})^{T-t} + k(t, S) - FV(revenues)
$$

where

1.1.2 Continuous time cost of carry relationship

$$
F_{t,T} = S_t e^{(r_{t,T} - y)(T - t)}
$$

where

 $F_{t,T}$ futures price at date *t* of a contract for delivery at date *T*

 S_t spot price of the underlying at date *t*

y continuous net yield (revenues minus carrying costs) of the underlying asset or commodity

 r_{t} *T* continuously compounded risk-free interest rate

1.1.3 Stock Index Futures

$$
F_{t,T} = I_t \cdot (1 + R_{t,T}) - \sum_{i=1}^{I} \sum_{t_j=1}^{T} w_i \cdot D_{i,t_j} \cdot (1 + R_{t_j,T})
$$

where:

I_t current spot price of the index

 D_{i,t_j} dividend paid by firm i at date t_i

 w_i weight of firm i in the index

 $R_{t_i,T}$ interest rate for the time period t_j until T

1.1.4 Interest rates future cost of carry relationship

$$
F_{t,T} = \frac{(S_t + A_t) \cdot (1 + R_{t,T})^{T-t} - C_{t,T} - A_T}{Conversion Factor}
$$

where

- $F_{t,T}$ quoted futures "fair" price at date *t* of a contract for delivery at date *T*
- $C_{t,T}$ future value of all coupons paid and reinvested between *t* and *T*
- *S_t* spot value of the underlying bond
- *At* accrued interest of the underlying at time *t*
- *AT* accrued interest of the delivered bond at time*T*

Theoretical futures at the delivery date

$$
F_{T,T} = \frac{\text{spot price of cheapest to deliver}}{\text{conversion factor}}
$$

1.1.5 Forward exchange rates

The forward exchange rate is given by

$$
F_{t,T} = S_t \left(\frac{1 + R_{dom}}{1 + R_{for}}\right)^{T-t}
$$

with continuous compounding

$$
F_{t,T} = S_t e^{(r_{dom} - r_{for})(T - t)}
$$

where

1.1.6 Commodity Futures

$$
F_{t,T} = S_t \cdot (1 + R_{t,T}) + k(t,T) - Y_{t,T}
$$

1.2 Options

1.2.1 Binomial model in one period

The option price at the beginning of the period is equal to the expected value of the option price at the end of the period under the probability measure π , discounted with the risk-free rate.

$$
O = \frac{O_u \cdot \pi + O_d \cdot (1 - \pi)}{1 + R}
$$

$$
\pi = \frac{1 + R - d}{u - d}, \quad u = e^{\sigma \sqrt{\tau/n}}, \quad d = \frac{1}{u}, \quad d < 1 + R < u
$$

where

- *R* simple risk-free rate of interest for one period
- *O* value of the option at the beginning of the period
- O_{μ} value of the option in the up-state at the end of the period
- O_d value of the option in the down-state at the end of the period
- σ volatility of the underlying
- τ time until expiry of the option
- *n* number of periods τ is divided in
- *u* upward factor of the underlying
- *d* downward factor of the underlying
- π risk neutral probability

1.2.2 Black and Scholes formula

The prices of European options on non dividend paying stocks are given by

$$
C_E = S \cdot N(d_1) - Ke^{-r\tau} \cdot N(d_2)
$$

\n
$$
P_E = Ke^{-r\tau} \cdot N(-d_2) - S \cdot N(-d_1)
$$

\n
$$
d_1 = \frac{\ln(S/K) + (r + \sigma^2 / 2)\tau}{\sigma \sqrt{\tau}}, \quad d_2 = d_1 - \sigma \sqrt{\tau}
$$

where

 C_F value of Euroean call

- *PE* value of Euroean put
- *S* current stock price
- τ time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.
- $N(x)$ cumulative distribution function for a standardised normal random variable (see Table [1.4\)](#page-8-0), and

$$
N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} ds
$$

1.2.3 Put call parity for European and American options

$$
P_E = C_E - S + D + Ke^{-r\tau}
$$

$$
C_{US} - S + Ke^{-r\tau} \le P_{US} \le C_{US} - S + K + D
$$

where

- *K* strike or exercise price of the option
- *r* continuously compounded risk-free rate of interest S spot price of the underlying
- *S* spot price of the underlying
- C_F value of European call option
- *P_E* value of European put option
- *CUS* value of American call option
- *P_{US}* value of American put option
- *D* present value of expected cash-dividends during the life of the option

1.2.4 Sensitivities of option prices

Sensitivity with respect to the stock price S (delta, Δ)

$$
\Delta_c = \frac{\partial C}{\partial S} = N(d_1) \qquad (0 \le \Delta_c \le 1)
$$

$$
\Delta_P = \frac{\partial P}{\partial S} = N(d_1) - 1 \quad (-1 \le \Delta_P \le 0)
$$

Sensitivity with respect to time τ (theta, θ)

$$
\theta_C = \frac{\partial C}{\partial t} = -\frac{\partial C}{\partial \tau} = -\frac{S \cdot \sigma}{2 \cdot \sqrt{\tau}} \cdot n(d_1) - K \cdot r \cdot e^{-r\tau} N(d_2) \quad (\theta_C \le 0)
$$

$$
\theta_P = \frac{\partial P}{\partial t} = -\frac{\partial P}{\partial \tau} = -\frac{S \cdot \sigma}{2 \cdot \sqrt{\tau}} \cdot n(d_1) - K \cdot r \cdot e^{-r\tau} [N(d_2) - 1]
$$

where

N(x) cumulative distribution function

n(x) probability density function, and

$$
n(x) = N'(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}
$$

Sensitivity with respect to the volatility σ (kappa, κ)

$$
\kappa_C = \frac{\partial C}{\partial \sigma} = S \cdot \sqrt{\tau} \cdot n(d_1) \quad (\kappa_C \ge 0)
$$

$$
\kappa_P = \frac{\partial P}{\partial \sigma} = S \cdot \sqrt{\tau} \cdot n(d_1) = \kappa_C \quad (\kappa_P \ge 0)
$$

Sensitivity with respect to the interest rate r **(rho,** ρ **)**

$$
\rho_C = \frac{\partial C}{\partial r} = K \cdot \tau \cdot e^{-r \cdot \tau} \cdot N(d_2) \qquad (\rho_C \ge 0)
$$

$$
\rho_P = \frac{\partial P}{\partial r} = K \cdot \tau \cdot e^{-r \cdot \tau} \cdot (N(d_2) - 1) \qquad (\rho_P \le 0)
$$

The second derivative with respect to the stock price S (gamma, Γ)

$$
\Gamma_C = \frac{\partial^2 C}{\partial S^2} = \frac{n(d_1)}{S \cdot \sigma \cdot \sqrt{\tau}} \quad (\Gamma_C \ge 0)
$$

$$
\Gamma_P = \frac{\partial^2 P}{\partial S^2} = \frac{n(d_1)}{S \cdot \sigma \cdot \sqrt{\tau}} = \Gamma_C \quad (\Gamma_P \ge 0)
$$

The leverage or elasticity of the option with respect to S (omega, Ω)

$$
\Omega_C = \frac{\partial C}{\partial S} \cdot \frac{S}{C} \qquad \Omega_P = \frac{\partial P}{\partial S} \cdot \frac{S}{P}
$$

1.2.5 Option pricing on stocks paying known dividends

The prices of European options on dividend paying stocks are given by

$$
C_E = S^* \cdot N(d_1^*) - Ke^{-r\tau} \cdot N(d_2^*)
$$

\n
$$
P_E = Ke^{-r\tau} \cdot N(-d_2^*) - S^* \cdot N(-d_1^*)
$$

\n
$$
d_1^* = \frac{\ln(S^* / K) + (r + \sigma^2 / 2)\tau}{\sigma \sqrt{\tau}}, \quad d_2^* = d_1^* - \sigma \sqrt{\tau}, \quad S^* = S - \sum_{i=1}^I D_i \cdot e^{-r\tau_i}
$$

where

 τ_i time in years until *i*th dividend payment

Di dividend *i*

- *S* current stock price
- τ time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.

1.2.6 Option pricing when the underlying stock pays a known dividend yield

The prices of European options on stocks paying a continuous dividend yield are given by

$$
C_E = S \cdot e^{-y\tau} \cdot N(d_1) - Ke^{-r\tau} \cdot N(d_2)
$$

\n
$$
P_E = Ke^{-r\tau} \cdot N(-d_2) - S \cdot e^{-y\tau} \cdot N(-d_1)
$$

\n
$$
d_1 = \frac{\ln(S/K) + (r - y + \sigma^2 / 2)\tau}{\sigma \sqrt{\tau}}, \quad d_2 = d_1 - \sigma \sqrt{\tau}
$$

where

- *y* continuous dividend yield
- *S* current stock price
- τ time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.

1.2.7 Options on financial futures

The prices of European options on a financial future are given by

$$
C_E = e^{-r\tau} [F \cdot N(d_1) - K \cdot N(d_2)]
$$

\n
$$
P_E = e^{-r\tau} [K \cdot N(-d_2) - F \cdot N(-d_1)]
$$

\n
$$
d_1 = \frac{\ln(F/K)}{\sigma \sqrt{\tau}} + \frac{1}{2} \sigma \sqrt{\tau}, \quad d_2 = d_1 - \sigma \sqrt{\tau}
$$

where

- *F* current futures price
- τ time in years until expiry of the option
- *K* strike price
- σ volatility p.a. of the futures returns
- *r* continuously compounded risk-free rate p.a.

1.2.8 Options on foreign currencies

$$
C_E = S \cdot e^{-r_{for} \tau} \cdot N(d_1) - Ke^{-r\tau} \cdot N(d_2)
$$

\n
$$
P_E = Ke^{-r\tau} \cdot N(-d_2) - S \cdot e^{-r_{for} \tau} \cdot N(-d_1)
$$

\n
$$
d_1 = \frac{\ln(S/K) + (r - r_{for} + \sigma^2 / 2)\tau}{\sigma \sqrt{\tau}}, \quad d_2 = d_1 - \sigma \sqrt{\tau}
$$

where

- *S* current exchange rate (domestic per foreign currency units)
- τ time in years until expiry of the option
- *K* strike price (domestic per foreign currency units)
- σ volatility p.a. of the underlying stock
- *r* continuously compounded risk-free rate p.a.

 r_{for} continuously compounded risk-free rate p.a. of the foreign currency

1.4 Normal Distribution Table

Probability that a normal random variable is smaller than x.

2. Modern Portfolio Theory

2.1 Return

2.1.1 Holding Period Return

$$
R_{t} = \frac{P_{t} - P_{t-1} + \sum_{j=1}^{J} D_{t_{j}} \cdot (1 + R_{t_{j},t}^{*})^{t-t_{j}}}{P_{t-1}}
$$

where

- *R_t* simple (or discrete) return of the asset over period *t* −1 to *t*
- *Pt* price of the asset at date *t*
- D_{t_i} dividend or coupon paid at date t_j between $t-1$ and t

 t_j date of the *j*th dividend or coupon payment

* $R_{t_j,t}^r$ risk-free rate p.a. for the period t_j to t

J number of intermediary payments

2.1.2 Compounded Returns

$$
1 + R_{eff} = \left(1 + \frac{R_{nom}}{m}\right)^m
$$

where

Reff effective rate of return over entire period

Rnom nominal return

m number of sub-periods

2.1.3 Continuously compounded versus simple (discrete) returns

$$
r_t = \ln \frac{P_t}{P_{t-1}} = \ln(1 + R_t)
$$

$$
R_t = e^{r_t} - 1
$$

- *t*_{*t*} continuously compounded return between time *t* −1 and *t*
- *Rt* simple (discrete) return between time *t* −1 and *t*

2.1.4 Average return

Geometric average return over a holding period using discrete compounding

$$
R_A = \sqrt[N]{(1+R_1) \cdot (1+R_2) \cdot ... \cdot (1+R_N)} - 1
$$

where

^A R geometric average return over *N* sequential periods

Ri discrete return for the period *i*

Arithmetic average return over a holding period using continuous compounding

$$
r_A = \frac{1}{N} \sum_{i=1}^{N} r_i
$$

where

- r_A average continuously compounded return over *N* sequential periods
- r_i *r* continuously compounded return for the period *i*

2.1.5 Annualisation of returns

Annualising holding period returns (assuming 360 days per year) Assuming reinvestment of interests at rate $R_τ$

$$
R_{ann} = (1 + R_{\tau})^{360/\tau} - 1
$$

Euromarket convention, assuming no reinvestment of interests

$$
r_{an} = (1 + r_{\tau})^{360/\tau} - 1
$$

where

Rann annualised simple rate of return

*R*_τ simple return for a time period of τ days

Annualising continuously compounded returns (assuming 360 days per year)

$$
r_{an} = \frac{360}{\tau} \times r_{\tau}
$$

where

r_{ann} annualised rate of return

 r_{τ} continuously compounded rate of return earned over a period of τ days

2.1.6 Nominal versus real returns

With **simple returns**

$$
R_t^{real} = R_t^{nominal} - I_t - R_t^{real} \cdot I_t \approx R_t^{nominal} - I_t
$$

With **continuously compounded returns**

$$
r_t^{real} = r_t^{\text{nominal}} - i_t
$$

where

2.2 Mean, Variance, Covariance, Volatility

Expectation value E(.), **variance** Var(.), **covariance** Cov(.) and **correlation** Corr(.) of two random variables *X* and *Y* if the variables take values x_k, y_k in state *k* with probability p_k

$$
E(X) = \sum_{k=1}^{K} p_k \cdot x_k, \quad E(Y) = \sum_{k=1}^{K} p_k \cdot y_k
$$

\n
$$
Var(X) = \sigma_X^2 = E\Big[(X - E(X))^2\Big] = E(X^2) - E(X)^2 = \sum_{k=1}^{K} p_k (x_k - E(X))^2
$$

\n
$$
Cov(X, Y) = \sigma_{XY} = E\big[(X - E(X)) \cdot (Y - E(Y))\big] = \sum_{k=1}^{K} p_k (x_k - E(X)) \cdot (y_k - E(Y))
$$

$$
Corr(X, Y) = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y}
$$

where $\sum p_k = 1$ 1 $\sum p_{\rm k}$ = = *K k* $p_k = 1$, and

- p_k probability of state *k*
- x_k value of *X* in state *k*
- y_k value of *Y* in state *k*
- *K* number of possible states

The mean, the variance and the covariance of two random variables *X* and *Y*, in a sample of *N* observations of x_i and y_i , are given by

$$
E(X) = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad Var(X) = \sigma_X^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2
$$

$$
Cov(X, Y) = \sigma_{XY} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x}) \cdot (y_i - \bar{y})
$$

where

2.2.1 Volatility of returns

$$
\sigma = \sqrt{\frac{1}{N-1} \sum_{t=1}^{N} (r_t - \bar{r})^2}, \qquad \bar{r} = \frac{1}{N} \sum_{t=1}^{N} r_t
$$

where

$$
y = 10^{-4}
$$

 σ standard deviation of the returns (the volatility) *N* number of observed returns

1 ln − = *t t* $\dot{r} = \ln \frac{P}{P}$ *P*

 $r_t = \ln \frac{r}{r}$ continuously compounded return of asset *P* over period *t*

2.2.2 Annualising volatility

Assuming that monthly returns are independent, then

$$
\sigma_{ann} = \sqrt{12} \cdot \sigma_m = \frac{\sigma_{\tau}}{\sqrt{\tau}}
$$

where

 σ_{ann} annualised volatility

 σ_m volatility of monthly returns

- σ_{τ} volatility of returns over periods of length τ
- τ vength of one period in years

2.3 Linear Regression

2.3.1 Simple regression model (OLS)

$$
Y_t = a + b \cdot X_t + \varepsilon_t
$$

$$
b = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}, \quad a = \overline{Y} - b \cdot \overline{X}
$$

where

- *Yt* dependent variable
- X_t independent variable
- \overline{Y} mean of *Y*
- \overline{X} mean of *X*
- \mathcal{E}_t error term
- *a* intercept
- *b* coefficient (slope) of the regression

2.3.2 Multiple regression model (OLS)

$$
Y_t = \alpha + \beta_1 \cdot X_{1,t} + \dots + \beta_k \cdot X_{k,t} + \varepsilon_t
$$

where

Yt dependent variable

 $X_{i,t}$ independent variable *i*

 ε_t error term (residual)

 α intercept

 β_i coefficients of the regression

2.3.3 Quality of the linear regression

2.3.3.1 Correlation Coefficient

$$
\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}
$$

ρ_{XY}	correlation coefficient
Cov(X, Y)	covariance between X and Y
σ_X	standard deviation of X
σ_Y	standard deviation of Y

2.3.3.2 Coefficient of determination

$$
R^2 = 1 - \frac{\sum_{t=1}^{T} \varepsilon_t^2}{\sum_{t=1}^{T} (Y_t - \overline{Y})^2} = \rho^2
$$

where

- R^2 coefficient of determination
- ρ correlation coefficient
- *Yt* dependent variable
- \overline{Y} mean of dependent variable
- ε_t error term (residual)

2.3.3.3 Fisher F-statistic

$$
F = \frac{R^2}{1 - R^2} \cdot \frac{n - k - 1}{k}
$$

where

- *F* Fisher F-statistic
 R^2 coefficient of det
- coefficient of determination
- *n* number of observations
- *k* number of independent variables

2.4 The portfolio concept

2.4.1 Portfolio characteristics

Ex post return on a portfolio *P* in period *t*

$$
\overline{r_p} = \sum_{i=1}^{N} x_i \overline{r_i} = x_1 \overline{r_1} + x_2 \overline{r_2} + \dots + x_N \overline{r_N}
$$

where $\sum x_i = 1$

 $R_{P,t}$ return on the portfolio in period *t*

 $R_{i,t}$ return on asset *i* in period *t*

- x_i initial (at beginning of period) proportion of the portfolio invested in asset *i*
- *N* number of assets in portfolio *P*

Expectation of the portfolio return

$$
E(R_P) = \sum_{t=1}^{N} x_i E(R_i) = x_1 E(R_1) + x_2 E(R_2) + ... + x_N E(R_N)
$$

where

 $E(R_P)$ expected return on the portfolio

 $E(R_i)$ expected return on asset *i*

 x_i relative weight of asset *i* in portfolio *P*

N number of assets in portfolio *P*

Variance of the portfolio return

$$
\text{Var}(R_P) = \sigma_P^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j \sigma_{ij} = \sum_{i=1}^{N} \sum_{j=1}^{N} x_i x_j \rho_{ij} \sigma_i \sigma_j
$$

where

 \overline{a}

2.5 The Capital Asset Pricing Model (CAPM)

2.5.1 The Capital Market Line (CML)

$$
E(R_P) = R_f + \frac{E(R_M) - R_f}{\sigma_M} \sigma_P
$$

where

E(*RP*) expected return of portfolio *P R_f* risk free rate $E(R_M)$ expected return of the market portfolio σ_M standard deviation of the return on the market portfolio σ_p standard deviation of the portfolio return

2.5.2 The Security Market Line (SML)

$$
E(R_i) = R_f + [E(R_M) - R_f] \cdot \beta_i
$$

$$
\beta_i = \frac{\text{Cov}(R_i, R_M)}{\text{Var}(R_M)}
$$

where

 $E(R_i)$ expected return of asset *i*

 R_f risk free rate

 $E(R_M)$ expected return on the market portfolio

 β_i beta of asset *i*

2.5.3 Beta of a portfolio

$$
\beta_p = \sum_{i=1}^{N} x_i \beta_i
$$

where

 β_P beta of the portfolio
 β_i beta of asset *i*

beta of asset *i*

 x_i proportion of the portfolio invested in asset *i*

N number of assests in the portfolio

3. Practical Portfolio Management

3.1 Index and market models

3.1.1 The single-index model

Single-index model

$$
R_{it} = \alpha_i + \beta_i \cdot R_{index, t} + \varepsilon_{it}
$$

Market model

$$
R_{it} = \alpha_i + \beta_i \cdot R_{Mt} + \varepsilon_{it}
$$

Market model in expectation terms

$$
E(R_{it}) = \alpha_i + \beta_i \cdot E(R_{Mt})
$$

where

Covariance between two assets in the market model or the CAPM context

$$
\sigma_{ij} = \beta_i \cdot \beta_j \cdot \sigma_M^2
$$

where

 σ_{ij} covariance between the returns of assets *i* and *j*

 β_i beta of portfolio *i*

 β_j beta of portfolio *j*

 σ_M^2 variance of the return on the market portfolio

3.1.2 Decomposing variance into systematic and diversifiable risk

In the case of a single security

$$
\sigma_i^2 = \underbrace{\beta_i^2 \sigma_M^2}_{\text{market}} + \underbrace{\sigma_{\varepsilon_i}^2}_{\text{residual}}
$$

where

 σ_i^2 : total variance of the return on asset or portfolio *i* $\beta_i^2 \sigma_M^2$: market or systematic risk (explained variance) $\sigma_{\varepsilon_i}^2$: *idiosyncratic or residual or unsystematic risk (unexplained variance)*

Quality of an index model: R^2 and ρ^2

$$
R^2 = \frac{\beta_i^2 \cdot \sigma_I^2}{\sigma_i^2} = \frac{\beta_i^2 \cdot \sigma_I^2}{\beta_i^2 \cdot \sigma_I^2 + \sigma_{\varepsilon_i}^2} = 1 - \frac{\sigma_{\varepsilon_i}^2}{\sigma_i^2} = \rho_{il}^2
$$

where

 σ_i^2 : total variance of the returns on asset *i* $\beta_i^2 \sigma_M^2$: market or systematic risk (explained variance) $\sigma_{\varepsilon_i}^2$: *idiosyncratic or residual or unsystematic risk (unexplained variance)* ρ _{*iI*} correlation between asset *i* and the index *I* R^2 coefficient of determination in a regression of R_i on R_i

3.1.3 Multi-index models

Multi-index models

$$
r_i = \alpha_i + \beta_{i1}I_1 + \beta_{i2}I_2 + \dots + \beta_{in}I_n + \varepsilon_i
$$

where

Ri return on asset or portfolio *i*

- β_{ij} beta or sensitivity of the return of asset *i* to changes in index *j*
- I_j index j
- ε_i random error term

Portfolio variance under a multi-index model (every index is assumed to be uncorrelated with each other)

$$
\sigma_P^2 = \beta_{P,1}^2 \cdot \sigma_1^2 + \ldots + \beta_{P,L}^2 \cdot \sigma_L^2 + \sigma_{\varepsilon P}^2
$$

where

 σ_i^2 : variance of the asset or portfolio *i* $\beta_{P,j}^2 \sigma_j^2$ systematic risk due to index *j* σ_{e}^2 residual risk

3.1.4 Tracking error

$$
TE^{P,B} = \sqrt{V(R^{P,B}_A)}
$$

where

 $TE^{P,B}$ Tracking error $V(R_A^{P,B})$ Volatility of the active return

3.2 Hedging Strategies using Futures

3.2.1 Hedge Ratio and Number of Futures Contracts

$$
HR = \frac{\Delta S}{\Delta F} = -\frac{N_F \cdot k}{N_S} \qquad N_F = -HR \cdot \frac{N_S}{k}
$$

where

HR hedge ratio

[∆]*S* change in spot price per unit

[∆]*F* change in futures price per unit

NF number of futures

NS number of spot assets

k contract size

3.2.2 The Perfect (Naive) Hedge

$$
\begin{cases} HR = \pm 1 \\ N_F = \mp \frac{N_S}{k} \end{cases}
$$

where

HR hedge ratio

NF number of futures

NS number of spot assets

k contract size

3.2.3 Hedged Profit

For a long position in the underlying asset

Hedged profit =
$$
(S_T - S_t) - (F_{T,T} - F_{t,T})
$$

where

 S_T spot price at the maturity of the futures contract

St spot price at time *t*

F_T,*T* futures price at its maturity

 $F_{t,T}$ futures price at time t with maturity *T*

3.3 Minimum Variance Hedge Ratio

$$
HR = \frac{\text{Cov}(\Delta S, \Delta F)}{\text{Var}(\Delta F)} = \rho_{\Delta S, \Delta F} \cdot \frac{\sigma_{\Delta S}}{\sigma_{\Delta F}}
$$

3.3.1 Hedging when Returns are Normally Distributed (OLS Regression)

$$
\frac{\Delta S_t}{S_t} = \alpha + \beta \cdot \frac{\Delta F_t}{F_{t,T}} + \varepsilon_t
$$

$$
HR = \beta \cdot \frac{S_t}{F_{t,T}}
$$

where

- [∆]*St* changes in spot price at time *t*
- *St* spot price at time *t*
- α intercept of the regression line
- β slope of the regression line
- [∆]*Ft* changes in the futures price at time *t*
- F_{tT} futures price at time t with maturity *T*
- ^ε*t* residual term
- *HR* hedge ratio

3.4 Hedging with Stock Index Futures

3.4.1 Using OLS Regression

$$
N_F = -\beta \cdot \frac{N_S \cdot S_t}{k \cdot F_{t,T}}
$$

where

 β slope of the regression line

- *NF* number of futures
- *NS* number of spot assets
- *St* spot price at time *t*
- $F_{t,T}$ futures price at time *t* with maturity *T*
- *k* contract size

3.4.2 Adjusting the Beta of a Stock Portfolio

$$
HR_{adj} = (\beta^{\text{actual}} - \beta^{\text{target}}) \cdot \frac{S_t}{F_{t,T}}
$$

$$
N_F = (\beta^{\text{target}} - \beta^{\text{actual}}) \cdot \frac{N_S \cdot S_t}{k \cdot F_{t,T}}
$$

3.5 Static Portfolio Insurance

3.5.1 General

3.5.1.1 Floor

$$
f = \frac{\Phi}{V_0}
$$

where

f insured fraction of the initial total portfolio value

 Φ floor

 V_0 initial value of the portfolio

3.5.1.2 Price Index Return

$$
r_{MC} = \frac{r_{PC} + r_{PD} - r_f \cdot (1 - \beta) - \beta \cdot r_{MD}}{\beta}
$$

where

- *rPC* capital gain of the portfolio
- *r_{MD}* dividend yield of the index
- r_{PD} dividend yield of the portfolio

rf risk-free rate

 β portfolio beta with respect to the index

3.5.2 Paying Insurance on Managed Funds

$$
V_0 = N_S \cdot (S_0 + \beta \cdot P(S_0, T, K))
$$

where

3.5.2.1 Strike Price

$$
K = f \cdot (S_0 + \beta \cdot P(S_0, T, K))
$$

3.5.3 Insurance Paid Externally

$$
V_0=N_S\cdot S_0
$$

where

- V_0 total initial value of the portfolio (without puts)
- *NS* numbers of units of the risky assets
- *S0* risky asset spot price

3.5.3.1 Strike Price

$$
K = I_0 \cdot e^{r_{MC}^*}
$$

where

- *I*₀ index level at the time the insurance is made
- r_{MC} return of the price index adjusted for the length of the insurance period

3.5.4 Number of contracts

$$
N_P = \beta \cdot \frac{\text{Portfoliovalue}}{\text{Index level} \cdot \text{Option contract size}} = \beta \cdot \frac{N_S}{k}
$$

where

NP number of options

- *NS* number of units of the risky assets
- β portfolio beta with respect to the index
- \vec{k} option contract size

3.6 Dynamic Portfolio Insurance

3.6.1 Price of a Put on an Index Paying a Continuous Dividend Yield y

3.6.1.1 Black&Scholes Model

$$
P(S_t, T, K) = K \cdot e^{-r_f \cdot (T-t)} \cdot N(-d_2) - S_t \cdot (e^{-y \cdot (T-t)} \cdot N(-d_1))
$$

$$
d_1 = \frac{\ln\left(\frac{S_t}{K}\right) + (r_f - y) \cdot (T-t)}{\sigma \cdot \sqrt{T-t}} + \frac{1}{2} \cdot \sigma \cdot \sqrt{T-t}
$$

$$
d_2 = d_1 - \sigma \cdot \sqrt{T - t}
$$

where

3.6.1.2 Delta of a European Put on an Index Paying a Continuous Dividend Yield y

$$
\Delta_P = e^{-y \cdot (T - t)} \cdot [N(d_1) - 1]
$$

where

∆*P* delta of a put on the portfolio

3.6.2 Dynamic Insurance with Futures

$$
N_F = -e^{y \cdot (T^* - T)} \cdot e^{-r_f \cdot (T^* - t)} \cdot [1 - N(d_1)] \cdot \beta \cdot \frac{N_S}{k}
$$

where

NF number of futures

*T** maturity of the futures contract

- *T* maturity of the replicated put β portfolio beta with respect to portfolio beta with respect to the index
- N_S number of units of the risky assets
- *k* futures contract size

3.6.3 Constant Proportion Portfolio Insurance (CPPI)

3.6.3.1 Cushion

where

- c_t cushion
- *Vt* value of the portfolio
- Φ floor

3.6.3.2 Amount Invested in Risky Assets

$$
A_t = N_{S,t} \cdot S_t = m \cdot c
$$

 $c_t = V_t - \Phi$

where

At total amount invested in the risky assets at time *t*

NS,t number of units of the risky assets

- *St* unit price of the risky assets
- *m* multiplier
- *c* cushion

3.6.3.3 Amount Invested in Risk-free Assets

$$
B_t = V_t - A_t
$$

- *Bt* value of the risk-free portfolio at time *t*
- V_t value of the total portfolio at time *t*
- *At* value of the risky portfolio at time *t*

4. Performance Analysis

4.1 Return

4.1.1 Internal Rate of Return (IRR)

$$
CF_0 = -\sum_{t=1}^{N} \frac{CF_t}{(1 + IRR)^t}
$$

where

*CF*0 initial net cash flow

 CF_t net cash flow at the end of period *t*

- *IRR* internal rate of return (per period)
- *N* number of periods

4.1.2 Time Weighted Return (TWR)

Simple return:

$$
TWR_{t/t-1} = \frac{MV_{end,t} - MV_{begin,t}}{MV_{begin,t}} = \frac{MV_{end,t}}{MV_{begin}} -1
$$

Continuously compounded return:

$$
twr_{t/t-1} = \ln \frac{MV_{end,t}}{MV_{begin,t}}
$$

where

*TWR*_{t/t−1} simple time weighted return for sub-period *t*

*twr*_{t/t−1} continuously compounded time weighted return for sub-period *t*

MVbegin,t market value at the beginning of sub-period *t*

MVend,t market value at the end of sub-period *t*

Portfolio Management

Total period return:

Simple return:

$$
1 + TWR_{tot} = \prod_{t=1}^{N} (1 + TWR_{t/t-1})
$$

Continuously compounded return:

$$
twr_{tot} = \sum_{t=1}^{N} twr_{t/t-1}
$$

where

4.1.3 Money Weighted Return (MWR)

4.1.3.1 Gain or loss incurred on a portfolio

Gain = (Ending Market Value − Beginning Market Value) − Net Cash Flow

4.2 Risk Adjusted Performance Measures

where

 \bar{r}_P average portfolio return

- \bar{r}_M average market return
- \bar{r}_f average risk-free rate
- α_P Jensen's alpha
- β*P* portfolio beta
- ^σ*P* portfolio volatility
- σ_{ϵ} standard deviation of the residuals