

Feldstrasse 80 CH - 8180 Bülach © 01-872 35 40 Fax 01-872 35 32 Association suisse des analystes financiers et gestionnaires de fortune Schweizerische Vereinigung für Finanzanalyse und Vermögensverwaltung

Formulae

Foundation Examination

Financial Accounting and Financial Statement Analysis

Equity Analysis and Valuation

•

Corporate Finance

Table of contents

1. F	inancial Accounting and Financial Statement Analysis	
1.1	Depreciation Methods	
1.2	Financial Reporting and Financial Statement Analysis	
1.3	Analytical tools for Assessing Profitability and Risk	
1.4	Risk Analysis	5
2. E	Quity Analysis and Valuation	6
2.1	Net income, Free cash flows (FCF)	6
2.2	Security valuation	7
3. C	Corporate Finance	9
3.1	Fundamentals of Corporate Finance	9
3.2	Finance Decisions	14
3.3	Capital Structure and Dividend Policy	

1. Financial Accounting and Financial Statement Analysis

1.1 Depreciation Methods

1.1.1 Straight Line Method

Depreciation per Year = (Original Cost – Salvage Value) / Useful Life

1.1.2 Accelerated Method

Double-Declining-Balance-Depreciation

Depreciation = 2·Straight Line Rate · Book Value at the Beginning of the Year

where:

straight-line rate 1 / Estimated Useful Life

Sum-of-the-Years Method (SYD)

Depreciation = (Original Cost – Salvage Value) · Applicable Fraction

where:

Applicable Fraction number of years of estimated useful life remaining / SYD, where $SYD = \frac{n \cdot (n+1)}{2}$

and *n*= estimated useful life

1.2 Financial Reporting and Financial Statement Analysis

1.2.1 Earning per Share

 $EPS = \frac{Earnings \ available \ to \ the \ common \ stockholders}{Number \ of \ shares \ of \ common \ stock \ outstanding}$

With a change in the number of shares outstanding during the year, the formula is modified as follows:

 $EPS = \frac{Earnings \ available \ to \ the \ common \ stockholders}{Weighted \ average \ number \ of \ common \ shares \ outstanding}$

1.2.2 Using EPS to value Firm

Constant Dividend Growth Model (Gordon-Shapiro)

$$EPS = \frac{P_0 \cdot (k_e - g)}{\pi \cdot (l + g)}$$

where:

P_0	initial market price
g	growth rate
<i>k</i> _e	cost of equity
π	payout ratio

1.3 Analytical tools for Assessing Profitability and Risk

1.3.1 Return on Assets

Annual Return

Annual Return =
$$\frac{Annual \ profit}{Invested \ capital}$$

Financial Accounting and Financial Statement Analysis

Return on Assets

$$ROA = return \ on \ assets = \frac{Earnings \ before \ interests \ and \ tax \ (EBIT)}{Assets}$$

$$ROA = \frac{EBIT}{Sales} \cdot \frac{Sales}{Assets} = EMR \cdot ATR$$

where:

EMR = economic margin ratio =
$$\frac{EBIT}{Sales}$$

ATR = asset turnover ratio = $\frac{Sales}{Assets}$

Return on Total Assets

$$ROTA = \frac{EBIT}{Total \ assets}$$

Return on Operating Assets

$$ROOA = \frac{OEBIT}{Operating \ assets}$$

Return on Non-Operating Assets

$$RONOA = \frac{EBIT - OEBIT}{Assets - Operating assets}$$

where:

OEBIT	operating earnings before interests and tax
ROOA	return on operating assets
RONOA	return on non-operating assets

Let ROTA be an average return of the two parts:

$$ROTA = ROOA \cdot x1 + RONOA \cdot x2$$

<i>x1</i>	weight of the operating assets (Operating assets/Total assets)
<i>x2</i>	weight of the non-operating assets $(x^2 = 1 - x^1)$

1.3.2 ROCE

Return on Equity (ROE) or Return on Common Equity (ROCE)

$$ROE = \frac{Net \ Profit}{Equity} = \frac{(1 - t)(EBIT - Interest)}{Equity}$$

which can be written:

$$ROE = (1-t) \cdot \left[\frac{EBIT - Interest}{Equity} \right]$$
$$= (1-t) \cdot \left[\frac{ROA \cdot Assets - i \cdot Debt}{Equity} \right]$$
$$= (1-t) \cdot \left[ROA \cdot \frac{Equity + Debt}{Equity} - i \cdot \frac{Debt}{Equity} \right]$$
$$= (1-t) \cdot \left[ROA + (ROA - i) \cdot \frac{Debt}{Equity} \right]$$
$$= (1-t) \cdot ROEbT$$

ROE can be decomposed as follows:

$$ROE = \frac{Net \ profit}{Earning \ before \ tax} \cdot \frac{Earning \ before \ tax}{EBIT} \cdot \frac{EBIT}{Sales} \cdot \frac{Sales}{Assets} \cdot \frac{Assets}{Equity}$$

Return on Equity before tax

$$ROEbT = \frac{EBT}{Equity} = ROA + (ROA - i) \cdot \frac{Debt}{Equity}$$

i average interest rate on total debts =
$$\frac{\text{Interest expenses}}{\text{Total debts}}$$

EBT earnings before income tax

1.4 Risk Analysis

1.4.1 Liquidity Ratio

Current Ratio

Current assets Current liabilities

Quick Ratio

 $\frac{Current\ assets\ -\ Inventory}{Current\ liabilities}$ or

Cash+Marketable securities + ReceivablesCurrent liabilities

Working Capital Activity Ratio

Sales revenue Average Working Capital

1.4.2 Solvency Ratio

Leverage ratio

 $\frac{Debt}{Equity}$

Interest Coverage Ratio

EBIT Interest Expenses

2. Equity Analysis and Valuation

2.1 Net income, Free cash flows (FCF)

2.1.1 Net income (Net profit)

	Net Sales
_	Cost of goods sold
_	Selling, general + administrative expenses
_	Depreciation
=	EBIT = Earnings before interest and taxes
_	Interest
=	EBT = Earnings before taxes
_	Taxes
=	Net Income

2.1.2 Free cash flows (FCF)

Earnings from operations before interest and taxes (EBIT)

- Taxes (calculated as EBIT · tax rate)
- + non cash relevant expenses (depreciation, provisions for doubtful debt, etc.)
- non cash relevant revenues (adjustments for currency changes, etc.)
- = Gross cash flow
- Increase in net working capital
- + Reduction in net working capital
- Capital expenditure (buildings, equipment, ...)
- + Liquidation of fixed assets
- = Free cash flow from operations

2.2 Security valuation

2.2.1 Zero growth model

$$P_0 = \frac{Div}{k_E}$$

where

P_0	price of share
Div	dividend (assumed constant)
k_E	cost of equity capital

2.2.2 Constant growth model

$$P_0 = \frac{Div_1}{k_E - g}$$

where

P_{0}	price of share
Div_1	$Div_0 \cdot (1+g) =$ expected dividend in period 1
k_E	cost of equity capital
g	growth rate of dividend (assumed constant)

2.2.3 Gordon Shapiro model

$$P_0 = \frac{\text{EPS}_1 \cdot \pi}{k_E - (1 - \pi) \cdot r}$$

P_{θ}	price of share
EPS_1	earnings per share in $t = 1$
π	payout ratio
k_E	cost of equity capital
$1 - \pi$	earnings retention rate
r	return on equity (ROE)

Equity Valuation and Analysis

2.2.4 Price Earnings Ratio

$$P_0 = \text{EPS} \cdot \frac{P}{E}$$

P_{θ}	price of the share
EPS	earnings per share
P/E	price-earnings ratio

3. Corporate Finance

3.1 Fundamentals of Corporate Finance

3.1.1 Compounding and Discounting an Ordinary Annuity

The present value of an annuity is given by

Present value =
$$\sum_{t=l}^{n} \frac{CF}{(1+k)^{t}} = \frac{CF}{k} \cdot \left(1 - \frac{1}{(1+k)^{n}}\right)$$

where

CF	constant Cash flow
k	discount rate, assumed to be constant over time
п	number of cash flows

The future value of an annuity is given by

Future value =
$$CF \cdot \left(\frac{(1+k)^n - 1}{k}\right)$$

3.1.2 Project Valuation

Project Value

$$NPV = -I_0 + \sum_{t=1}^{N} \frac{E(FCF_t)}{(1 + WACC_t)^t}$$

I_0	initial investment
$E(FCF_t)$	expected free cash flows in period t
WACC _t	weighted average cost of capital in period t
Ν	number of cash flows

3.2 Cost of Equity Capital

3.2.1 CAPM

$$k_E = R_F + (R_M - R_F) \cdot \beta_E$$

where

k_E	cost of equity capital
R_F	risk-free return
$R_M - R_F$	expected return on the market portfolio - risk-free return,
	expected Risk premium
$oldsymbol{eta}_{\scriptscriptstyle E}$	beta debt = systematic or market risk of debt

3.2.2 The beta of the firm's assets

$$\beta_A = \beta_D \frac{D(1-t_c)}{D(1-t_c) + E} + \beta_E \frac{E}{D(1-t_c) + E}$$

where

β_A	beta asset
β_{D}	beta debt
β_{E}	beta equity
t_c	marginal corporate tax rate for the firm being valued
D	market value of interest-bearing debt
Ε	market value of equity

If we assume that the debt is riskless ($\beta_D = 0$) the beta of the firm's asset can be written as:

$$\beta_A = \beta_E \frac{E}{D(1 - t_c) + E}$$

In this case, the equity beta (β_E) can be written as:

$$\boldsymbol{\beta}_{E} = \boldsymbol{\beta}_{A} \left(\boldsymbol{I} + (\boldsymbol{I} - \boldsymbol{t}_{c}) \cdot \frac{\boldsymbol{D}}{\boldsymbol{E}} \right)$$

3.2.3 Cost of Equity Capital: Modigliani-Miller

$$k_E = k_u + (k_u - k_d)(1 - T) \cdot \frac{D}{E}$$

where

k_E	cost of equity (required return on equity)
<i>k</i> _u	equity rate of return were the company 100% equity
<i>k</i> _d	cost of debt (required return on debt)
Т	statutory marginal tax rate
D	debt (market value)
Ε	equity (market value)

3.2.4 Zero Growth Model

$$k_E = \frac{Div}{P_0}$$

where

k_E	cost of equity capital
Div	dividend (assumed constant)
P_{0}	price of share

3.2.5 Constant Growth Model

$$k_E = \frac{Div_I}{P_0} + g$$

k_E	cost of equity capital
g	growth rate of dividend
Div_1	$\text{Div}_0 \cdot (1+g) =$ expected dividend in period 1
P_{0}	market price of share

3.2.6 Earnings-Price Ratio Approach

$$k_E = \frac{EPS_I}{P}$$

where

k_E	cost of equity capital
EPS_{I}	expected earnings per share in <i>t</i> =1
Р	current market price of share

3.2.7 Gordon Shapiro model

$$k_E = \frac{\text{EPS}_1 \cdot \pi}{P_0} + (1 - \pi) \cdot \text{ROE}$$

where

k_E	cost of equity capital
EPS_1	earnings per share in <i>t</i> =1
π	payout ratio
P_{0}	price of share
ROE	return on equity

3.3 Cost of Debt Capital

3.3.1 Cost of Debt Capital before Taxes

CAPM

$$k_D = R_f + (R_M - R_f) \cdot \beta_D$$

k_D	cost of debt capital (expected return on debt)
R_f	risk-free return
$R_M - R_f$	expected excess return on the market portfolio
β_D	beta debt = systematic or market risk of debt

Corporate Finance

Yield to maturity

$$k_D = \sum_{i=1}^N w_i \cdot YTM_i$$

where

k_D	cost of debt capital
Wi	weight of debt <i>i</i>
YTM_i	yield to maturity of debt <i>i</i>

3.3.2 Cost of Debt Capital after Taxes

$$k_{DA} = k_D \cdot (l - t_c)$$

where

k_{DA}	cost of debt capital after taxes
k_D	cost of debt capital before taxes
t_c	marginal corporate tax rate

3.4 Weighted Average Cost of Capital (WACC)

$$WACC = k_D (1 - t_c) \frac{D}{V} + k_E \frac{E}{V}$$

where

k_D	pre (corporate) tax cost of debt
k_E	cost of equity
t _c	marginal corporate tax rate for the entity being valued
D	market value of interest-bearing debt
Ε	market value of equity
V	=E+D

If the firm has preferred stock, *WACC* becomes:

$$WACC = k_D (1 - t_c) \frac{D}{V} + k_E \frac{E}{V} + k_P \frac{P}{V}$$

k_P	after tax cost of preferred stock
Р	market value of preferred stock
V	= E + D + P (here)

Corporate Finance

3.5 Ratios

Average tax rate

$$t = average \ tax \ rate = \frac{Taxes}{Earnings \ before \ taxes}$$

Average interest rate

 \underline{i} = average interest rate = $\frac{\text{Interest payments}}{\text{Debt}}$

3.6 Short / Long-Term Finance Decisions

3.6.1 Net Working Capital

Current assets (cash + receivable + inventories)- Current liabilities

3.7 Capital Structure and Dividend Policy

3.7.1 Firm Valuation

Firm value

V = D + E

where

V	value of the firm
D	debt (market values)
E	equity (market values)

MM proposition I (assuming no taxes)

$$V = V_L = V_U = D + E = \frac{EBIT}{k_A}$$

V_{L}	value of levered firm
$V_{\rm U}$	value of unlevered firm
D	debt (market values)
Е	equity (market values)
EBIT	earning before interest and taxes (assumed permanent)
k _A	constant overall cost of capital (return on assets)

Corporate Finance

Free Cash Flow Approach

$$V = -I_0 + \sum_{t=1}^{N} \frac{E(FCF_t)}{(1 + WACC_t)^t}$$

where

V	value of the firm
$E(FCF_t)$	expected free cash flows in period t
WACC _t	weighted average cost of capital in period t

With the continuing value of the firm at time T equal to:

Continuing value at time
$$T = \frac{FCF_{T+1}}{WACC - g}$$

where

Т	point in time where the explicit free cash flow forecasting horizon ends.
FCF_{T+1}	level of expected free cash flow in the first year after the explicit forecast period;
	then assumed to grow at rate g.
WACC	weighted average cost of capital (assumed constant)
g	expected growth rate of free cash flows after T (assumed constant)

Value of Tax Shield

Value of tax shield =
$$\frac{k_D \cdot D \cdot t_c}{k_D} = D \cdot t_c$$

where