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Options for Guaranteed Index-linked Life Insurance 

Christian Hipp 

Abstract 
The market risk contained in guaranteed equity-linked life insurance products can 
be managed with options. To prevent premature cancellation, a profit structure is 
chosen which corresponds to forward cliquet options. The pricing and the delta- and 
vega-risk of these options is computed for a variety of payoff patterns. When the 
profit from the index contributes additively to the benefits, then a closed form is 
possible for prices and delta- resp. gamma-risks. If the profit from the index 
contributes to the benefit only if it exceeds the guaranteed sum, then these 
quantities can be computed with Monte Car10 simulations. 
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1 Introduction and Summary 
Guaranteed equity-linked life insurance products are well established in North 
America and in some countries in Europe e.g., in United Kingdom, France, 
Switzerland, Italy, and Belgium. Since traditional life insurance products 
sold badly in Germany during the last five years (the total sum newly insured 
dropped from 191,l billion DM in 1990 to 149,2 billion DM in 1995), also 
here this concept is discussed nowadays; guaranteed index-linked life prod- 
ucts are considered for possible competition with high interest rate products 
(Equitable Life) or bank products (”Borse Vollkasko” of Commerzbank). See 
Meisch and Stolz (1996) [ll] or Mattar (1996) [lo]. Until today (July 1996) 
guaranteed equity-linked life products are not sold yet by German life in- 
surance companies in Germany, there are some variants which are discussed 
and considered to fit to German taxation and supervision rules (see Blohm 
(1996) [3]). A first tranche of guaranteed equity-linked life products, called 
INDAX, is being offered by Standard Life in Germany from August 1 until 
September 30 this year. The contracts commence on October lst, 1996. 

Already in one of the first treatments of guaranteed equity-linked life con- 
tracts of Brennan and Schwartz ([4]), it is stressed that these products differ 
essentially from traditional life products. The benefits are linked to an equity 
such as the S&P 500 stock index or the German DAX, and consequently the 
risk for the insurer is non-diversifiable across individual policy holders. If 
an insurance company issues a large portfolio of life products, then by the 
law of large numbers the mortality risk is diversified away. However, if a 
large portfolio of equity-linked life contracts is issued, then ” a  stock market 
collapse will render the insurance company simultaneously liable under the 
guarantees of all its expiring policies.” (see [4]). While the pricing of the 
mortality risk is done with the help of the equivalence principle, the pricing 
of the financial risk must be done with the help of modern finance. The 
payoff of a guaranteed equity-linked life contract at expiration is - in the 
most simple case - identical to the payoff from a European call option plus 
the guaranteed amount. The first component of this payoff can therefore be 
priced using the Black and Scholes theory. This pricing problem has been 
addressed in the papers [15], [16], [4], [5], [6], [l] for constant interest rate, 
and in [2], [13], [12], and [9] for random interest rate. In this paper we con- 



1465 

sider special equity-linked life products with a certain "lock in" feature in 
the equity-profit part. We shall derive prices for the corresponding options 
under the Black and Scholes model with constant interest rate. The delta- 
and vega-risks are computed as well. 

The above form of profit, from the index S ( t )  is connected with the relative 
total profit in the index from time 0 to time T.  If S( t )  increases by z% 
with 0 < z = S(T)/S(O) * 100, then the benefit from the index equals 
z K/100. Therefore this profit, corresponds to a European call option which 
at maturity pays 

Here, K is the fixed slim which participates in the index. This definition of 
the profit has the disadvantage that a policy holder will cancel his contract 
as soon as the index is far below S(0)  or far above S(0)  : in the first case, the 
probability of a future gain is very small, so the policy holder will cancel his 
contract and will invest his money directly into the index; in the second case 
he will prefer to withdraw t,he profit since the probability of a future loss is 
quite high. In order to prevent, cancellation of contracts, a lock in variant 
can be built, in, e.g., via a forward cliquet option or a ladder option. 

In a ladder option, the profit is locked in as soon as it exceeds a prescribed 
value. This profit will not be reduced by future losses in the index. The payoff 
of a ladder option with ladder values 0 < M I  < M2 < ... at expiration equals 

K (S(T)/S(O) - 1)'. (1) 

where M3 is the largest member in the sequence MI < M2 < ... for which 
S ( t )  2 M3 holds for some 0 < t < T. Also for this profit structure, premature 
cancellation will occur as soon as S( t )  is much smaller than S(O), since then 
the probability for a future profit is small. Furthermore, this option has a 
path dependent payoff at expiration, and therefore it will not be considered 
in this paper. 

In a forward cliquet option, the annual profit in the index is locked in, it 
will not be lost if losses in the index occur in the future. A forward cliquet 
option written on the underlying index S( t )  is a sequence of T forward options 
on S ( t )  which are at the money. The value at maturity is 

T 
K (S ( t ) /S ( t  - 1) - 1)'. 

t=l  
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The word "cliquet" is the french word for a toothed ratchet wheel. This is 
a wheel which always continues to spin round in the same direction.Correspon- 
dingly, a forward cliquet option accumulates annual profits and neglects all 
annual losses. The word "forward" indicates that we have a sequence of for- 
ward contracts on European call options starting at t - 1, expiring at t ,  and 
being at the money when starting, for t = 1, ..., T .  In this forward contract, 
the exercise price of the one year options for t > 1 is not known in advance. 

For this kind of profit from the index, the risk of premature cancellation 
is small since small values of S ( t )  increase the probability for a large future 
relative profit. Even a crash of the stock market opens the chance for future 
profits, provided the stock market recovers after the crash. 

A guaranteed index-linked life insurance has an expiration time T,  a time 
of payment S, a guaranteed sum G, a participation in the index, a death 
benefit D, a survival benefit B,  a pattern for the profit from the index as 
well as a definition of the surrender value. We shall use P for the total profit 
from the index at expiration T.  In order to fit to the German taxation rules, 
an annual premium has to be paid (for at least 5 years, i.e. S 2 5) ,  and 
T should be 12 or larger. For this purpose we include the case of T = 12 
and S = 12 annual premia, paid at the beginning of each year. To simplify 
notation we assume that. the annual premium is 1. The participation in the 
single premium case can be defined as a total amount through a percentage 
LY of the single premium. In the case of current premium payments, it seems 
to be more natural to define it as a percentage of accumulated premia: for 
the profit in year t the amount participating in the index equals 

K ( t )  = amin(S,t)  

The yearly profit is a special "policyholder's dividend" which can be accu- 
mulated, can yield interest on expiry, or can be included into the amount, 
participating in the index (compounding). In this note we shall consider 
profit patterns for single premium payment (with constant, participation) 
and current premium payment (with time dependent participation), with 
profits which are just added, are yielding interest, or are compounded. We 
deal with the two cases of additive ( B  = G + P )  and non-additive ( B  = 
max(G,P + K ( T ) ) )  survival benefits. In the non-additive case the paid 
profit equals ( P  + K ( T )  - G)+. 
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2 Payoff Patterns 

2.1 Single Premium Payment 
Additive Benefits 

In our above payoff pattern 

T 
K c (S( t ) /S ( t  - 1) - 1)' 

t = l  

the annual profits from the index are just added. We shall next consider 
the cases in which the annual profits bear interest or are compounded. We 
assume that the interest rate is nonrandom and constant, say r. The payoff 
at maturity in the case with interest rate equals 

T 
K c (S( t ) /S ( t  - 1) - 1)' (1 + T ) ~ - ' .  (3) 

t=l 

If profit is compounded, i.e. if K is adjusted each year such that all earlier 
profits are included, then the payoff at expiration equals 

T T 
K n m m ( & , l ) - K = K e x p  t=1 1)))' 

(4) 
An alternative method for the definition of a guaranteed slim is via a 

guaranteed interest rate ro. A payoff yielding a minimal interest rate of TO 

which might be called compounded with floor is the following: 

Non-additive Benefits 
Up to now, we have considered only the case in which the profit from 

participation in the index is additive, i.e. the B = P + G. A second possi- 
bility is a benefit which is the maximum of the guaranteed amount and the 
total return from the participation, B = max(G, P + K ) .  If G > K is the 
guaranteed amount, then the benefits for the above profit schemes are 

B = max ( K  S(T)/S(O), G) = 
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T 

(S ( t ) /S ( t  - 1) - 1)’ + K ,  G 

T 
(S ( t ) /S ( t  - 1) - 1)+ (1 + T ) ~ - ’  + K,G 

2.2 Current Premium Payment 
In the case of current premium payment, the amount participating in the 
index at time t ,  say K ( t ) ,  depends on t ,  more precisely on the accumulated 
sum of premia paid up to time t. Recall that S is the time of premium 
payment. For current premium payment, the guaranteed endowment value 
is usually defined through a guaranteed interest rate r0 paid for accumulated 
Dremia: 

t=1 

and the participation at time t is defined through a percentage a of the 
accumulated premia paid up to time t (the beginning of year t ) :  K ( t )  = 
amin(t,S). The Standard Life product ”INDAX Andante”, e.g., has S = 5 
annual premia, T = 12, a = 0.69 and TO = 0. We consider the following four 
patterns in which the annual profits are just added, are bearing interest, are 
compounded, or are compounded with floor. In the first two cases the accu- 
mulated profits are not included in the participating amount. Just adding 
yields the final profit of 



1469 

bearing interest, gives a benefit of 

the compounded version, i.e. accumulated profits are participating in the 
index, gives 

which has t,he same distribution as 

while t,he compounded with floor version yields 

S(2 - 1) (9) 

which has the same distribution as 

Q:? t=l (hrnax i=l 
(a, 1 + T o )  - 1) 

It is straightforward to write down the corresponding formulae for non- 
additive benefits B = max(P + K ( T ) ,  G). 

3 Pricing of Forward-Cliquet Options 
We shall price the forward cliquet options under the different payoff patterns 
under the Black and Scholes model for the index: 

dS(t)  = pS(t)dt + vS(t)dW(t),  0 5 t 5 T ,  S(0) = so > 0. 

Here, W ( t ) ,  0 5 t 5 T ,  is a standard Wiener process. In this model, we 
assume a known constant volatility w. For more realistic models and pric- 
ing/hedging formulae see, e.g., [14]. In addition we shall assume that the 
interest rate 6 = log(1 + T-) is nonrandom and constant. We then have the 
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ideal situation in modern finance where the market is arbitragefree and com- 
plete, i.e. there exists exactly one equivalent martingale measure p. The 
pricing of a contingent claim paying an amount C at T which depends on 
S(t),  0 5 t 5 T ,  is then done using this equivalent martingale measure p : 
the price for C equals 

exp( -6T) EC. 
Under p the process S( t )  satisfies the following stochastic differential equa- 
tion: 

dS(t) = 6S(t)dt + vS(t)d@(t),  0 5 t 5 T ,  S(0) = SO > 0. 

Here, %(t) ,  0 5 t 5 T,  is a standard Wiener process under p.The above 
equation can be solved explicitely: 

We now derive the price for all ow payoff structures. 

3.1 Single Premium Payment 
Additive Benefit 

For (1) we have the price 

KC(1,T) 
where C(s, I ,  T )  is the classical Black and Scholes price for a European call 
with exercise price I ,  when the underlying has value s, and time to maturity 
is 7, and C(S,T) is the value at the money (i.e. x = s) : 

- exp(-67) I 9 (lOg(S/Z) + (6 - V2/2)T) 
VJ? 

with 9(z) = l/*J_", exp(-t2/2)dt the standard normal distribution func- 
tion. For (2) we obtain the price 

T 
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T 
K ( l  +r)- 'p(s( t ) /s( t  - 1) - 1)+ = 

t=l 

K (1 + r)-T+'TC(l, 1).  

Notice that the price for (1) is not always smaller than the price for t,he 
forward cliquet option (2). Even more surprisingly, the price of the forward 
cliqiiet option is not increasing in time. This is due to the fact that the profit 
is not included in the number K (as it would be with compound interest). 
If time increases, then an additional term shows up in the sum, but at the 
same time the profit is payed later and therefore smaller by discounting. 

For (3) we obtain the following price: 
T 

exp(-ST)ZK C (s(t)/s(t - 1) - I)+ (1 + rlT-' = 

K c (1 + T ) - ~  ,!? (S ( t ) /S ( t  - 1) - 1)' = 

t=1 
T 

t = l  
T + 

K C ( I + r ) - ' e x p ( d ) e ( e x p ( - ~ v 2 + n R ( l ) )  - 1) = 

(1 + r)-' C(1,l) = K (1 - (1 + T ) - ~ )  -C(l, 1) 

t=1 

l + r  T-1 
K 

T t =o 
Also for (4) we obtain a closed form for the price. The exponent in the 

payoff 

1 
2 

T T c (lOg(S(t)) - lOg(S(t - 1)))' = c (6 - -?J2 - 71 (f i(t) - @(t - I)))+ 
t=l t=l 

is the sum of iid random variables, and therefore 
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With S = 6 - fv' + v@(l)  we obtain 

This yields the price 

T 1 + C(1,l)) - K(1  + T ) - ~  

for the corresponding option with payoff pattern (4).  Similarly, for (5) we 
obtain the option price 

T 
K(-+C(1,1+~0,1)) - K ( ~ + T ) - ~  

In Figure 3.1 we show the prices for r = 0.07, 71 = 0.2, K = 1 and 

Non-additive Benefit 
If the benefit is not defined as the sum but as the maximum of G and the 

amount K plus profit from the index, then not all prices of the corresponding 
contingent claims can be given in closed form. For (1) we still obtain one: 

0 5 T 5 30 for the five payoff pattern (1) -(5). 

G 
K = (1 + T ) - ~ G +  KC(1,-,T) for payoff (1). 

The corresponding option prices are based on the payment, B - G at expira- 
tion T. So,e.g., for (1) we obtain the option price 

For all other payoff patterns (2) - (5) we must use Monte Carlo methods for 
the computation of the option prices. However, this is easy since we do not 
need simulations of a sample path of a solution to the stochastic differential 
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equation, instead for each Monte Carlo value we only need T independent 
normal random variables. We use a Monte Carlo sample size of 10,000. In 
Figure 3.2 we see the simulated option prices for r = 0.07, G = 1.601, K = 1 
(or a = 0.6246), T = 12 and v from 0.1 to 0.4, for the five payoff pattern (2) - 
(5). In Figure 3.3 we show the corresponding price for payoff pattern (2),one 
curve is the exact value, the other the result of a Monte Carlo simulation 
with 10,000 replications. The error increases with the volatility and equals 
0.59327913 - 0.576875 = 0.0164 or 2.765% for 'u = 0.4. The guaranteed 
amount G = 1.601 corresponds to a guaranteed interest rate of 4% : 

G = 1.0412. 

3.2 Current Premium Payment 
Additive Benefit 

For payoff patterns (6) - (9) we obtain explicite option prices: 

T 
cr (1 + r)-'+l y ( T  + l ) C ( l , l )  for (6), 
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exp(-sT) ia  5 (li max (-, 1 + To)  - 1) = 
t=1 i= l  

f f T  

(1 +I-) t=1 
T c ((1 +TO + (1 + T)C(l, 1 + To, l)y - 1) = 

ff To + (1 + r)C(l, 1 + ro, 1))*+' - 1 
(1 + r)' To + (1  + r)C(1,1+ r o l l )  

In Figure 3.4 we show the prices for a = 1, r = 0.07, u = 0.2, and 0 5 T 5 30 
for the four payoff patterns (6) -(9). 

Non-additive Benefit 
In Figure 3.5 we show the option prices for non-additive benefits for the 

parameters r = 0.07, (Y = 1, G = 15.6268, T = 12 and v from 0.1 to 0.4, 
for the four payoff patterns (6) - (9). The choice of G corresponds to a 
guaranteed interest rate of 4%: 

12 
G = c 1.04t. 

t=1 

Also here, we used a Monte Carlo sample size of 10,000. 

4 Vega and Delta-risk of Options 
The forward cliquet options mentioned above are OTC products, there is no 
liquid market for them, and so hedging of their market risk must be done in a 
(large) portfolio of options (OTC as well as standardized) on the underlying 
index. The long time to expiry leads to a large vega-risk of our forward 
cliquet options. The delta- and vega-risk of long positions of cliquet options 
can be compensated by an appropriate short. position in other options. For 
the computation of the delta- and vega-risk at time 0 < t < T we need the 
option price for time t. For additive benefits and payoff patterns (2) - (3) the 
delta-risk of the whole option is equal to the delta-risk of the part active at 
time t : If j 5 t < j + 1 and if C,(z, s, 7) is the delta-risk of a European call 
option with time to maturity 7, exercise price 2, starting index value s, i.e. 
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For compounded payoff patterns we have the accumulated profit up to  year j 
participating in the index, and by independence of future gains the delta-risk 
equals 

for payoff (4) and 

for payoff (5), respectively. The corresponding values for current premium 
payment are 

for (S),and finally 
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Similar formulae are valid for the vega-risk: The vega-risk C,(s, 2, T )  for a 
European call option equals 

CU(S,2,T) = dC(S,2,T)/dO 

= Sficp (log(s/s) + (6 + v 2 / 2 ) T )  
0 J? 

We obtain for additive benefits the following vega-risks (again with T = 
j + 1 - t ) :  

for payoff (4), 

l + r  

for payoff (5), 
T S 

a(j  + 1)Cu(-, 1,7)(1+ r)j+l--T + a c ZCU(l,1, 1)(1+ r ) i -T  
S ( j )  i= j+2  

for payoff (6), 
T S 

a(j  + 1)Cu(-, 1,T) + a  C iCU(l,1, 1) 
S ( j )  i=j+Z 

for payoff (7) , 
T j  

i=l k = l  
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for (8) and, finally, 

for (9). Numerical experiments show that for the non-additive case the vega- 
and delta-risks are smaller than in the additive case. 
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