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Abstract
In this paper we present an approach to market based valuation of life insurance

policies, in the spirit of the NUMAT proposed by Hans Bühlmann (2002) in an editorial
in the ASTIN Bulletin. We have experienced the valuation method for more than one
decade, both as a pricing procedure applied to policy portfolios of leading insurance
companies, and by including the valuation principles into several actuarial teaching
activities.

Our interest is mainly focused here on participating policies that in Italy are char-
acterized by contractually binding profit sharing rules. The problem of the fair valu-
ation of the liabilities generated to the insurer by these contracts can be conveniently
addressed using the methods of contingent claims pricing. These allow to price cor-
rectly the options embedded into the policies and to implement consistent plans of
asset-liability management. The approach also provides a market based measurement
of the value of business in force for outstanding policy portfolios and consistent as-
sessments of the financial risk based capitals.

1 A NUMAT system from Italy

In line with the suggestions expressed by Hans Bühlmann in the proposal of the NUMAT
approach (Bühlmann, 2002) and also in the discussion of the article by Aase and Persson
(Bühlmann, 2003a), we describe here our experience in applying and teaching the financial
approach in valuation of life insurance policies in Italy.

Our approach has been focused on two main issues:
– providing a mark-to-market (fair) valuation of the outstanding liabilities of an insur-

ance company, jointly with the appropriate measures of sensitivity to financial risk
factors, e.g. interest rate risk, that are essential for implementing a consistent plan of
asset-liability management;

– derive a more reliable measure of the value embedded in business in force (VBIF),
including a mark-to-market valuation of the financial options embedded into the poli-
cies.
It is worth mentioning that when applied to a single policy at the issue date the

approach also provides a fair methodology for profit testing. Another important by-
product is the derivation of the financial components of the risk based capital of the
outstanding portfolio. This is typically done by properly stressing the risk factors of the
valuation model and then repeating the pricing procedure under the “worst case scenario”.
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Virtually all life insurance policies in Italy provide benefits which are explicitly linked
to the return of a reference fund, in which the technical reserves must be invested. This
kind of profit sharing mechanism is not discretionary for the insurer, but rather it is one
of the terms of the contract. Using the language of the option pricing theory, the financial
component of a policy can thus be considered as a derivative contract having the reference
fund as the underlying asset. Therefore it is natural to perform the financial valuation of
both the assets (the reference fund) and the liabilities (the promised benefits) using an
appropriate stochastic pricing model based on the no-arbitrage principle.

In 1993-94 we applied for the first time this methodology to the valuation of a portfolio
of participating policies issued by INA (Istituto Nazionale delle Assicurazioni), the so-
called “3/N” policies. These policies were annual premium endowments having premiums
and benefits linked both to the reference fund return and to the consumer price index.
The pricing of 3/N policies was performed using an extended Cox-Ingersoll-Ross model,
including both real and nominal interest rates. As it usually happens, the indexation rule
was rather complex and Monte Carlo procedures were used to implement the no-arbitrage
valuation. One of the main goals was to verify if the amount of (inflation) indexed bonds
held by the insurer into the reference fund was properly calibrated in order to hedge the
inflation risk generated by the 3/N liabilities. We found that the index-linked bonds were
overweighted in the investment portfolio 1.

The teaching activity on these issues started in 1991 at the Scuola Normale Superiore
di Pisa and at the Istituto Italiano degli Attuari 2. The topics included both the theoretical
foundations of the approach and the analysis of case studies, supported by explicit software
procedures. The courses have been organized for the needs of the actuarial professionals,
but a few places were offered on a no cost basis to academic institutions.

In July 2002, we presented the approach at the Summer School of the Groupe Consul-
tatif Actuariel Europeen, in Milan. The lecture notes of the course (De Felice, Moriconi,
2002b) are available on the website www.GCActuaries.org/events.html.

The valuation methodology has been coded in a software application, enforced by
a corresponding database, forming the implementation of what today would be called a
NUMAT-based system.

Early versions of this system were installed at SAI in 1997, in order to design pension
plans with minimum guarantees; successively the system was enhanced and extended to all
the outstanding policy portfolios of all the companies of the SAI Group, and finally of the
Fondiaria-SAI Group. The system is applied both to the asset-liability management and to
the control of the evolution of the embedded value and the cost of the minimum guarantees
options. In 1999 the system has also been adopted by all the companies of Gruppo Reale
Mutua Assicurazioni and by Cisalpina Previdenza and Roma Vita (at present merged in
Fineco Vita).

Alleanza Assicurazioni is also using the system since 2000. The valuation procedures
are running with monthly frequency and are used for providing management indications
to the investment department and for monitoring the VBIF. The deeper understanding of

1The results of this study were presented in the talk “Valuation of Index-Linked Life Insurance Policies
with Minimum Guarantees by Stochastic Models for Real and Nominal Interest Rates” at the Conference
on Recent Advances in Mathematical Finance, Cortona, May 29-June 3, 1994.

2Courses have been held on Interest rate risk control and CIR model (1991-92); Asset-liability manage-
ment in life insurance (1995-96); Management of pension funds (1997); Embedded value calculation in life
insurance (2001-02).
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the price determinants of the embedded options has stimulated the construction of new
life products having a reduced cost of the minimum guarantees. These new policies have
been recently issued on the market.

RAS Group adopted the methodology in 2001 in order to measure the risk based
capital of the outstanding portfolios. In this case we extended the system to non-life
portfolios. The embedded value measurement and the pricing of the embedded options
were obtained as by-product of the risk capital valuation. Indications provided by the
valuation procedures stimulated a re-styling process of the policies.

From the point of view of NUMAT approach it is important to stress that the system
is employed in educational activities within the above companies.

In the rest of the paper we provide an illustration of our approach to the market
based valuation of life insurance policies. To simplify the exposition we mainly refer to
the simple case of pure endowment profit sharing policies. However the pricing model
we specify is suited for providing a unified valuation of both the outstanding liabilities
of a general policy portfolio and the assets of the fund where the earned premiums are
invested.

2 The valuation framework

2.1 A simplified contract

To understand the valuation framework it suffices to illustrate our procedure with the
simple case of a single premium pure endowment insurance contract, written at time 0 for
a life with age x, with term T years and initial sum insured C0. Assume that the policy
is a participating one, or ”with profit”, in which the benefit CT that will be paid by the
insurer if the policyholder is alive at time T is determined by incrementing each year the
sum insured by a fraction β of the interest earned by the insurer on the investment of the
premium 3.

Let Ft be the market value at time t of the fund where the premium is invested. The
rate of return earned by the fund in year [t−1, t] is:

It :=
Ft

Ft−1
− 1 ; (1)

obviously It is a random variable which can also assume negative values. Let us assume
that the basic actuarial calculations are performed at the technical interest rate i. The
Italian system for profit sharing policies then provides that if It > i a portion of the extra
earned interest is credited to the insured by an increase of the sum insured. A typical
interest crediting mechanism is obtained by readjusting the benefit at the end of the year
t with the rule:

Ct = Ct−1 (1 + ρt) , t = 1, 2, . . . , T , (2)

where the readjustment rate is defined as:

ρt :=
max {β It, i} − i

1 + i
; (3)

3We refer to the case of a participating policy since this seems to provide the most challenging ap-
plication of the NUMAT method. For unit-linked and index-linked policies the market based valuation
approach appears to be natural (and probably unavoidable). A detailed example of NUMAT valuation of
a participating whole life insurance contract can be found in Pacati (2003).
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here β ∈ (0, 1) is the so called “participation coefficient”. Both the technical rate i and
the β coefficient are contractually specified, that is fixed at time zero.

The quantity β It in expression (3) represents the portion of the fund return which
is credited to the policyholder (by increasing the sum assured); the remaining portion
(1 − β) It is retained by the insurer and determines his investment gain. The floor rate
i guarantees to the policyholder that the sum insured cannot decrease; thus the insurer
must guarantee the readjusted benefit Ct even if the reference fund does not realize the
technical rate i in year t.

Under this profit sharing rule, the final benefit is given by:

CT = C0 ΦT ,

where the readjustment factor ΦT is defined as:

ΦT :=
T∏

t=1

(1 + ρt) = (1 + i)−T
T∏

t=1

(1 + max {β It, i}) . (4)

Let E(x, T ) denote the event “the life insured aged x is alive at time T”, and let IE(x,T )

denote the indicator function of E(x, T ). The liability YT of the insurer at time T is given
by:

YT = C0 ΦT IE(x,T ) ; (5)

hence the random payoff YT is affected by both financial and “technical” (actuarial) un-
certainty.

2.2 Linear valuation

We assume that all the random variables concerning the valuation problem are defined on
a probability space (Ω,A, P ), where P is the probability measure we assume to describe
all random movements in time (natural probability measure). In order to model financial
and technical uncertainty, we also assume that two sub-σ-algebras can be defined: F , con-
taining the financial events, and T , which contains the technical events. Correspondingly,
we also consider the two filtrations:

F0 ⊂ F1 ⊂ · · · ⊂ Ft ⊂ · · · ⊂ F ; T0 ⊂ T1 ⊂ · · · ⊂ Tt ⊂ · · · ⊂ T .

By definition, ΦT is FT -measurable and IE(x,T ) is TT -measurable.
We are interested in assigning a value at time t to the random variable YT payable at

time T . We call this map the Valuation Functional, denoted by V (t; YT ). Again it suffices
here to explain our procedure, if we show how to find V (0;YT ) (valuation at the beginning
of the policy).

The functional V (0; YT ) should avoid riskless arbitrage opportunities; hence it must
have the following representation:

V (0;YT ) = EP [πT YT ] , (6)

where EP is the conditional expectation, given A0, under the natural measure P and πT

(the “state-price deflator”) is a strictly positive AT -measurable random variable 4. This
4If fT (y) is the probability density function of YT , we can also write:

V (0; YT ) =

Z ∞

−∞
πT (y) YT (y) fT (y) dy =

Z ∞

−∞
YT (y) ψT (y) dy ,
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result is a central one in the theory of arbitrage pricing (see e.g. Duffie (1992)). It can also
be derived by the Riesz representation theorem if the linearity of the Valuation Functional
V is required (see also Bühlmann (1995)).

We assume independence between financial and technical uncertainty; more precisely,
we assume that F and T are independent and that the deflator πT can be expressed as
the product of two strictly positive random variables:

πT = ϕT χT , (7)

where ϕT , the financial deflator, is FT -measurable and χT , the technical deflator, is TT -
measurable 5. Under this assumption the following factorization holds:

V (0;YT ) = C0 EP
[
ϕT ΦT

]
EP

[
χT IE(x,T )

]
. (8)

2.3 Financial component

We can interpret the readjustment factor ΦT as the stochastic payoff of an indexed Zero-
Coupon Bond (ZCB), called U , maturing at time T . The reference index of U is the annual
return It of the investment fund and the indexation rule is specified by the definition (4).
By the separation property (8) the value of this indexed ZCB at time zero is equal to:

u(0, T ) := V (0; ΦT ) = EP [ϕT ΦT ] . (9)

It is important to distinguish (9) from a usual non-indexed ZCB with deterministic payoff
1T (one unit of cash at time T ), for which we have:

v(0, T ) := V (0;1T ) = EP [ϕT ] . (10)

Assuming the financial market to be complete the payoff ΦT (and of course also 1T )
can be replicated by a suitable trading strategy and the price u(0, T ) must be equal to
the market price of this strategy, independently of the probability assessment and the risk
aversion of the insurer. It is well-known that in this case there exists a unique equivalent
probability measure Q such that:

EP [ϕT ΦT ] = EQ
[
e−
R T
0 rt dt ΦT

]
, (11)

where EQ is the expectation taken with respect to the Q measure and rt is the stochastic
force of interest (the so-called “spot rate”) prevailing on the market at time t for riskless
(i.e. not defaultable) investments. The Q measure is also referred to as the risk-neutral
measure, since the price of V (0; ΦT ) can be expressed as the expectation, under Q, of
the terminal payoff ΦT discounted with the stochastic discount factor exp(− ∫ T

0 rt dt). In
other words, one can “neutralize” the risk premia contained in the deflator ϕT using the
Q measure instead of the natural measure P .

where ψT (y) := πT (y) fT (y) is the so-called state-price density.
5In more general situations the policy can be also surrendered. In this case the independence assumption

in general is too strong, since the option to early redeem the contract can be exercised by the policyholder
based on financial market events. However, for policies where early redemption is strongly penalized it
could be never optimal to exercise the surrender option. In these cases redemptions seems to be essentially
driven by the evolution of personal consumption plans and one can retain the independence assumption,
modelling surrenders as “technical” events, described by experience-based elimination tables.
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2.4 Technical component

For the technical component of the valuation problem, we look at:

V
(
0; IE(x,T )

)
:= EP

[
χT IE(x,T )

]
, (12)

as the time zero value of IE(x,T ). It is natural to assume:

V (0;1T ) = 1 , (13)

which implicitly states that no discounting effect is involved in this valuation, the “price
of time” being completely taken into account by the financial component of the pricing
procedure 6. A crucial point now is that usually the technical “payoff” IE(x,T ) cannot be
replicated by traded contracts. Hence the complete market assumption is not fulfilled and
the price V (0; IE(x,T )) cannot be determined by observing the market 7. However, since
the assumption (13) implies the norming condition EP [χT ] = 1, we can write:

V
(
0; IE(x,T )

)
= ED

[
IE(x,T )

]
, (14)

where D is a transformed probability measure defined by dD = χT dP . The use of
an “adjusted” probability measure to preserve price additivity was suggested by Venter
(1991). The idea has been developed by Wang (1996, 2000, 2002) who proposed a number
of “distortion” functions of the P measure providing desirable properties of the price
functional.

Once the D measure has been chosen by the insurer, the quantity:

C0 := C0 ED
[
IE(x,T )

]
,

can be considered as a definition of the certainty equivalent, at time T , of the random
amount C0 IE(x,T ). As the P measure represents the natural probability assessment of the
insurer, the difference:

C0

{
ED

[
IE(x,T )

]−EP [IE(x,T )]
}

,

expresses the risk loading (at time T ) required for bearing the survival risk. For the
relations between this approach and the expected utility theory see Wang (1996).

6In a more formal setting we could define two different valuation functionals:

V F (0; ΦT ) := EP [ϕT ΦT ] , V T �0; IE(x,T )

�
:= EP �χT IE(x,T )

�
,

and express the factorization property (8) as:

V (0; YT ) = C0 V F (0; ΦT ) V T �0; IE(x,T )

�
.

In this framework it would be natural to consider the discounting effect to be taken into account in the V F

component by definition. Hence condition (13), which should be written as V T (0; IΩ) = 1, would follow as
a consequence of the no-arbitrage assumption.

7Even if the reinsurance markets can not be considered as being purely competitive, some useful indi-
cations for a market based assessment of V (0; IE(x,T )) could however be obtained by observing the current
prices of reinsurance treaties for mortality risk.
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2.5 The numeraire

Under this set of assumptions, the time zero price of the random benefit YT can be given
as:

V (0;YT ) = C0 EQ
[
e−
R T
0 rt dt ΦT

]
ED

[
IE(x,T )

]
. (15)

The technical expectation can be expressed by the usual actuarial notation, that is:

ED
[
IE(x,T )

]
= T px , (16)

where the probability T px is computed using suitable mortality tables. The risk-neutral
expectation provides the price of the indexed ZCB U :

u(0, T ) = EQ
[
e−
R T
0 rt dt ΦT

]
. (17)

Then the expression (15) can be written as:

V (0;YT ) = C0 u(0, T ) T px . (18)

The structure of this expression is similar to the expression of the technical reserve R0 of
the policy at time zero; in the traditional framework we have:

R0 = C0 (1 + i)−T
T px , (19)

where i is the technical rate and T px is computed using “first order” mortality tables.
It is however clear that (18) and (19) represent very different valuation approaches; in
particular, u(0, T ) can be interpreted as a market based discount factor, as opposed to the
contractual discount factor (1 + i)−T .

The expression (18) makes also clear that the financial component of this valuation
approach is – using Bühlmann’s terminology – a numeraire approach; we can consider the
benefit YT provided by the participating pure endowment policy as expressed in “units”
of the indexed ZCB U ; the current price of the benefit is given by C0 := C0 T px times the
current market price u(0, T ) of the unit.

One can also define:
V ∗(0;YT ) :=

V (0;YT )
u(0, T )

, (20)

where V ∗ = C0 is the relative price of YT with respect to U , that is the price of YT

measured in units of U rather than in Euros. In financial economics, expressing the price
by V ∗ instead of V is usually referred to as a “change of numeraire”.

As a particular case, one can consider a non participating policy, where CT = C0 (i.e.
ΦT = 1T ); now one has:

V (0; YT ) = C0 v(0, T ) T px , (21)

where:
v(0, T ) := EQ

[
e−
R T
0 rt dt

]
, (22)

is the risk free discount factor prevailing on the financial market at time zero for the
maturity T ; that is the current price of the default free unit discount bond maturing at
time T (B0(T ) in the Aase-Persson (2003) notation).
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3 Fair valuation, VBIF and embedded options

If we are able to determine the market value u(0, T ) of the unit, expression (18) provides
a market based valuation of the outstanding liabilities generated by the policy, what is
usually said a fair valuation 8. Since u(0, T ) must be typically derived using an appropriate
stochastic pricing model, we usually refer to V0 := V (0;YT ) as the stochastic reserve, as
opposed to the traditional reserve R0 given by (19).

3.1 Value of Business in Force: the stochastic reserve approach

Under the assumption of complete financial market, the payoff CT can be replicated by
a trading strategy and the amount C0 u(0, T ) represents the market price at time zero of
the equivalent portfolio, that is of the the dynamic portfolio of traded securities which
replicates the stochastic benefit CT . Therefore, assuming that the mortality risk can be
“diversified away” in a large portfolio, the stochastic reserve V0 represents the market price
at time zero of the portfolio which replicates the stochastic liability YT of the insurer. It is
then natural to define the time zero value E0 of the business in force (the so called VBIF,
net of expenses, administrative costs and taxes), as the difference:

E0 := R0 − V0 . (23)

The interpretation of this expression is straightforward. The technical reserve R0 is
the capital required at time zero to the insurer in order to issue the policy 9, while V0 is
the investment actually needed at time zero to meet the future liabilities. The difference
E0 = R0−V0, which usually should be positive, is not immediately available to the insurer,
but will be progressively delivered in the future as profits emerging during the life of the
policy; however the present value of these profits, by arbitrage, must be equal to E0.

This method for determining E0 can be called the “stochastic reserve approach”. Usual
decompositions of VBIF, e.g. separation between investment component and mortality
component, can be recovered under this method by using different specifications of the
probability T px in (18). We considered here VBIF at time zero only for illustration; all
the definitions can be immediately extended at any time t during the life of the policy, as
illustrated in section (5.4).

3.2 The annual profits approach

The standard method for measuring VBIF is an “annual profits approach”. The method
is based on typical recursive relations for the technical reserve which allows to define an
annual sequence of expected technical gains Gt during all the life of the policy (a typical

8The International Accounting Standards Committee (IASC) in the Insurance Issues Paper (November
1999) defines the fair value as: “The amount for which an asset could be exchanged, or a liability settled,
between knowledgeable, willing parties in an arm’s-length transaction.” A similar definition is adopted by
the Financial Accounting Standard Board (FASB) in a Preliminary Views document (December, 1999):
“Fair value is an estimate of the price an entity would have realized if it had sold an asset or paid if
it had been relieved of a liability on the reporting date in an arm’s-length exchange motivated by normal
business considerations. That is, it is an estimate of an exit price determined by market interactions.” By
acknowledging these positions, the CAS Fair Value Task Force defined fair value as: “the market value,if
a sufficiently active market exists, OR an estimated market value, otherwise.”

9We do not consider here the capital requirements given by the regulatory solvency margin.
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expression of this is known as the Homans formula). The cash-flow Gt can be considered
as the expected annual profit to the insurer provided by the policy at the end of year t and
the VBIF is obtained as the present value of this cash-flow stream, derived under “Risk
Adjusted Discounting” (RAD), that is by using a risk adjusted discount rate appropriate
to the riskiness of the cash-flows. It is also usual a decomposition of VBIF based on the
definition of investment gains and mortality gains.

It can be easily proven (De Felice-Moriconi (2002b, p. 94)) that under the no-arbitrage
assumption in perfect markets the annual profits approach is equivalent to the stochastic
reserve approach, provided that the traditional method is applied in a market based frame-
work. This means that the expected annual gains must be derived under the risk-neutral
measure Q and then discounted at the risk free market rate. As we know, this approach
correctly takes into account risk premia, and avoids arbitrage opportunities if the value
E0 is used as a market price. In principle, the RAD method is not inconsistent with the
no-arbitrage approach; the Capital Asset Pricing Model, for example, prescribes – once
the riskiness of the cash flow to be discounted has been correctly measured –, the correct
risk adjusted discount rate which provides a market based, and arbitrage-free, valuation.
However, in the applications the RAD approach suffers of the high degree of subjectivity
involved in the practical assessment of both the expected cash-flows and the risk adjusted
rate 10.

One can have even more important problems with the RAD method when option-like
payoffs are considered, as it happens in our life insurance applications. Usually the RAD
method is applied as a single-scenario method; that is a single assumption is made on the
future path of the returns from the investment of the reserve. This scenario of returns
can be interpreted as the expected evolution of future return; the expected investment
gains are determined by inputing these returns into the recursive equation. In typical
situations the options embedded into the life insurance policies are out-of-the-money, that
is the minimum guaranteed annual return (usually the technical interest rate i) is below
the level of the assumed scenario returns; therefore the embedded options never goes
in-the-money and the cost of the minimum annual guarantees is zero.

A comparison between VBIF computed on a sample portfolio by the stochastic reserve
approach and by the RAD method under scenario is provided in De Felice-Moriconi (2002b,
p. 106).

3.3 The embedded options

In order to measure the cost of the minimum guarantees embedded in the insurance
contract, one can compare the value of the policy with the ”base value” of the policy,
that is the value of an analogous policy without any guarantee. Let us define the “base
readjustment rate” as:

ρB
t :=

β It − i

1 + i
,

10This difficulty is explicitly recognized by many scholars. Referring to the problem of properly specifying
the exact evolution over time of the discounted expected value representation, Dybvig-Ross (1987, p. 104)
argue that “This difficulty is usually overlooked in capital budgeting applications, which is probably not
so bad, given the imprecision of our estimates of risk premia and future cash flows”. Le Roy (1987, p.
948) observes that when the net present value principle is applied in incomplete markets under uncertainty
“even if all agents agree about the probability distribution of the returns on a project, unanimity may
break down”.
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and the “base readjustment factor” as:

ΦB
T :=

T∏

t=1

(
1 + ρB

t

)
= (1 + i)−T

T∏

t=1

(1 + β It) .

Obviously ΦB
T ≤ ΦT .

Under the market based approach, the “base value” of the contract is given by:

B0 := C0 V
(
0;ΦB

T

)
T px , (24)

where:
V

(
0;ΦB

T

)
= EQ

[
e−
R T
0 rt dt ΦB

T

]
. (25)

Thus the value of the guarantee can be defined as:

Put0 := V0 −B0 = C0

[
V (0; ΦT )− V

(
0;ΦB

T

)]
T px . (26)

The Put0 value can be defined as the price of a put option because a contract with payoff
[ΦT − ΦB

T ]+ = ΦT − ΦB
T gives the right to the holder to exchange the result ΦB

T of an
unguaranteed contract with the result of the guaranteed one if the return It realized by
the reference fund will not be greater than i/β over each year of the contract. Given that
the minimum return i is guaranteed in each year and is “consolidated” for the successive
years, this kind of option is a “ratchet-type” (or “cliquet”) option. Of course, the price
Put0 of this option is usually much greater than the price of a corresponding “maturity
option”, that is an option with (unit) minimum guaranteed amount (1 + i)T at time T
(for some numerical examples, see De Felice-Moriconi (2002b, pp. 61-62)).

The expression:
V0 = B0 + Put0 , (27)

can be referred to as the put decomposition of the contract. One can also define the “call
decomposition” as:

V0 = G0 + Call0 , (28)

where G0 := C0 v(0, T ) T px is the value of the minimum guaranteed terminal benefit (which
is obtained for Φ = 1), and:

Call0 := V0 −G0 = C0 [u(0, T )− v(0, T )] T px , (29)

represents the price of the ratchet call option giving to the holder the right to participate
to the investment returns if the result will be greater than the minimum guaranteed result.
We observe that in Bühlmann’s terminology, G0 is the value of the VaPo (see Bühlmann
(2003b), Baumgartner-Bühlmann-Koller (2004)).

4 Determining the valuation factor or “pricing the unit”
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4.1 Extracting information from the market

The central problem under the NUMAT approach is the pricing of the unit U , that is the
market based determination of the price u(0, T ) = V (0; ΦT ); since:

V (0;CT ) = C0 u(0, T ) , (30)

u(0, T ) represents the appropriate valuation factor for the random benefit CT = C0 ΦT .
We observed that for non participating policies, that is when ΦT = 1, the valuation

factor reduces to v(0, T ), that is it is equal to the current price of the default free unit
ZCB with maturity T . In this case the determination of the market price does not pose
any serious problem. In fact the determination of v(0, T ) for maturity T ≤ 30 years is
an ordinary job for the financial operators. Currently swap rates wT for maturity up to
30 years are daily quoted on the interest rate swap market (e.g. Euribor); as it is well-
known, wT represents the T -years par-yield, that is the level of the annual coupon of a
unit straight bond which is quoted at par (i.e. has price 1):

wT =
1− v(0, T )∑T

t=1 v(0, t)
.

Therefore, if one can observe the current values of wT for T = 1, 2, . . . , 30, one can imme-
diately derive the zero-coupon term structure v(0, T ) for T = 1, 2, . . . , 30 11. The method
is referred to as a “bootstrapping procedure”, but it consists in nothing else than solving
the linear system:

wT

T−1∑

t=1

v(0, t) + (1 + wT ) v(0, T ) = 1 , T = 1, 2, . . . , 30 . (31)

In the trivial case of ΦT = 1 we can directly extract from the market the information
needed for the valuation, and the explicit determination of the risk-neutral measure Q in
(22) is not required.

Things are not so simple for a participating policy since, given the complexity of the
interest crediting mechanism given by (2) and (3), the readjustment factor ΦT represents
the payoff of a security, the unit, which is not effectively traded. However, for the complete
market assumption, this unit is a redundant security and can be priced via equation (17)
using a suitable stochastic model calibrated on the market data.

To illustrate this crucial point, let us assume for the moment that the reference fund F
underlying the policy is composed only of interest rate sensitive contracts (e.g. government
bonds), so that the factor ΦT is affected only by interest rate risk. In this case a stochastic
model for interest rates is sufficient for pricing the unit. For simplicity sake, assume a
typical one-factor Markov model having the spot rate rt as the state variable; hence, a
complete identification of the model will require the specification of a parameter vector
p determining the conditional probability distribution of the spot rate process, and a
parameter vector r representing the structure of the risk premia (the “term premia”)
prevailing on the interest rate market. Clearly, the parameters p determine the (financial
component of) the probability measure P ; however the risk-neutral valuation rule (17)

11The maturities effectively quoted are T = 1 to 10, 12, 15, 20, 25, 30; usually the annual sequence of the
swap rates is completed by some kind of interpolation.
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prescribes the prices as being determined only by the risk adjusted measure Q. This
probability measure will be identified by a new parameter vector p̂ whose components
will be some function of the components of p and r. In general the knowledge of p and
r separately cannot be inferred from the knowledge of the risk adjusted parameter vector
p̂; however only p̂ is needed for pricing purposes.

Suppose that the model provides an explicit formula for the price of an interest rate
sensitive security, e.g. for the price v(0, T ) of the unit ZCB; for a fixed maturity T the
bond price will be a function only of the risk adjusted parameters p̂:

v(0, T ) = v(0, T ; p̂) .

Thus we can identify the risk-neutral measure Q by a calibration procedure consisting
in estimating the parameters p̂ which provide a best fitting between model prices and
observed prices. For example we can extract the information contained in the current
structure of the interest rate swap wT by minimizing over the set of the possible values
for p̂ the sum of squared errors:

Σ2 :=
30∑

T=1

[
WT (p̂)− 1

]2
, (32)

where:

WT (p̂) := wT

T−1∑

t=1

v(0, t; p̂) + (1 + wT ) v(0, T ; p̂) ,

is the model price of a T -years unit straight bond with coupons equal to wT .

4.2 Specification of the valuation model

Typically the reference funds backing life insurance liabilities contain both bonds and
stocks (at least); thus in order to model properly the yearly returns It which determine
the readjustment of the contractual benefits we have to model both interest rate and stock
market risk 12.

In many applications we adopt a two-factor diffusion model obtained by joining a
one-factor Cox-Ingersoll-Ross (CIR) model for the interest rate risk and a Black-Scholes
(BS) model for the stock market risk; the two sources of uncertainty are correlated. For
liabilities providing also inflation protection a three-factor model, obtained by properly
extending the CIR component in order to include both real and nominal interest rates
(see Moriconi 1994, 1995), is employed.

4.2.1 Interest rate uncertainty

The single source of uncertainty is the spot rate rt, which is a diffusion process described
by the stochastic differential equation:

drt = f r(rt, t) dt + gr(rt, t) dZr
t , (33)

12As a general consistency rule, assets and liabilities must be valued under the same market model; thus
the valuation model must have at least as many risk factors as are required to price the asset portfolio. Of
course, additional factors are needed if the liabilities are also linked to some exogenous market index; for
example, if the policy also provides some kind of inflation protection of benefits, the valuation model for
the liabilities must include an additional source of uncertainty for the real interest rate risk, independently
of inflation linked bonds are held in the reference fund.
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where Zr
t is a standard Brownian motion. In the CIR model the drift function is chosen

as:
f r(rt, t) := α (γ − rt) , α, γ > 0 ,

and the diffusion function is defined by:

gr(rt, t) := ρ
√

rt , ρ > 0 .

Thus it is assumed a mean-reverting drift, with long term rate γ and speed of adjust-
ment α, and a ”square root” diffusion, with volatility parameter ρ. As it is well-known, this
“mean-reverting square-root” process implies a non-central chi-squared transition density
for rt (Feller, 1951).

The Vasicek model (and its usual extensions) is more simple than the CIR model and
is widely used for pricing interest rate derivatives. Since this model assumes a normal
transition distribution, it assigns positive probability to negative values of the spot rate;
for long maturities this can have relevant effects, producing discount factors greater than
one. Therefore the Vasicek model appears inadequate to life insurance applications. The
CIR model seems to offer a good trade-off between economic consistency and mathematical
tractability.

In the CIR model the preferences prevailing on the market (the market price of interest
rate risk) are specified by the function:

hr(rt, t) := π

√
rt

ρ
, π ∈ R ;

hence the parameter vector for the risk premia is simply r = {π}. Under the CIR approach
– which is a general equilibrium approach – it is shown that this form of the preference
function avoids riskless arbitrage.

4.2.2 Stock price uncertainty

Also for the stock market we assume a single source of uncertainty, expressed by the stock
index St; the diffusion process for the stock index is given by the stochastic differential
equation:

dSt = fS(St, t) dt + gS(St, t) dZS
t , (34)

where ZS
t is a standard Brownian motion with the property:

Covt[dZr
t , dZS

t ] = η dt , η ∈ R .

Since we assume a BS-type model, we specify fS and gS as:

fS(St, t) := µSt , µ ∈ R ,

and:
gS(St, t) := σ St , σ > 0 .

Thus we have a geometric Brownian motion, with instantaneous expected return µ
and volatility σ, which implies a lognormal transition density for St.
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To prevent arbitrage, the market price of risk for the stock market has the classical
form:

hS(St, t) :=
µ− rt

σ
; (35)

thus no additional parameter is needed in order to specify the preferences in this case 13.

4.2.3 The valuation equation

By the Markov property, the time t price of any security is a function of the state variables;
in particular, for the unit price we have:

u(t, T ) = u(rt, St, t;T ) , 0 ≤ t ≤ T . (36)

Under the usual perfect market conditions the no-arbitrage principle, via the hedging
argument, leads to the general valuation equation:

1
2

(gr)2
∂2u

∂r2
+

1
2

(gS)2
∂2u

∂S2
+ η gr gS ∂2u

∂r∂S

+ (f r + gr hr)
∂u

∂r
+ (fS + gS hS)

∂u

∂S
+

∂u

∂t
= r u .

(37)

This equation must be solved under the appropriate boundary conditions, including, for
the unit price, the terminal condition:

u(T, T ) = ΦT . (38)

As it is well-known, the no-arbitrage assumption requires the existence of an equivalent
martingale measure Q such that the discounted price process:

u(t, T ) e−
R t
0 rτ dτ , 0 ≤ t ≤ T ,

is a martingale with respect to Q. Under this martingale property the solution of the
valuation equation under condition (38) has the integral expression:

u(t, T ) := V (t; ΦT ) = EQ
t

[
e−
R T

t rz dz ΦT

]
, (39)

also known as Feynman-Kac representation. For t = 0 this gives expression (17).

4.2.4 Identifying the risk-neutral measure

By our choice of the functions f r, gr, fS and gS and of the correlation between the sources
of uncertainty, the parameter vector related to the P measure is:

p = {α, γ, ρ, µ, σ, η} , (40)

while the parameter vector for the risk premia is simply r = {π}. By inspection of the
valuation equation (37) one observes that the coefficients of the first order derivatives with

13In the usual formulations of the BS model no assumption on the risk premia is made at this stage,
since relation (35) will be obtained as a consequence of the hedging argument which leads to the valuation
equation. For the sake of exposition we prefer to state this property here.
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respect to r and S are not expressed by the “natural” drift functions f r and fS , but are
given by the modified functions:

f̂ r := f r + hr gr = α(γ − rt) + π rt = αγ − (α− π) rt , (41)

and:
f̂S := fS + hS gS = rt St . (42)

These are the risk adjusted drifts 14 which determine the form of the risk-neutral measure
Q; the risk adjusted parameter vector is given by:

p̂ = {α̂, γ̂, ρ, σ, η} , (43)

where α̂ := α− π and γ̂ := αγ. Any solution of the valuation equation will be a function
of this set of parameters and any calibration of the model to the observed prices will be
performed by optimally choosing these parameters. The estimation of the effective mean
reverting parameters for rt and the instantaneous expected return for St is not needed for
pricing purposes, since their value has no effect on the prices.

4.2.5 Measures of financial risk

Since the price u(t, T ) is a function of the state variable rt and St, it is natural to express
the risk inherent to these sources of uncertainty as a sensitivity measure. For the interest
rate risk it is usual to define:

Ωr(ΦT ) := − ∂u(0, T )
u(0, T ) ∂r

; (44)

for the particular case of the deterministic unit ZCB we define:

ω(T ) := − ∂v(0, T )
v(0, T ) ∂r

. (45)

The “stochastic duration” D(ΦT ) is defined as the maturity of the deterministic ZCB
with the same risk of ΦT ; hence:

D(ΦT ) := ω−1
(
Ωr

)
. (46)

Because of the mean reversion effect the function ω(T ) is bounded; hence for high values of
Ωr, that is for contracts with strong interest rate risk, the stochastic duration D(ΦT ) could
also not exist. Of course this is not a problem for controlling interest rate risk since one
can directly use the sensitivity Ωr as a measure of risk. In our applications the stochastic
duration D(ΦT ) usually is well defined and is typically shorter than the maturity T of the
policy 15.

14The valuation equation (37) can be easily recognized as the backward Kolmogoroff equation for the

bivariate diffusion {rt, St} with drifts bfr and bfS , with diffusion coefficients gr and gr, correlation η and
”killing rate function” rt (see Karlin-Taylor (1981, pp. 222-224)).

15Usually it turns out that the interest rate sensitivity (and the stochastic duration) of a participating
policy is considerably lower than the sensitivity of a corresponding non participating policy. This self-
immunization property is essentially similar to the analogous property displayed by floating rate notes,
having interest rate sensitivity similar to short term bonds, despite their mid/long maturity (De Felice-
Moriconi-Salvemini (1993, pp. 137-138)). This is an important result since it suggests that the traditional
duration mismatching between assets and liabilities in life insurance can be strongly reduced (in terms of
sensitivity) for portfolios of participating policies. Values of the stochastic duration for an outstanding
policy portfolio, as well as applications to asset-liability management are reported in De Felice-Moriconi
(2002b, p. 86, pp. 90-91).
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The sensitivity of price to stock market risk has a similar definition:

ΩS(ΦT ) :=
∂u(0, T )

u(0, T ) ∂S
; (47)

the derivative with respect to S is well-known as the Delta of the contract:

Delta :=
∂u(0, T )

∂S
. (48)

Of course, for ΦT = 1 one has ΩS = 0 since v(0, T ) is independent of S.

4.2.6 Risk Based Capital

The NUMAT approach also provides a straightforward methodology for determining levels
of absorbed capital, which are risk measures currently used in strategic planning and in
solvency rating problems. Consider a portfolio of contracts with stochastic reserve V0

at time zero. For a given risk factor, the risk based capital, or economic capital, of the
portfolio is the maximum unexpected loss in portfolio’s value, in a time period θ with
probability ε, caused by an adverse movement of the risk factor. While the definition
is quite similar to the well-known Value-at-Risk (VaR) definition, here the values of the
parameters θ and ε are essentially different. Usually in risk capital definitions the time
period θ is equal to 1 year (the usual accounting horizon), which is longer than the typical
“unwinding periods”. Moreover, since the risk capital can be interpreted as the adequate
cushion for the insurance company to maintain a given credit rating, ε is chosen as the
typical figure of the one-year default probability corresponding to this rating; for companies
interested in strong credit quality this probability can be very low.

Let us refer to a “portfolio” consisting only of our pure endowment policy with terminal
benefit CT = C0 ΦT ; the portfolio value at time zero is:

V0 := C0 V (0; ΦT ) = C0 u(0, T ) T px .

As concerning the financial risk, under the two-factor model:

u(0, T ) = u(r0, S0, 0;T ) , (49)

and one has the risk capital Kr induced by rt (the interest rate risk capital) and the
risk capital KS induced by St (the stock price risk capital). Since the valuation factor
is usually monotonic both with respect to r and S, the risk capitals Kr and KS can be
directly obtained from percentiles of the probability distributions of r and S (“underlying
percentile method”).

The function u is usually monotonic decreasing with respect to r, hence interest rate
risk capital can be defined as:

Kr := v(0, θ) 1px C0

[
u(rθ, Sθ, θ; T )− u(r∗θ , Sθ, θ; T )

]
EP [ T−1px+1] ,

where rθ := EP [rθ] and Sθ := EP [Sθ] is the expected value at time zero of the spot rate
and of the stock price, respectively, at the end of the period θ, and r∗θ is the “underlying
percentile”, defined by P(rθ ≤ r∗θ |r0) = 1− ε.
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Similarly, since u is monotonic increasing with respect to S, the stock market risk
capital can be given by:

KS := v(0, θ) 1px C0

[
u(rθ, Sθ, θ; T )− u(rθ, S

∗
θ , θ; T )

]
EP [ T−1px+1] ,

where S∗θ is implicitly defined by P(Sθ > S∗θ |S0) = 1− ε.
It is worthwhile to observe that the probability measure to be used in these computa-

tions is the natural measure P ; thus some amount of subjectivity is necessarily involved,
since P cannot be estimated on the market and some parameters of the distributions must
be specified based on personal beliefs (or however using additional estimations). For the
stock market component the parameter µ of the lognormal distribution for S must be fixed;
as concerning the interest rate component, the most straightforward way for determining
the parameters of the non-central chi-squared distribution of r consists in fixing exoge-
nously the value of the long term interest rate γ and then deriving the mean-reversion
coefficient as α = γ̂/γ.

Mortality risk capital KM can be derived by similar computations, based on a properly
defined worst case for T px. This requires, of course, to specify a model for mortality risk;
however, given our independence assumptions, the financial risk capitals Kr and KS will
not be affected by stressed mortality scenarios 16.

5 Applying the valuation model

5.1 Some calibration details

The parameters α̂, γ̂ and ρ of the CIR component of the valuation model can be estimated
by calibration on the market of the interest rate sensitive securities. Since the CIR model
provides an explicit formula for v(t, T ) (Cox-Ingersoll-Ross (1985), p. 393), the calibra-
tion can be made on the current cross section of swap rates by performing the nonlinear
regression (32) described in section 4.1. However under the CIR model it can happen that
different sets of parameters are found having very similar levels of Σ2 but different values
for the volatility parameter ρ. While the use of these different parameter sets produces
similar prices for linear products (that is for products which can be expressed as static
portfolios of unit ZCBs), different values of ρ can produce important discrepancies in the
valuation of contracts with non linear payoff, as the options embedded in our life insurance
liabilities. In order to overcome this difficulty, one can extend the set of market data by
including also prices of interest rate options in the estimation procedure. In our applica-
tions we usually perform the calibration of the CIR model using both the swap rates and
a set of quoted prices for interest rate caps and floors, that can be easily done given that
explicit formulae for the price of these derivatives are available using the CIR model. The
method usually produces values of ρ which explain fairly well the observed option prices
while maintaining a good fitting with the observed yield curve.

16Economic capitals for technical risks can be particularly high in non-life insurance, where the deter-
mination of the ultimate reserves and the premium rating are exposed to large estimation errors. For an
application of the stochastic chain-ladder method to the determination of the reserve risk capital and of
the premium risk capital in P&C insurance see De Felice-Moriconi (2003).
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The remaining parameters σ and η have in some sense a more strategic nature and
can be exogenously specified. Usually we assume for σ the same value of the historical
volatility of the stock component of the reference fund. For the correlation coefficient η
we adopt figures derived by classical econometric studies on the Italian market (a slightly
negative value is usually assumed); however for typical values of the other parameters the
value of η seems to have a weak influence on the valuation procedure.

5.2 Numerical computation

Given the complexity of the profit sharing rule, the valuation factor u(0, T ) must be derived
by the valuation equation using numerical methods. We usually compute the risk neutral
expectation (17) using Monte Carlo simulations for the bivariate process {rt, St}. Properly
incrementing the starting values r0 and S0 of the Monte Carlo recursions we also obtain
numerical derivatives of the price, which provide the relevant financial risk measures, and
worst case valuations for risk capital computations.

5.3 Defining the underlying of the policy

A critical point for determining the price V0 of the insurance contract is the determination
of the characteristics of the stochastic process representing the market value of the refer-
ence fund, which in turns determines the annual return It, that is the “index” underlying
the policy.

Since the fund can be composed by bonds and equities, one possibility is to assume:

Ft := α St + (1− α) Wt , 0 ≤ α ≤ 1 , (50)

where St is a stock index, Wt is a bond index and α is here a constant fixed at time zero
17.

The stock index process is modelled as a geometric Brownian motion, as was implicitly
assumed by adopting the BS model for the stock price component of the valuation model.
The bond index Wt must be chosen as similar as possible to the results of a trading
strategy which is considered feasible by the fund manager; hence its characterization
requires additional assumptions.

A possible choice is to model Wt as the cumulated results of a buy-and-sell strategy,
with a fixed trading horizon ∆t, of coupon bonds with a fixed Macaulay duration DMC ≥
∆t. The valuation procedure is performed by simulating the trading strategy under the
CIR model. The results significantly depend on the assumptions on DMC and ∆t. For a
short-term roll-over strategy (e.g. ∆t = DMC = 3 months), Wt displays smooth sample
paths with high dispersion in the long run. On the other hand, for a buy-and-sell strategy
of coupon bonds with mid/long duration (∆t = 3 months, DMC = 4, 10 years), the sample
paths display greater local volatility, but a reduced long-run dispersion.

Even if this effect could be enhanced by the strong degree of mean reversion displayed
by the one-factor CIR model, it should be noted that this behavior is consistent with
important empirical findings, as the evidence that short-term rates are more volatile than
long-term rates.

An illustration of different investment strategies and of their effect on the cost of the
embedded put options can be found in De Felice-Moriconi (2002b, pp. 60-62, 64-65).

17Maintaining α constant is known as a “constant mix” investment strategy (Perold-Sharpe, 1988).
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5.4 Valuation during the life of the policy

In the NUMAT approach the changes in market conditions have straightforward effects
on the valuation during the life of the policy. In order to illustrate these effects we need
to better specify our notation and slightly extend some definitions. We shall denote by t
the current calendar date and by T the calendar date at which the policy matures; hence
if τ denotes the current age of the policy, the issue date is t− τ and the term of the policy
at issue is n = T + τ . The current readjusted value of the sum insured is:

Ct = C0

t∏

k=t−τ+1

(1 + ρk) ,

where ρk is the readjustment rate in year k defined by (3). Since Ct is known at time t,
we define the stochastic component of the readjustment factor as:

Φt,T :=
T∏

k=t+1

(1 + ρk) . (51)

The corresponding valuation factor at time t will be given by:

u(t, T ) := V (t; Φt,T ) = EQ
t

[
e−
R T

t rs ds Φt,T

]
, (52)

which extends the definition (17). The definition of the stochastic reserve Vt and of the
VBIF Et at time t is straightforward 18.

In order to illustrate the financial market effects we simulated the valuation during
the life of a policy over an historical period starting from the beginning of the 1990’s. An
efficient secondary market for Italian government bonds (the MTS market) was opened
only on Jan 02, 1990; thus any valuation performed at preceding dates would pose serious
problems for the model calibration given the low quality of the available data.

In our simulation we considered a single premium pure endowment contract written
on Dec 29, 1989 on a life aged x = 40 years, with initial sum insured C0 = 100 and
term n = 20 years (hence T = Dec 29, 2009). We chose a technical interest rate i = 3%
and a participation coefficient β = 80%. The equity component of the reference fund
was α = 10% and the volatility was σ = 20%. The investment strategy of the bond
component of the reference fund was specified as a buy-and-sell strategy of coupon bonds
with Macaulay duration DMC = 4 years with trading period ∆t = 1 month.

We performed the valuation at the issue date and on each year-end until Dec 31, 2003,
calibrating the risk-neutral parameters of the CIR model on the current market data 19.
The survival probabilities T−tpx+τ were computed using the SIM81 mortality tables at all
the valuation dates t 20.

18A notation more in line with the actuarial tradition would probably be given by defining u(τ)(t, T ) as
the valuation factor at date τ of a policy with term T years (at issue) and current age t. For the policies
considered here the valuation factor is independent of the age of the policy, hence our definitions allow
to use a simplified notation. More importantly, we prefer to denote the calendar time by t in order to
stress the central role of the current date in any marked based valuation; the resulting definitions are more
consistent with the interpretation of the policy as a financial product.

19For the valuation at the issue date we effectively used market data as of Jan 9, 1990, since prices
quoted in the first week of MTS’s operation were probably not fully reliable.

20SIM81 are mortality tables for the general male population, published by ISTAT (Istituto Italiano di
Statistica) in 1986.
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The results of the valuations are reported in table 1. For each valuation date t, it is
reported the technical reserve:

Rt := Ct (1 + i)−(T−t)
T−tpx+τ , (53)

the stochastic reserve:
Vt := Ct u(t, T ) T−tpx+τ ,

and the corresponding VBIF Et := Rt−Vt. Since both Rt and Vt are computed using the
SIM81 mortality tables, Et does not include mortality gain and must be thus considered
here as the value of only the investment gains. The base value Bt defined by (24) and
the value of the embedded put Pt := Vt − Bt are also reported. Et% is the VBIF as a
percentage of the technical reserve Rt; Pt% is the put value in percent of the stochastic
reserve Vt. In principle, the scale of Rt and Vt should be readjusted in each year by the
current value of the insured capital Ct. Since we are mainly interested in the difference
between Rt and Vt, we maintained the initial scale of C0, thus avoiding arbitrary and
irrelevant assumptions on the Ct sample path.

The results are also reported in figure 1 which illustrates the evolution of Rt (solid
line), Vt (the solid line with bullets) and Bt (dashed line with circles).

The time evolution of the stochastic reserve is strongly dependent on the historical
trend of the bond market. The yield curve was very high in the early 1990’s but during
the years of the convergence to Euro the Italian bond market experienced a continuous
decrease of interest rates. Accordingly, the policy was very profitable at the issuance, when
the (financial) embedded value was 40.4% of the initial reserve and the cost of minimum
guarantee was negligeable, the embedded put being far out-of-the-money. Due to the fall
in market rates, the put value raised at the 13.5% of the stochastic reserve at the end of
1998, causing a negative value of the VBIF 21. One can observe that a model unable to
capture the value of the embedded option would have produced a value of Vt close to the
base value, so no deficit situation would have been emerged in this example. It is also
worthwhile to observe that the variability of the stochastic reserve Vt is largely due to the
variability of the option component.

5.5 Issuing policies under different market conditions

The effects of the current financial market conditions on the policy valuation can be also
illustrated by considering the issuance of the same policies at different calendar dates. Let
us consider single premium pure endowment contracts with term n years, technical interest
rate i = 3% and participation coefficient β = 80%. We assume again an equity component
of the reference fund α = 10% with a volatility σ = 20% and a buy-and-sell strategy for
the bond component with DMC = 4 years and trading period ∆t = 1 month. We assume
to have issued these policies for term n = 1, 2, . . . , 20 years, at different historical dates t.
For simplicity, we consider only the financial component of the policies, assuming npx = 1
for all t.

21In many cases the value of the reference fund Ft is defined by accounting rules allowing “frozen” assets
to be valued by an amortization rule which produces “off-market” prices. This can allow the fund manager
to perform some kind of intertemporal smoothing of the returns It and to spread an annual deficit over
more than one year.
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Table 1. Valuation during the life of the policy

val. date T − t Rt Vt Et Et% Bt Pt Pt%
Dec 29, 1989 20 47.88 28.54 19.34 40.40 28.39 0.15 0.51
Dec 31, 1990 19 50.13 30.89 19.25 38.40 30.76 0.13 0.42
Dec 31, 1991 18 52.40 35.35 17.05 32.53 35.19 0.16 0.45
Dec 31, 1992 17 54.70 37.25 17.45 31.91 37.14 0.10 0.28
Dec 31, 1993 16 57.04 45.40 11.65 20.41 43.89 1.51 3.31
Dec 30, 1994 15 59.41 43.33 16.08 27.07 42.77 0.56 1.29
Dec 29, 1995 14 61.81 47.57 14.24 23.04 47.12 0.45 0.95
Dec 31, 1996 13 64.25 55.88 8.36 13.02 53.21 2.67 4.78
Dec 31, 1997 12 66.71 64.06 2.65 3.98 58.57 5.49 8.57
Dec 30, 1998 11 69.21 73.13 -3.92 -5.66 63.26 9.87 13.50
Dec 30, 1999 10 71.75 69.42 2.34 3.25 64.38 5.04 7.26
Dec 29, 2000 9 74.33 71.34 2.99 4.02 67.72 3.62 5.08
Dec 28, 2001 8 76.96 74.15 2.81 3.65 71.05 3.11 4.19
Dec 31, 2002 7 79.64 79.87 -0.22 -0.28 75.08 4.79 5.99
Dec 31, 2003 6 82.38 83.00 -0.62 -0.76 78.61 4.39 5.29

Figure 1. Time evolution of reserves
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For each valuation date t we calibrated the CIR model on the current market data
and then computed the valuation factors:

u(t, t+n) := V (t; Φt,t+n) = EQ
t

[
e−
R t+n

t rs ds Φt,t+n

]
, n = 1, 2, . . . , 20 .

For illustration purposes, we also computed the “term structure” of the valuation
rates, defined by:

j(t, t+n) :=
[

1
u(t, t+n)

] 1
n

− 1 , n = 1, 2, . . . , 20 .

This valuation term structure can be compared with the term structure of the interest
rates currently prevailing on the market, which is given by:

i(t, t+n) :=
[

1
v(t, t+n)

] 1
n

− 1 , n = 1, 2, . . . , 20 ,

where, as usual, v(t, T ) is the market price at the date t of a unit ZCB maturing at time
T .

We performed the valuation for three different dates:
· t = Jan 09, 1990, a week after the MTS market was opened;
· t = Dec 30, 1998, when the convergence process to Euro was completed;
· t = Dec 31, 2003.

In table 2 are plotted, for each of the three issue dates t, the term structure of the
valuation rates j(t, t+n) with solid line and the term structure of market interest rates
i(t, t+n) with dashed line. The flat curve corresponding to the technical rate i = 3% is
also reported with dotted line.

The results can be commented by similar arguments as in the previous example. At
the beginning of 1990 (first figure) the market yield curve was at a very high level, ranging
from 14% for n = 1 to 15.5% for n = 20 years; as compared with these market returns, the
3% technical rate was decidedly low, implying an high level of the investment gains and
a low cost of the embedded put options. These effects are summarized by the difference
between the j curve and the 3% flat line; this gap is the counterpart, in the interest rate
language, of the VBIF, given by Et = Rt − Vt: the higher the difference j(t, t+n)− i for
a currently issued policy with term n, the higher the corresponding Et.

In the years 1995-98 the decrease of interest rates was quite dramatic. As illustrated
in the second figure of table 1, at the end of 1998 the market rates were ranging from 3%
for n = 1 to 5.4% for n = 20 years. Issuing the policies in this market environment would
imply a negative value of Et, since the embedded put options would be near at-the-money
and the valuation rates would result to be lower than the 3% level for all the maturities.

The market yield curve was not very different at the end of 2003 (see the third figure).
However the situation for the policies as issued at this date would be slightly better; this
is essentially due to a volatility effect, since the volatility curve estimated on the market
resulted to be lower than the corresponding curve estimated at the end of 1998.

5.6 Portfolio valuations

When a real portfolio of outstanding policies has to be analyzed, the situation is obviously
much more complex than in the simple examples just considered. An important portion
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Table 2. Term structures of valuation rates at different issue dates
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of the policies in force is usually given by participating contracts with constant annual
premiums. In these cases the readjustment rule (2) for the benefits must be only partially
applied since only the excess return on the investment of the saving premium can be
credited to the policyholder. Therefore, the valuation factors at time t will be functions
u(x,τ)(t, T ) also depending on the age x of the life insured and on the current age τ of
the policy. Moreover, in many policies benefits payable in case of death are different from
benefits payable if the insured is alive; this requires the computation of separated streams
of valuation factors.

However, like for the simple pure endowment policy we can pursue the same approach
for any policy of life assurance. It is sufficient to decompose the policy into single premium
components with benefits (for survival and/or death and/or other causes) at single time
points. For these components we have the liabilities:

YT := CT IG(x,T ) ,

where CT is the sum to be eventually paid at time T and G denotes the exit due to survival,
death or other cause. Under the assumption of complete market, the stochastic payoff CT

can be replicated by a trading strategy with market price at time t equal to Ct u(x,τ)(t, T ),
where Ct is the current value of the benefit. The same approach must be applied to a
premium to be paid at time T ; of course for constant, i.e. non readjusted, premiums the
appropriate valuation factor will be given simply by v(t, T ).

In our framework, under the assumption of independence between financial and tech-
nical uncertainty, the fair value at time t of YT is given by:

Vt := V (t; YT ) = Ct u(x,τ)(t, T ) ED
t [IG(x,T )] , (54)

where the D measure discussed in section 2.4 should reflect any technical risk loading.
This expression generalizes (18). Summing over all components of all policies in force in
the outstanding portfolio we obtain the total net fair value V Tot

t of benefits and premiums,
that is the stochastic reserve at time t. Extending the definitions in section (3.1), the total
VBIF at time t is given by ETot

t := RTot
t −V Tot

t , where RTot
t is the technical reserve of the

portfolio.
In practical applications we usually avoid to perform the valuation using a representa-

tive portfolio composed by a reduced number of “model points”, since this can produce a
number of approximations not easily controllable. Thus the number of valuation factors to
be calculated can be very high. Since the Monte Carlo computation of the valuation factors
is time consuming, it is required that the calculation procedures are properly optimized.

As concerning portfolios of unit-linked policies, the market based valuation is straight-
forward. Some computational problems can arise in the valuation of the embedded op-
tions for policies with maturity guarantees. Many recently issued index-linked policies
are backed by a specified security, typically a “structured bond”. Usually these securities
have a very complex payoff, possibly containing exotic options; moreover it can happen
that their price is quoted on a non efficient market. Thus an appropriate pricing model
is needed in order to control possible deviations of the quoted price from the fair value of
this product.
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6 Managing the valuation variability

The high time variability is obviously a natural characteristics of any market based valu-
ation. This is of course a consequence of a more detailed and up-to-date information and
is not a problem per se, but rather an advantage of the mark-to-market approach.

When purely financial products are concerned (as well as many types of index-linked
life insurance policies), the timeliness in pricing is crucial, since, given the high liquidity of
the markets, any mispricing can expose the issuer to riskless arbitrage; moreover, the issued
contract must be immediately hedged at the current market conditions. For traditional
life insurance products this problems seems to be not so relevant and a continuous stream
of market informations can be considered excessive, or useless, for premium calculation.

Also accounting procedures do not benefit from strongly time-dependent valuation
methods; in this kind of applications an important issue is the comparability of the valu-
ation results between different firms. The problem of an increase in volatility of earnings
in the accounting reports has widely been recognized, also in the perspective of the new
International Accounting Standards (IAS) (see e.g. Morgan Stanley, 2002); these diffi-
culties could be probably overcome by defining some standardized rules for providing an
intertemporal smoothing of the operating results.

However, having a better information cannot be a problem; the real issue is how to
organize and how to correctly use this information. As pointed out by Bühlmann (2003a),
this is particularly true for some applications, as the embedded value measurement. In
this case a more detailed analysis of the results given by the market based valuations can
provide a better understanding of the value creation mechanisms.

As an example, let us slightly extend our notation of stochastic reserve, by defining:

V
(s)
t := V (s)(t; YT ) , t, s ≤ T , (55)

as the value of YT at time t computed under the market conditions prevailing at time s;
that is V

(s)
t is the value of the policy with remaining term T−t derived using the parameter

vector p̂ calibrated on the market data at time s. Of course V
(t)
t = Vt. Referring to a

time interval [t, t + ∆t], one can consider the decomposition:

∆Vt := Vt+∆t − Vt = ∆V A
t + ∆V M

t , 0 ≤ t, t + ∆t ≤ T , (56)

where:

· ∆V A
t := V

(t)
t+∆t−Vt is the change in value due to the aging o f the policy, independently

of changes in market conditions,

and:

· ∆V M
t := Vt+∆t − V

(t)
t+∆t is the change in value caused only by the market movements.

This expression suggests an analogous decomposition for the “embedded value earnings”:

∆Et := Et+∆t − Et = (Rt+∆t − Vt+∆t)− (Rt − Vt) , (57)

since the change Rt+∆t −Rt is unaffected by market movements. For more details see De
Felice-Moriconi (2002a).
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The authors are greatly indebted to Hans Bühlmann for many helpful and stimulating dis-
cussions on the topics of the NUMAT approach. They also wish to express their gratitude
to Gilberto Castellani for his invaluable comments and suggestions.

References

Aase, K.K. and Persson, S.-A. (2003), New Econ for Life Actuaries. ASTIN Bulletin 33,
117-122.
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Università di Perugia
via A. Pascoli, 1
06100 Perugia, Italy
email: moriconi@unipg.it
fax: +39 (0)75 585 5221

28


