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Università di Siena

March 7, 2005 – Version 0.1



Contents

Summary 6

I General principles and methods harmonization 9

1 Embedded value and fair value in life insurance 9
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Fair value and VBIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Embedded options and investment strategies . . . . . . . . . . . . . . . . . 10
1.4 The dedicated fund . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Valuation of annual profits 12
2.1 The representation of the annual profits . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The base component and the put component . . . . . . . . . . . . . 13
2.1.2 Excess-return component and call component . . . . . . . . . . . . . 14
2.1.3 Fund returns and market returns . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Sources of uncertainty for future profits . . . . . . . . . . . . . . . . 16

2.2 The valuation of profits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Market-consistency and arbitrage principle . . . . . . . . . . . . . . 17
2.2.2 No-arbitrage valuation methods . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Stochastic and deterministic discount factors . . . . . . . . . . . . . 18
2.2.4 Methods with discounted expectations (“stochastic methods”) . . . 19
2.2.5 Discounted expectations under interest rate risk . . . . . . . . . . . 21
2.2.6 Scenario methods (“deterministic methods”) . . . . . . . . . . . . . 21

3 Harmonization with the traditional approach 23
3.1 The traditional approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 A stochastic DCE approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Identifying discount rate margins . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 A further decomposition of discount rate margins . . . . . . . . . . . . . . . 27
3.5 A numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Basic examples 28
4.1 Deterministic default-free returns . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Defaultable returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Stock market returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Return of floating rate bonds . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Appendix: the effects of UGL on the VBIF 34
5.1 Effects on the excess-return component . . . . . . . . . . . . . . . . . . . . 34
5.2 Effects on the base component . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Effects on the value of the options . . . . . . . . . . . . . . . . . . . . . . . 34

1



II A valuation model under financial uncertainty 35

6 A two factor pricing model 35
6.1 Interest rate uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Stock price uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 The general valuation equation . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3.1 The risk-neutral measure . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Prices from risk-adjusted expectations . . . . . . . . . . . . . . . . . . . . . 38

6.4.1 Endogenous yield curves . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4.2 Endogenous volatility curves . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Natural expectations consistent with risk-neutral expectations . . . . . . . . 41
6.5.1 Natural parameters from risk-neutral parameters . . . . . . . . . . . 43
6.5.2 Closed form expressions for natural expectations . . . . . . . . . . . 43

6.6 Measures of financial risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.6.1 Parallel shift duration . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.7 Problems in parameter identification . . . . . . . . . . . . . . . . . . . . . . 50
6.8 Numerical valuation procedure . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.9 Appendix: the Vasicek model . . . . . . . . . . . . . . . . . . . . . . . . . . 51

III Application to a simplified portfolio 54

7 Run-off analysis 54
7.1 The policy portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 The asset portfolio and the investment strategy . . . . . . . . . . . . . . . . 56

7.2.1 Fixed rate bond portfolio . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2.2 Short term ZCB portfolio . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Applying the valuation procedure . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Ongoing analysis 59
8.1 Expected returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Valuation under undedicated strategies 61

IV IV-TV decomposition of put options 64

10 European options on stock 64

11 Cliquet options on stocks 65
11.1 Investment with annual guarantees and maturity guarantees . . . . . . . . . 65
11.2 Put decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.3 Valuation with no interest rate uncertainty . . . . . . . . . . . . . . . . . . 68
11.4 Valuation with the Black-Scholes model . . . . . . . . . . . . . . . . . . . . 68

11.4.1 Valuation with no-flat yield curve . . . . . . . . . . . . . . . . . . . . 70
11.5 Appendix: derivation of pricing formulas for cliquet options . . . . . . . . . 71

11.5.1 Flat yield curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.5.2 General yield curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2



12 Options embedded in profit-sharing policies 73

13 Fixed rate bond portfolio 76

14 Short term ZCB portfolio 76

V Reporting on the application to the RAS Group portfolios 80

15 General description 80

16 Relevant details 80
16.1 Relevant contractual details of policies . . . . . . . . . . . . . . . . . . . . . 80
16.2 Basic structure of the valuation model . . . . . . . . . . . . . . . . . . . . . 81
16.3 Specification of the valuation model . . . . . . . . . . . . . . . . . . . . . . 81
16.4 Defining the investment strategy . . . . . . . . . . . . . . . . . . . . . . . . 81
16.5 The computing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
16.6 Details on the Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . 82
16.7 Intrinsic value of embedded options . . . . . . . . . . . . . . . . . . . . . . . 82
16.8 Different levels of VBIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
16.9 Risk capital and cost of capital . . . . . . . . . . . . . . . . . . . . . . . . . 82
16.10Derivation of discount rate margins . . . . . . . . . . . . . . . . . . . . . . . 83
16.11Run-off analysis and ongoing analysis . . . . . . . . . . . . . . . . . . . . . 83

3



List of Tables

1 Components of the embedded value . . . . . . . . . . . . . . . . . . . . . . . 12
2 The effect of UGL on VBIF (Ds

0 = R0 = 100) . . . . . . . . . . . . . . . . . 13
3 Discount rates margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Term structure of interest rates on December 31, 2004 . . . . . . . . . . . . 41
5 Run-off valuation - Fixed rate bond investment strategy . . . . . . . . . . . 58
6 Run-off valuation - Short term ZCB strategy . . . . . . . . . . . . . . . . . 59
7 Ongoing valuation - Fixed rate bond investment strategy . . . . . . . . . . 60
8 Put prices for alternative investment strategies . . . . . . . . . . . . . . . . 79

4



List of Figures

1 The e(I) function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 The functions eB(I) and eP (I) . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 The functions eG(I) and eC(I) . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Risk-neutral density functions of r(T ) as of Dec 31, 2004 . . . . . . . . . . . 39
5 Risk-neutral density functions of S(T ) with constant interest rate . . . . . . 39
6 The term structure of riskless interest rates as of December 31, 2004 . . . . 42
7 The term structure of ZCB volatilities as of December 31, 2004 . . . . . . . 42
8 Natural and risk-neutral density function for r(10) (Dec 31, 2004; γ = 0.025) 44
9 Natural and risk-neutral density function for r(10) (Dec 31, 2004; γ = 0.055) 44
10 Term structures of current and expected interest rates (Dec 31, 2004; γ =

0.025) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11 Term structures of current and expected interest rates (Dec 31, 2004; γ =

0.055) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12 Yield curves for future dates as expected on December 31, 2004 (γ = 0.025) 47
13 Yield curves for future dates as expected on December 31, 2004 (γ = 0.055) 47
14 Yield curves with shifted values of r(0) in the CIR model . . . . . . . . . . 49
15 Uniformly shifted CIR yield curve . . . . . . . . . . . . . . . . . . . . . . . 49
16 Term structures of interest rates corresponding to two different sets of pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
17 Term structures of volatilities corresponding to two different sets of parameters 52
18 Expected cash flow stream of premiums and benefits and expected reserve . 55
19 Cash flow stream generated by the asset portfolio . . . . . . . . . . . . . . . 55
20 Expected paths of fund returns under run-off and ongoing assumptions . . . 62
21 Confidence intervals of the expected fund returns (run-off assumption) . . . 62
22 European put prices and corresponding intrinsic values . . . . . . . . . . . . 66
23 IV/P ratios for different maturities . . . . . . . . . . . . . . . . . . . . . . . 66
24 European put prices and corresponding intrinsic values . . . . . . . . . . . . 67
25 IV/P ratios for different volatilities . . . . . . . . . . . . . . . . . . . . . . . 67
26 Cliquet put prices and corresponding intrinsic values . . . . . . . . . . . . . 74
27 IV/P ratios for different values of T . . . . . . . . . . . . . . . . . . . . . . 74
28 Cliquet put prices and corresponding intrinsic values . . . . . . . . . . . . . 75
29 IV/P ratios for different values of σ . . . . . . . . . . . . . . . . . . . . . . 75
30 Put price and IV with fixed rate bond portfolio . . . . . . . . . . . . . . . . 78
31 Put price and IV with short term ZCB portfolio . . . . . . . . . . . . . . . 78
32 IV/P ratios for alternative investment strategies . . . . . . . . . . . . . . . 79

5



Summary

This technical report illustrates the basic principles for a fair valuation system in life
insurance. The report is particularly concerned with the market consistent derivation of
the Value of Business In Force (VBIF) for portfolios of profit-sharing policies, properly
allowing for the cost of the embedded options and guarantees, according to the European
Embedded Value Principles (EEVP) stated by the CFO Forum ([1], [2]).

Some relevant issues concerning the practical utilization of the system and the con-
sistent interpretation of the results are illustrated by numerical examples.

Particular attention has been paid to the harmonization with the results provided by
more traditional valuation methods.

The report is concluded by a description of some relevant details concerning the ap-
plication of the valuation system to the life portfolios of the RAS Group.

Results – The value of business in force (VBIF), the value of the minimum guaranteed
return options (the put component of VBIF), the time value of the puts, the expected
returns of the segregated funds and other quantities useful for controlling price and risk
of the asset-liability portfolios are derived. Theoretical and practical issues are discussed
concerning the theory of valuation, the market consistent pricing, the finance of insurance.

The valuation procedure – The outstanding portfolios are analysed in the framework of the
asset-liabilty valuation under uncertainty. The valuation of the financial components of
future profits, as well as of the embedded options, is performed using a stochastic pricing
model based on the no-arbitrage principle. The model is calibrated on market data, in
order to capture the current interest rate levels, the interest rate volatilities, the stock
price volatilities and correlations.

In the valuation procedure closed form pricing expressions as well as Monte Carlo sim-
ulations are used. The accounting rules defining the segregated fund returns are allowed
for. Financial uncertainty is analysed by modelling interest rate risk for each relevant cur-
rency, stock price risk, credit risk. Technical uncertainty is measured taking into account
mortality/longevity risk, surrender risk, expenses inflation risk.

Harmonization – Using the valuation system a logical connection can be created between
the traditional approach – based on a single “best estimate” scenario – and the stochastic
valuation model, specified under both the risk-neutral and the real world probabilities.
Financial and technical risks, as well as the cost of the embedded options, are measured
in terms of value (risk premiums and/or additional costs) and in terms of risk discount
spread (discount rate margins).

Issues of practical relevance

Numerical illustration of embedded value components – In section 1.5 a numerical illus-
tration of the components of the embedded value is proposed. The effect of the initial
unrealized gains and losses on the VBIF are discussed considering the changes in the
fair value of the net liabilities (the stochastic reserve). The effect on the embedded op-
tions is illustrated by splitting the stochastic reserve in the liability value net of the cost
of minimum guarantees and in the cost of the guarantees (the “put component” of the
reserve).
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Intrinsic value and time value of embedded options – In section 2.2.6 the “intrinsic value”
and the “time value” of the embedded put options is defined, in line with the indications
of the CFO Forum.

Discount rate margins – In section 3.3 the discounted certainty equivalent (DCE) approach
and risk-adjusted discounting (RAD) approach are harmonized in order to define the risk
premium and the adjustment for the embedded option in terms of discount rate margins.
Three kinds of margin are defined: 1 – margin for financial risk; 2 – margin for the time
value of embedded option; 3 – margin for technical risks (mortality risk, surrender risk,
inflation expenses risk). In 3.4 a further decomposition of the margin for financial risk
is proposed. In 3.5 a numerical example is provided in order to give the intuition on the
extended decomposition.

Market expectations should be handled with care – The segregated fund returns can be
of a very different nature. Some basic examples are considered in section 4 using an
elementary approach. As illustrated in sections 4.3 and 4.4 the assumptions on natural
(“real world”) market expectations should be “handled with care” when consistency with
market-based risk-neutral probabilities is required. Section 4.4 in particular is concerned
with the case of stochastic returns on the bond market. The discussion contained there, as
well as the numerical example provided in subsection 4.4.1, illustrate how the risk-neutral
probabilities should be correctly interpreted when interest rate risk is involved.

Economic consistency of the CIR model – The trade-off between economic consistency and
mathematical tractability of a valuation model is an important issue, particularly referring
to interest rate models. In section 6.1 the CIR model is considered also by this point of
view. A numerical example on possible inconsistencies introduced by the Vasicek model
is given in section 6.9.

Efficiency in model identification – In section 6.7 it is shown how the CIR model can be
calibrated on market data in order to correctly price both linear products (e.g. zero-coupon
bonds) and non-linear contracts, as the options embedded in life insurance policies. By
estimating the risk-neutral parameters on both the swap rates and a set of quoted prices
of interest rate caps and floors, the endogenous yield curve and the current volatility
structure can be identified.

The cost of the embedded options depends on the investment strategy – A very relevant
feature of the financial options embedded in life insurance policies is the strong dependence
of the price on the investment strategy chosen by the fund manager. The accounting rules
defining the fund return enable the insurer to further control the cost of these guarantees.
This subject is tackled in Part III, where the pricing procedure is applied to a specified
policy portfolio using typical accounting rules. Numerical results are derived under dif-
ferent asset allocation assumptions and under alternative investment strategies. Interest
rate sensitivities are also computed. Both a run-off analysis and an ongoing analysis is
performed. Many of these results are summarized in tables 5, 6 and 7.

Intrinsic value and time value decomposition of put options – In Part IV the price de-
composition of the embedded put options in intrinsic value and time value is specifically
examined. The problem is first studied in the Black-Scholes framework, considering both
maturity guarantees (section 10) and the “cliquet” options contained in annual guarantees
(section 11). The behaviour of the intrinsic value as a percentage of the total cost of the
put is illustrated for different values of the volatility and for different maturities. When
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the options actually embedded in life insurance policies are considered under realistic in-
vestment strategies, the intrinsic value can have a counterintuitive behaviour. This topics
is illustrated in section 12.
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Part I

General principles and methods
harmonization

1 Embedded value and fair value in life insurance

1.1 Basic definitions

At time t, let us refer to an outstanding portfolio of profit-sharing (or participating) life
insurance policies, with benefits indexed to the annual return of a specified investment
portfolio (the “segregated fund”). Let us denote by:
· At: the market value of the asset portfolio,
· As

t : the statutory value of assets, i.e. the asset portfolio valued at amortized costs,
· Rt: the statutory reserve for the outstanding net liabilities,
· Vt: the market value of the outstanding net liabilities (the “fair value of liabilities”,

or “stochastic reserve”),
· Kt: the required capital, or risk based capital, i.e. the solvency capital at a specified

confidence level,
· κt: the cost of holding required capital (cost of capital) over the entire lifetime of the

outstanding policy portfolio.
The balance sheet constraint requires that As

t ≥ Rt.
Let us also define a “dedicated fund”, chosen as a portion of the asset portfolio having

statutory value Ds
t equal to the statutory value of the liabilities; hence, by definition:

Ds
t = Rt .

If Dt is the market value of the dedicated fund, the difference:

Ut := Dt −Ds
t ,

represents the unrealized gains and losses (UGL) of this portfolio.
The surplus at time t of the in force business is defined as:

∆t := At − Vt . (1)

The surplus can be decomposed as:

∆t = (At −Dt) + (Dt − Vt) , (2)

where At −Dt is the “free surplus” and the difference:

Et := Dt − Vt , (3)

is the value of business in force (VBIF)1. The VBIF Et represents the time t value of
future profits generated by the outstanding policies. It includes (is net of) the cost of all
the embedded options and guarantees.

1Alternative abbreviations are VIF, IF and PVIF (adopted by the CFO Forum).
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Under the European Embedded Value Principles proposed by the CFO Forum ([1],
[2]) the embedded value EVt at time t (gross of costs and taxes) is defined as the sum of
the free surplus, the VBIF and the required capital net of the cost of capital. Supposing
that Kt is not invested in the reference fund At, we can formally assume:

EVt := (At −Dt) + Et + (Kt − κt) . (4)

Of course if part of the required capital is invested in the fund it should be deducted from
Kt in order to avoid double counting.

The more relevant problem is to provide a methodology for determining the VBIF Et

(or the stochastic reserve Vt) which:

– can be considered “market-consistent”,

– provides a correct valuation of financial options and guarantees, also considering the
effects of accounting rules defining the segregated fund returns,

– allows valuations across different portfolios and companies to be compared.

1.2 Fair value and VBIF

The VBIF definition (3) is based on the assumption of market-consistency for the valuation
Vt. In a perfect financial market the fair value Vt of the liabilities represents the price of
the “equivalent portfolio”, that is of the dynamic portfolio of traded securities which
replicates all the outstanding liabilities. Hence the rationale of definition (3) is apparent.
The amount Dt is the capital required at time t to the insurer in order to cover the
outstanding policies, while Vt is the investment actually needed to meet the corresponding
liabilities. The difference Et = Dt−Vt, which usually should be positive, is not immediately
available to the insurer, but will be progressively delivered in the future as profits emerging
during the life of the policies; however the present value of these profits, by the arbitrage
principle, must be equal to Et.

The definition of VBIF via the fair value Vt can be referred to as “the stochastic reserve
approach” (see [11]). This point of view is logically equivalent to the “direct method” for
the derivation of fair value considered by the International Accounting Standard Board
([3], ch. 3, par. 3.32, 3.33).

1.3 Embedded options and investment strategies

Under the usual profit-sharing rules, in each year the insurer earns a fraction of the
fund return but must also guarantee a minimum return level to the policyholder. These
minimum guarantees can be assimilated to a kind of put options held by the insured; the
value of future profits to the insurer must be derived taking into account the cost of the
options embedded into the policies.

Of course the fund return – which represents the “underlying” of the embedded options
– depends both on the market evolution and on the investment strategy of the fund. Since
the insurer has some degree of discretion in choosing this strategy, he can partially control
the time t price of the options. Of course the invested strategy must be explicitly declared
at time t and any change in the investment rules will require a corresponding repricing of
the options.
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The accounting rules usually adopted to define the fund return give further oppor-
tunities to the insurer for controlling the price of the puts. For example, financial assets
classified as held-to-maturity can provide a component of the fund return virtually con-
stant over periods of few years, thus substantially reducing the volatility of the underlying
and in turn the cost of the options. A further reduction effect of the put prices can be ob-
tained if there are positive unrealized gains corresponding to default-free fixed rate bonds
with high nominal yield, provided that the fund manager will not be forced to sell them
by liquidity problems. In summary, under suitable conditions the accounting rules can
allow the insurer to produce an intertemporal smoothing – and in some cases a kind of
“market insulation” – of the reference fund return. In order to realize these effects not
only the composition, but also the dimension of the fund at time t can be relevant.

1.4 The dedicated fund

Since the cost of the embedded options depends on the investment strategy and since the
possible strategies are conditional to the current structure of the investment fund, the
components in definition (4) are not independent between each other. In particular, the
stochastic reserve Vt and the VBIF Et are sensitive to the current composition (and possi-
bly also to the dimension) of the fund on which the reference return is defined. A possible
choice is to define the dedicated fund Dt as a portfolio having the same composition of
the total portfolio At, and then assuming Dt as the reference fund; this can be done by
simply rescaling all the notional values of the assets in the total portfolio by the factor
Rt/A

s
t
2.

Similar arguments can be applied to the UGL of the dedicated portfolio. The VBIF
can be represented as:

Et = (Dt −Ds
t ) + (Rt − Vt) = Ut + (Rt − Vt) ;

however this is only a formal decomposition, since Vt is in turn a function of Ut also (for
details see section 5).

1.5 Numerical illustrations

At time zero let us consider a policy portfolio with statutory reserve R0 = 100 and a
corresponding asset portfolio with market value A0 = 112. Assume that the dedicated
fund has market price D0 = 105 (and statutory value Ds

0 = 100 by definition); then the
value of UGL is U0 = 105 − 100 = 5. If the stochastic reserve is V0 = 90 the resulting
VBIF is E0 = 105 − 90 = 15. For the required capital and for the corresponding cost of
capital assume K0 = 6 and κ0 = 1, respectively. If K0 is not invested in the fund A the
embedded value is given by:

EV0 = (112− 105) + (105− 90) + (6− 1) = 7 + 15 + 5 = 27 .

These embedded value components are reported in table 1.
2If At > Rt, under accounting rules a “put minimizing” strategy applied to the total asset portfolio

would produce a cost of the options not greater than that of an equivalent strategy applied to the dedicated
portfolio. Thus this definition of Dt can be considered conservative with respect to the computation of
VBIF.
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Statutory reserve (R0) 100
Market value of total assets (A0) 112
Market value of dedicated assets (D0) 105
Statutory value dedicated of assets (Ds

0) 100
Initial UGL (U0 = D0 −Ds

0) 5
Required capital (K0) 6
Cost of required capital (κ0) 1
Stochastic reserve (V0) 90
VBIF (E0 = D0 − V0) 15
Embedded value (EV0) 27

Table 1: Components of the embedded value

In order to illustrate how the UGL can modify the VBIF via the stochastic reserve
let us consider a policy portfolio with statutory reserve R0 = 100 and assume first that
there are not UGL, posing D0 = Ds

0 = 100. In the first three rows of table 2 the case is
considered of a liability portfolio composed only of:

i) non participating policies (first row),
ii) profit-sharing policies crediting to the policyholder the 80% of the annual return,

with a low of minimum guaranteed return,
iii) profit-sharing policies crediting the 80% of the annual return, with a high level of

minimum guarantees (third row).
In the second three rows of the table the same policy portfolios are considered, as-

suming now that D0 = 105, thus supposing positive UGL at the level U0 = 5.
For the cases of participating policies the values of the stochastic reserve V0 are typical

figures produced by a conservative investment strategy which takes advantage of the UGL.
The effect on the embedded options is illustrated by splitting the stochastic reserve in the
liability value net of the cost of minimum guarantees (the “base value” B0) and in the
cost of the guarantees (the “put value” P0). Of course the stochastic reserve is given by
V0 = B0 + P0 and the VBIF is then given by E0 = D0 − B0 − P0. As will be shown in
section 5, for the non participating policies the UGL can be completely recovered by the
insurer under a suitable strategy. By and large, for profit sharing policies about the 80%
of the UGL contributes to the base value, leaving the remaining 20% as an additional
profit for the insurer. However the UGL can also contribute to reduce the put price, thus
incrementing further the VBIF.

2 Valuation of annual profits

The usual method for measuring VBIF is an “annual profits approach”. Instead of deriving
the market value Vt of the liabilities and then subtracting it from the value of the dedi-
cated fund, this method is aimed at providing a market-consistent valuation of the annual
sequence of future profits generated by the policy portfolio. It can be easily proven (see
[9], p. 94) that under the no-arbitrage assumption in perfect markets the annual profits
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Policy portfolio D0 B0 P0 V0 E0

Non participating 100 80 0 80 20
Participating 80%, low guarantees 100 88 1 89 11
Participating 80%, high guarantees 100 88 8 96 4
Non participating 105 80 0 80 25
Participating 80%, low guarantees 105 92 1 93 12
Participating 80%, high guarantees 105 92 5 97 8

Table 2: The effect of UGL on VBIF (Ds
0 = R0 = 100)

approach and the stochastic reserve approach are equivalent, provided that both methods
are applied in a market based framework.

2.1 The representation of the annual profits

Let t = 0 and assume that the in-force policies produce benefits for N years. Let us denote
by eτ the random variable representing the profits earned by the insurer at the end of the
year τ (τ = 1, 2, . . . , N), referred to a unit level of the statutory reserve at the beginning
of the year.

To simplify the exposition, we assume that the profits credited to the policyholder at
the end of year τ (by an increase of the sum insured) are given by:

dτ := max{β Iτ , i} , (5)

where β is the participation coefficient, Iτ is the rate of return of the reference fund in
year τ and i the minimum guaranteed rate (typically the technical interest rate). The
parameters i and β are fixed at time zero; the return Iτ is known at the date τ .

Correspondingly, eτ is given by:

eτ = Iτ − dτ = Iτ −max{β Iτ , i} = min{Iτ − i, (1− β) Iτ} . (6)

The form of the function e = f(I) is illustrated in figure 1.

2.1.1 The base component and the put component

Using the general property:

min{x, y} = x− [x− y]+ , x, y ∈ R , (7)

the earnings at time τ can be expressed as:

eτ = (1− β) Iτ −
[
i− β Iτ

]+
, (8)

that is:
eτ = eB

τ − eP
τ , (9)

where:
eB
τ := (1− β) Iτ , (10)
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Figure 1: The e(I) function

is the “base component” of profits and:

eP
τ :=

[
i− β Iτ

]+
, (11)

is the “put component”. The form of the functions eB = fB(I) and eP = fP (I) is
illustrated in figure 2.

The base component is conceptually similar to the management fees in mutual funds
without minimum return guarantees. It should be noted however that in mutual funds
management fees are typically computed as a per cent of the net asset value. In profit-
sharing policies the management fees would be determined as a portion of the realized
return; hence they could also take negative values. Expression (8) corresponds to the
fundamental decomposition:

profits = retained profits/losses − costs of minimum guarantees.

It is important to observe that eB
τ is a linear function of Iτ while eP

τ is non-linear.
Hence the earnings in year τ :

eτ = f(Iτ ) , (12)

can be interpreted as the payoff of a derivative security written on I, where f is a non
linear function of the underlying3.

2.1.2 Excess-return component and call component

By relation (7) the annual profits can also be expressed as:

eτ = (Iτ − i)− [
β Iτ − i

]+
, (13)

3Under a more realistic profit-sharing mechanism the statutory reserve Rτ at the beginning of the year
τ depends on the past returns of the segregated fund. Since eτ is expressed in units of Rτ , the payoff eτ

is actually path-dependent.
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Figure 2: The functions eB(I) and eP (I)

that is as:
eτ = eG

τ − eC
τ , (14)

where:
eG
τ := Iτ − i , (15)

is the “excess-return component” of profits4 and:

eC
τ :=

[
β Iτ − i

]+
, (16)

is the “call component”. The excess return component could be also referred to as “non-
participating component”, since it is equal to the profits earned on an analogous non-
profit-sharing policy. The call component then represents the cost of the participating
mechanism. Relation (13) corresponds to the alternative decomposition:

profits = profits from non-participating − participation costs.

Obviously, also this decomposition expresses the non linear function e = f(Iτ ) as the sum
of a linear component eG = fG(Iτ ) and of a non linear component eC = fC(Iτ ). The form
of the functions eG(Iτ ) and eC(Iτ ) is reported in figure 3.

2.1.3 Fund returns and market returns

For a given asset-liability portfolio and for a specified investment strategy, the randomness
of the fund returns Iτ is determined by the uncertainty of the market returns. In a

4The payoff eG
τ is the fund return in excess of the minimum guaranteed return. The complement of eG

τ ,
that is dG

τ := Iτ − eG
τ = i is the “guaranteed component” of the fund return credited to the policyholder.
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Figure 3: The functions eG(I) and eC(I)

simplified setting, let us denote by jτ the market return in the time period [τ−1, τ ]. We
can pose:

Iτ = g(jτ ) , (17)

where g is a deterministic function depending, via the accounting rules, both on the
structure of the asset-liability portfolio and on the particular investment strategy chosen
by the fund manager. In general g is a non linear function, specified by a complicated set
of computational rules. Using (17), the complete representation of the annual earnings is:

eτ = (1− β) g(jτ )−
[
i− β g(jτ )

]+
. (18)

2.1.4 Sources of uncertainty for future profits

The uncertainty affecting future profits eτ can be divided in two main classes.

Financial risk. Denotes the financial market uncertainty affecting the future return Iτ .
In life insurance the most relevant types of financial risk are the interest rate risk and the
stock price risk. Credit risk can also be of concern if a relevant part of the segregated
fund is invested in corporate bonds. If inflation linked bonds or policies are present in the
outstanding portfolios also the inflation risk should be considered.

Technical risk. This kind of uncertainty, often referred to also as actuarial uncertainty, is
connected with all the events influencing the duration of the policies. Typical risk drivers
are mortality/longevity risk and surrender risk. This risk class should include also the
uncertainty on future expenses concerning the outstanding portfolio.

We shall assume here that the main two classes of uncertainty can be considered
separately. A formal definition of the independence between financial and technical risk
and a discussion of this assumption can be found in [11].
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2.2 The valuation of profits

The derivation of the VBIF can be discussed referring to the valuation at time t = 0 of
the random payoff eτ . Let us formally denote by:

V (0; eτ ) (19)

the value at time t = 0 of the random amount to be paid at time t = τ .

2.2.1 Market-consistency and arbitrage principle

It is crucial to assume that the valuation functional V provides a market-consistent price.
In a security market setting V (0; eτ ) can be interpreted as the market price of a stochastic
zero-coupon bond (ZCB) paying the amount eτ at the maturity date τ ; in other terms, the
determination of the V can be considered as a pricing problem for the derivative contract
with terminal payoff eτ .

As usual in the theory of derivatives it is also natural to derive the form of the valuation
functional under the arbitrage principle, i.e. assuming that the price V (0; eτ ) precludes
any riskless arbitrage opportunity.

A fundamental consequence of the market-consistency assumption is the linearity
property of V , which implies:

V (0; eτ ) = V (0; eB
τ )− V (0; eP

τ ) ; (20)

given the linearity of the base component of the f function, one also has:

V (0; eB
τ ) = (1− β) V (0; Iτ ) . (21)

One can also observe that since eP
τ ≥ 0 by definition, to avoid arbitrage the price of

the put component cannot be negative and the value of the profits will be not greater
than the value of the base component. A similar argument holds with respect to the call
decomposition.

Another immediate consequence of the arbitrage principle is that the price of the cash
flow stream {e1, e2, . . . eN}, that is the VBIF E0, is obtained as the sum of the prices of
the single cash flows; this additivity property implies that:

E0 =
N∑

τ=1

V (0; eτ ) . (22)

Since we are mainly interested here in giving the intuition behind the general valuation
principles we simplify the notation referring to a sequence of annual profits containing a
single cash flow eτ generated at the end of the generic year τ . Therefore we shall not
explicitly consider here some issues concerning multiple maturities, as the term structure
of valuation rates. We shall denote by:

· E0 := V (0; eτ ): total value of profits (the VBIF),

· EB
0 := V (0; eB

τ ): base value of profits (the base component of VBIF),

· EG
0 := V (0; eG

τ ): value of excess return (the excess.return component of VBIF) .
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Using these values the price of the embedded options can be derived by difference; we
have:
· P0 := EB

0 −E0: the put value,
· C0 := EG

0 − E0: the call value.

2.2.2 No-arbitrage valuation methods

The previous properties of the valuation functional directly follow from a fundamental
result in the arbitrage theory providing a representation of the price V as an expectation
operator.

Real world expectations

Under the no-arbitrage assumption the price operator V can be represented as:

V (0; eτ ) = EN (ϕτ eτ

)
, (23)

where ϕτ is the state-price deflator and EN is the expectation taken with respect the
natural probability N (the so-called “real world” probability). Under the complete market
assumption the deflator ϕτ is unique (see e.g. [13]).

Risk-neutral expectations

Alternatively, the following representation holds:

V (0; eτ ) = EQ(ξτ eτ

)
, (24)

where ξτ is the risk-free deflator (or “stochastic discount factor”) and EQ is the expectation
under the “risk-neutral” (or “risk-adjusted”) probability Q.

By a theoretic point of view expression (23) and (24) should be equivalent; hence we
should have:

EQ
(
ξτ Yτ

)
= EN

(
ϕτ Yτ

)
.

In practical applications, if an efficient market for the “derivative” eτ exists the prob-
ability measure Q can be derived by estimating a suitable stochastic model on quoted
prices. The natural probability N provides the expectations prevailing on the market a
the valuation date. If an assessment of this probability measure is required, it should be
obtained consistently with the estimated measure Q, i.e. consistently with the observed
prices. If a reference market does not exist, usually the natural probability approach is
preferred; the choice of the measure N is suggested by subjective views and the measure
Q, when required, should be obtained as a suitable transformation.

2.2.3 Stochastic and deterministic discount factors

The arbitrage methods are stochastic methods in a proper sense. We can refer to the
representations (23) and (24) as “the language of the stochastic discount factors”, since
the present value of the random payoff is obtained by deflating eτ under each sample path
from t = 0 to t = τ (i.e. under each state of nature) and then taking the appropriate

18



expectation. In particular, it can be shown that in a continuous time setting, the stochastic
discount factor under the risk-neutral representation (24) has the form:

ξτ = e−
R τ
0 r(z) dz , (25)

where r(z) denotes the instantaneous risk-free interest rate.
The traditional deterministic discount factor from t = 0 to t = τ can be immediately

derived under the no-arbitrage approach by considering the security paying with certainty
the amount Cτ at time τ . Since Cτ is deterministic, the representation (24) gives:

V (0;Cτ ) = EQ(ξτ

)
Cτ , (26)

or:
V (0;Cτ ) = vτ Cτ , (27)

where:
vτ := V (0; 1) = EQ(ξτ

)
, (28)

is the price of the unit ZCB maturing at time t = τ . This ZCB is assumed to be not
defaultable and in this sense vτ is referred to as the risk-free, or deterministic discount
factor for the maturity τ 5.

2.2.4 Methods with discounted expectations (“stochastic methods”)

The traditional valuation methods in corporate finance – and the methods currently used
for deriving VBIF in life insurance – are based on discounting expected cash flows. There-
fore it is important to reconcile these methods with the stochastic deflator approaches.

If the payoff eτ is independent of interest rates the deflators are random variables
independent of eτ (under the corresponding probability measures) and the expectation of
the deflated payoff can be expressed as the product of two expectations.

5We shall denote by iτ the interest rate at time t = 0 for the maturity t = τ expressed on annual basis,
and by rτ := log(1 + iτ ) the corresponding continuously compounded rate. Hence:

vτ = (1 + iτ )−τ = e−rτ τ .

The notation iFτ will be used to indicate the forward rate made at time t = 0 for the period [τ−1, τ ].
A more general notation would be obtained by denoting by v(t, s) the time t spot price of the unit

risk-free ZCB maturing at time s ≥ t, and by v(t, T, s) the forward price of the same ZCB made at time
t and to be paid at time T ∈ [t, s]. Correspondingly i(t, s) denotes the interest rate on annual basis made
at time t for the period [t, s] and i(t, T, s) is the forward interest rate made at time t for the period [T, s].
The correspondence with the simplified notation is given by:

vτ := v(0, τ) , iτ := i(0, τ) , iFτ := i(0, τ−1, τ) .

The one-year interest rate in year τ is given by jτ := i(τ−1, τ); the instantaneous interest rate r(t) is
defined as:

r(t) := lim
s→t

− log v(t, s)

s− t
.
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DCE method

If the deflator ξτ and the payoff eτ are independent under the Q measure, the risk-neutral
representation (24) simplifies as:

V (0; eτ ) = vτ EQ(eτ ) . (29)

The valuation method based on this expression can be referred to as “Discounted-Certainty-
Equivalent” (DCE) method, since the risk-neutral expectation EQ(eτ ) can be consistently
interpreted as the certainty equivalent due at time t = τ of the random cash flow eτ .
Obviously the discount factor vτ can be expressed in terms of discount rate:

vτ := e−rτ τ , (30)

where rτ represents the (annual, continuously compounded) risk-free rate at time t = 0
for the maturity τ .

RAD method

If the deflator ϕτ and the payoff eτ are independent under the natural measure N then
the representation (23) assumes the form:

V (0; eτ ) = v∗τ EN (eτ ) , (31)

where:
v∗τ := EN (ϕτ ) , (32)

represents risk-adjusted discount factor from 0 to τ . This valuation approach is the usual
one in capital budgeting applications; we shall refer to this method as “Risk-Adjusted-
Discounting” (RAD). Of course, also the discount factor v∗τ can be expressed in the form:

v∗τ := e−µτ τ , (33)

where µτ denote the risk-adjusted discount rate from 0 to τ . In the practical applications,
the valuations obtained under the RAD approach can be considered market-consistent if
EN

(
eτ

)
can be interpreted as a market expectation and if the discount rate µτ includes

the appropriate risk premium (the “risk margins”).

Remark. The discount rate µτ is the risk-adjusted rate appropriate for the payoff eτ . If
the value of the base component and the value of the put component would be derived
separately two properly readjusted discount rates should be used, since the following
representations should hold:

V (0; eB
τ ) = e−µB

τ τ EN
(
eB
τ

)
, V (0; eP

τ ) = e−µP
τ τ EN

(
eP
τ

)
, (34)

where µB
τ and µP

τ are the discount rate adjusted for the riskiness of eB
τ and eP

τ , respectively.
Moreover, since in general the riskiness of eτ is also depending on the length τ of the

time horizon, the rate µτ also should depend on τ . Therefore in order to price a complete
cash flow stream {e1, e2, . . . , eN} an entire term structure of risk-adjusted discount rates
will be required.
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These arguments show the greater conceptual efficiency of the DCE valuation based
on the risk-neutral probability. With the RAD approach the means of the real world prob-
ability distributions are derived as a first step and the determination of the risk premiums
– that also are influenced by the payoff distributions – is deferred to the discounting phase.
Under the risk-neutral distribution method the risk premiums are contextually derived in
the phase of mean calculation.

2.2.5 Discounted expectations under interest rate risk

In the usual VBIF calculations the independence assumption does not hold since typically
the segregated funds are largely invested in bonds; under interest rate uncertainty the
payoffs expressing future profits are random variables depending on the deflators through
the interest rates. Therefore the expressions of the value as discounted expectations, in
the sense of (29) and (31), in general are not consistent with the arbitrage principle.

However also for the price of interest rate sensitive payoffs an expression as discounted
expectation consistent with the arbitrage principle can be derived. This can be done by
using the unit ZCB with maturity τ as a “numeraire”6; it can be shown that this is
equivalent to properly changing the probability measure.

Forward risk-neutral expectations

Under the no-arbitrage assumption the price operator V can be represented as:

V (0; eτ ) = vτ EFτ (eτ ) , (35)

where EFτ (eτ ) is the expectation taken with respect to probability measure Fτ , the so
called “forward risk-neutral” measure.

Expression (35) provides a DCE valuation method theoretically correct also for payoffs
dependent on interest rates. Of course if the payoff is not interest rate sensitive the forward
risk-neutral is the same as the risk-neutral expectation.

2.2.6 Scenario methods (“deterministic methods”)

In a general setting the methods with discounted expectations are in any case stochastic,
in the sense that the valuation is derived by computing summary statistics of the annual
profits over a large number of sample paths, or “scenario” (in principle, one for each state
of nature).

Following a simplified approach, the value at time t = 0 of eτ is usually derived as:

ÊN
0 := v∗τ f

[
EN (Iτ )

]
, (36)

that is discounting (under the risk-adjusted rate) the value of the profit function corre-
sponding to the real world expectation of the fund return. Moreover in typical applications
the expectation EN (Iτ ) is obtained by a synthetic approach, that is by a subjective as-
sessment of a single “best estimate scenario”, without explicitly computing the mean of a

6Using the notation of footnote (5), the money amount representing the payoff eτ is expressed in units
of price v(t, t+τ).
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specified probability distribution. By this point of view the valuation method (36) can be
considered a “deterministic”, or “single scenario” RAD method.

Given the linearity property of the expectation operator, the crucial point of this
approach is the linearity of the f function. If f is linear then f

[
EN (Iτ )

]
= EN

[
f(Iτ )

]
;

hence the scenario method is equivalent to the stochastic RAD approach (and, under
independence, to the no-arbitrage approach). However if f is non-linear the scenario
methods contain inconsistencies. In particular they can systematically fail in correctly
pricing the embedded option, which represents the non-linear component of the profit
function f .

Intrinsic value of embedded options

Following the indications of the CFO Forum (see [1], [2]) one can define the “intrinsic
value ” of eP

τ (i.e. the intrinsic value of the embedded put option) as:

IV∗0 := v∗τ fP
[
EN (Iτ )

]
= v∗τ

[
i− β EN (Iτ )

]+
. (37)

Consequently one can define the “time value” of eP
τ as:

TV∗0 := V (0; eP
τ )− IV∗0 = v∗τ

{
EN

([
i− β Iτ

]+
)
− [

i− β EN (Iτ )
]+

}
. (38)

By the concavity of the function fP , the Jensen inequality holds:

fP
[
EN (Iτ )

] ≤ EN
[
fP (Iτ )

]
;

therefore one has:
0 ≤ IV∗0 ≤ V (0; eP

τ ) ,

and the time value defined by (38) provides the component of the option cost which is not
captured by the deterministic valuation.

In the sequel we shall use similar quantities defined in the forward risk-neutral frame-
work; the intrinsic value will be given by:

IV0 := vτ fP
[
EFτ (Iτ )

]
, (39)

and the time value will be obtained as:

TV0 := vτ EFτ
[
fP (Iτ )

]− vτ fP
[
EFτ (Iτ )

]
. (40)

Remark. In classical books on derivatives the intrinsic value of an option is defined referring
to the current price of the underlying, which in the present situation would be given by
the value I0 of the fund return in the year just ended. The intrinsic value would then be
given by:

IV0 :=
[
i− β I0

]+
, (41)

and the time value would be:

TV0 := V (0; eP
τ )− [

i− β I0

]+
. (42)

With those definitions the time value would actually be “the amount of the option price
that would be lost if the option were hold to expiration and the underlying security price
remained unchanged” (see [15] p.15).
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3 Harmonization with the traditional approach

In order to allow the stochastic valuation method to become a viable approach to measur-
ing VBIF in the professional practice it is of primary importance to achieve some degree
of conceptual harmonization with the traditional approach7.

3.1 The traditional approach

The traditional method for deriving VBIF can be classified as a RAD method under single
scenario. Let us denote by:

ê N
τ := f

[
EN (Iτ )

]
, (43)

the profit function evaluated for a real world expectation of the fund return (the “best
estimate” of expected future profits). Then the traditional estimation of VBIF can be
formally represented as:

ET
0 := vT

τ ê N
τ , (44)

where vT
τ is a discount factor which is supposed to take correctly into account the total

risk affecting Iτ (both financial and technical) as well as the time value of the embedded
option not captured by the single scenario approach.

If one assumes that these adjustments correspond to the appropriate corrections then
ET

0 provides the market-consistent assessment of VBIF by definition. This position is
typically motivated in the framework of a share price driven approach, where the future
profits generated by the different lines of business considered as an aggregate cash flow,
are assumed to have equivalent value to similar market-traded insurance cash flows. In
this setting the appropriate risk-adjusted discount rate is derived at an aggregate level by
the prices observed on the stock market using a CAPM based approach.

Some of the arguments underpinning this method are questionable and it can be
argued that more reliable results could be provided by an analytical approach based on
rigorous arbitrage methods and on the risk evaluation of individual cash flows. However
it is reasonable at least to presume that a comparison with an alternative no-arbitrage
stochastic approach would provide additional insight into the traditional valuation.

3.2 A stochastic DCE approach

In order to allow this comparison let us consider a DCE approach expressed as:

V (0; eτ ) := vτ eτ , (45)

where as usual vτ is the market riskless discount factor and eτ represents the certainty
equivalent of the random amount eτ fixed at time t = 0 on the market. If eτ would
be exposed only to financial risk the certainty equivalent would be given by the forward
risk-neutral expectation:

eτ = EFτ (eτ ) , (46)

where the Fτ measure could be derived by calibrating an appropriate stochastic pricing
model on the observed market prices. However, in order to take into account also the
technical uncertainty a further transformation of the natural expectation would be needed

7The authors are indebted to Geoffrey Jones, Alberto Minali and Deborah Pellati for useful discussions
and insightful ideas concerning the harmonization issue.
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Adjustment for technical risks

The crucial point is that an efficient market for technical risks is usually not available and
proper adjustments for the corresponding risk premiums cannot be objectively derived by
observing the market8. To overcome this difficulty one can define the certainty equivalent
as:

eτ = EFτ (eτ )− `τ , (47)

where Fτ is the forward risk-neutral measure relating only to the financial uncertainty and
`τ is a positive risk loading which adjusts the expectation for the technical uncertainty.
Of course `τ cannot be fully derived by market data and will contain some degree of
subjective assessments. The risk loading methods is widely used to derive premiums
in P&C insurance. Different criteria for defining `τ correspond to different “premium
calculation principles” (see e.g. [14]); for example, the standard deviation principle is
obtained by choosing `τ as proportional to the standard deviations computed on the
natural probability distribution of eτ . In recent years market regulators and rating agencies
have been increasingly using risk measures for the business activity based on required
solvency capital, or risk capital. Even if the risk capital calculations performed by a
firm are determined by natural, therefore subjective probability assessments, usually the
methodology and the assumptions underlying the valuation are publicly illustrated and
discussed. Then it would be reasonable to consider the risk capital for the sources of
technical uncertainty as a proper risk measure and then to assume the corresponding cost
of capital as a proxy of the market-consistent risk loading. One could then assume:

`τ = κA
τ , (48)

where κA
τ is an estimate of the cost of capital in the year τ for all the risk capital required

for the actuarial risk drivers9. With this choice, the market-consistent VBIF provided by
the DCE approach is given by:

E0 = vτ

[
EFτ (eτ )− κA

τ

]
. (49)

Let us denote by:
EF

0 := vτ EFτ (eτ ) , (50)

the “financial VBIF”, that is the VBIF unadjusted for the technical risks; let also denote
by:

κA
0 := vτ κA

τ , (51)

the cost at time t = 0 of the capital required for the year τ , which represents the value of
the technical risk loading. Then one also has:

E0 = EF
0 − κA

0 . (52)
8This problem is of major importance in the fair valuation of liabilities in property and casualty insur-

ance (see e.g. [4]).
9If KA

τ is an estimate of the technical risk capital required at the beginning of the year τ , one could
pose:

κA
τ := KA

τ [hτ − i(0, τ−1, τ)] ,

where hτ is the estimated shareholders return required in year τ and i(0, τ−1, τ) is the corresponding
forward rate implied in the current term structure of default-free rates. An interesting issue is if KA

τ

should be diversified across different technical risks and across all the other risk drivers globally affecting
the firm.
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Let us also define the value:

ÊF
0 := vτ f

[
EFτ (Iτ )

]
, (53)

representing the value of profits under a deterministic forward risk-neutral scenario. Since
the function fP is convex, the function f = fB− fP is concave thus the Jensen inequality
implies:

ÊF
0 ≥ EF

0 .

By the linearity of the base component, the equality EFτ
[
fB(Iτ )

]
= fB

[
EFτ (Iτ )

]
holds.

Then by the definition (39) of intrinsic value one has:

ÊF
0 −EF

0 = vτ EFτ
[
fP (Iτ )

]− vτ fP
[
EFτ (Iτ )

]
= P0 − IV0 ,

that is, using the definition (40):

ÊF
0 = EF

0 + TV0 . (54)

Hence ÊF
0 provides the financial VBIF gross of the time value.

3.3 Identifying discount rate margins

Under a DCE approach the different components of the risk premium and of the adjust-
ment for the embedded option are specified as decrements of the cash flow. However it
is often preferred to express these components in terms of margins on the discount rate,
thus implicitly referring to a RAD approach. This kind of description can be obtained
comparing the valuations provided by the stochastic DCE method just illustrated with
the natural expectations ê N

τ used in the traditional deterministic approach (44).

1) Margin for financial risk (different from the time value of embedded options).

Consider the equation:
v(1)
τ ê N

τ = ÊF
0 ; (55)

the solution v(1)
τ is the discount factor that under the traditional RAD method would

provide a valuation of profits taking into account only the financial risks and the intrinsic
value of the put option. The corresponding margin can be obtained by comparing v(1)

τ

with the riskless discount factor vτ ; for example, a yield spread can be defined as:

∆r(1) :=
1
τ

log
vτ

v(1)
τ

.

The spread ∆r(1) is often referred to as a risk margin, although it also includes an adjust-
ment for the put intrinsic value10.

10Of course in our simplified setting with a single cash flow be N
τ equation (55) has the trivial solution

v(1)
τ = bEF

0 /be N
τ . When a usual cash-flow stream is considered we should express the discount factor as

v(1)
τ := e−r(1)τ , and the discount rate r(1) should then be obtained as an internal rate of return, i.e. as the

solution of: X
τ

vτ f
�
EFτ (Iτ )

�
=
X

τ

e−r(1)τ be N
τ .

Obviously conditions should be checked ensuring that this solution exists and is unique.
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2) Margin for the time value of embedded options.
The solution of:

v(2)
τ ê N

τ = EF
0 ; (56)

is the discount factor v(2)
τ that provides the traditional valuation which correctly accounts

for the financial risks and for the total cost of the put option. A yield spread for the time
value of the embedded option can be obtained by:

∆r(2) :=
1
τ

log
v(1)
τ

v(2)
τ

.

In a proper sense, this spread does not includes risk margins but only an adjustment for
the option cost not captured by ∆r(1).

3) Margin for the technical risk.
The discount factor which satisfies:

v(3)
τ ê N

τ = E0 , (57)

is the RAD factor providing the VBIF allowing for the cost of the options and for all the
risks affecting the profits. The yield spread defined as:

∆r(3) :=
1
τ

log
v(2)
τ

v(3)
τ

,

provides the risk margin for the technical risks. Of course if the risk loading κA
0 is split

by risk drivers (e.g. is decomposed in cost for mortality risk, cost for surrender risk and
cost for inflation expenses risk) a corresponding decomposition of ∆r(3) is immediately
obtained.

In the traditional method one can similarly define a total “risk margin” as the yield
spread:

∆rT :=
1
τ

log
vτ

vT
τ

.

Obviously, if ET
0 = E0, that is if the traditional approach and the arbitrage approach

provide the same valuation, one should also have vT
τ = v(3)

τ . Therefore one immediately
obtains the following decomposition of the traditional risk margin:

∆rT = ∆r(1) + ∆r(2) + ∆r(3) .

Remark. It should be noted that in particular situations it can happen that the forward
risk-neutral expectation of the fund return is greater than the corresponding real world
expectation. For example, if the reference fund is fully invested in variable rate government
bonds the return Iτ is well approximated by the future one-year spot rate jτ and EFτ (Iτ )
is simply given by the forward rate iFτ . In the expectation theory of the interest rates (see
e.g. [5]) the difference:

πτ := iFτ −EN (jτ )

provides the term premium prevailing on the market for the maturity τ . As it is well-
known, in typical market situations the prevailing term premiums are positive, which
in our example implies the inequality EFτ (Iτ ) > EN(Iτ ). In this case the relation (55)
requires v(1)

τ < vτ and therefore a negative value of the risk margin ∆r(1).
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3.4 A further decomposition of discount rate margins

The base component of VBIF has been defined as:

EB
0 = vτ EFτ

(
eB
τ

)
.

By expression (53), the base value of the profit is given by ÊF
0 gross of the intrinsic value

of the put:
EB

0 = ÊF
0 + IV0 ,

Let us define:
ÊB

0 := (1 + i1)
−τ EFτ

(
eB
τ

)
.

The quantity ÊB
0 is the present value of the certainty equivalent of the base component of

profits, discounted with the short term (1-year) riskless rate iτ . By the definition of base
value one also has:

ÊB
0 =

(1 + i1)
−τ

vτ
EB

0 = e(rτ−r1) τ EB
0 ,

where rτ := −(log vτ )/τ is the yield-to-maturity corresponding to vτ (of course r1 =
log(1+ i1) ). Since the spread rτ − r1 captures the slope of the yield curve with respect to
the short term rate r1, then ÊB

0 can be interpreted as the base value of the profit eτ before
that the term premium required by the market for the delay τ − 1 has been deducted (see
sections 4.4 and 4.4.1 for basic principles and illustrations). Assuming that r1 ≤ rτ , the
following inequalities hold:

ÊB
0 = e(rτ−r1) τ EB

0

≥EB
0

≥ ÊF
0 = EB

0 − IV0

≥EF
0 = ÊB

0 − IV0 − TV0 = EB
0 − P0

≥E0 = EF
0 − κA

0 .

The last three levels of these inequalities have been just used in section 3.3. The values
ÊB

0 and EB
0 provide two additional levels of DCE values which can be used for obtaining

a further decomposition of the discount margin for financial risk derived there.

3.5 A numerical illustration

Let be τ = 10 and assume the following levels of the current default-free yield-to-maturity:

r1 = 0.02 , r10 = 0.04 .

The corresponding rates are i1 = 3.75% and i10 = 3.83% and the discount factors are:

v1 = e−0.02 = 0.72711 , v10 = e−(0.04×10) = 0.039094 .

Assume further the following values:

27



VBIF gross of technical risks (EF
0 ): 1000

Cost of technical risk capitals (κA
0 ): 150

Intrinsic value of the put (IV0): 72
Time value of the put (TV0): 134
Expected profit (ê N

10): 1799

One obtains:
VBIF net of technical risks (E0 = EF

0 − κA
0 ): 850

Price of the put (P0 = IV0 + TV0): 206
Base value (EB

0 = EF
0 + P0): 1206

ÊF
0 = EB

0 − IV0: 1134
ÊB

0 = e10 (r10−r1) EB
0 : 1473

The discount rates corresponding to the different VBIF level are derived as :

for ÊB
0 : − log(ÊB

0 /ê N
τ )/τ = − log(1473/1799)/10 = 0.0200

for EB
0 : − log(EB

0 /ê N
τ )/τ = − log(1206/1799)/10 = 0.0400

for ÊF
0 : − log(ÊF

0 /ê N
τ )/τ = − log(1134/1799)/10 = 0.0462

for EF
0 : − log(EF

0 /ê N
τ )/τ = − log(1000/1799)/10 = 0.0587

for E0: − log(E0/ê N
τ )/τ = − log(850/1799)/10 = 0.7500

The corresponding discount rate margins are reported in table 3.

margin (bps)
Term premium (10/1 years) 200
Intrinsic value 61
Time value 126
Technical risks 163
Total adjustment 550
(1-year risk-free yield: 2%)

Table 3: Discount rates margins

It should be noted that in this example the level ê N
10 = 1799 for the expected cash

flow has been chosen in order that:

e−r1 τ ê N
τ = ÊB

0 ;

hence the first discount rate is equal to 0.02 by assumption and the present value of ê N
10

discounted with the risk-adjusted yield 0.075 is equal to the VBIF E0.

4 Basic examples

4.1 Deterministic default-free returns

As a first example of a simplified segregated fund let us consider a frozen portfolio com-
posed until the year τ of a single not-defaultable coupon bond. Under the accounting rules
the return Iτ of this elementary fund is given by:

Iτ := cτ ,
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where cτ is a deterministic value given by the coupon rate of the bond adjusted for the
ratio between the face value and the historical cost. For this deterministic return the
valuation problem is trivial. All the expectations are equal to the deterministic value:

EN (Iτ ) = EQ(Iτ ) = EFτ (Iτ ) = cτ ,

and all the valuation methods reduce to:

V (0; eτ ) = vτ f(cτ ) = vτ (1− β) cτ − vτ

[
i− β cτ

]+
.

The risk-adjusted discount factors are equal to the risk-free factor.

4.2 Defaultable returns

If the bond held in the segregated fund is exposed to default risk the coupon rate is
uncertain; hence the fund return Iτ = cτ is a random variable. Assume that the default
event is independent of the interest rates. Then under the risk-neutral representation the
factorisation property holds:

V (0; eτ ) = EQ[ξτ f(cτ )] = vτ EQ[f(cτ )] ,

since vτ := EQ[exp(− ∫ τ
0 r(z) dz)] only depends on the interest rate r(t). Of course the

risk-neutral probabilities are the same as the forward risk-neutral probabilities.
The base value of the profits is given by:

V (0; eB
τ ) = vτ EQ(eB

τ ) = vτ (1− β)EQ(cτ ) .

If the price V (0; cτ ) can be observed on the bond market one can derive the corresponding
credit-adjusted discount factor as:

vd
τ :=

V (0; cτ )
cτ

;

then the risk-neutral expectation of cτ can be estimated by the relation:

EQ(cτ ) =
vd
τ

vτ
cτ ,

which is obtained imposing the equality vd
τ cτ = vτ EQ(cτ ).

In a simplified model the risk-neutral expectation of cτ can be expressed as:

EQ(cτ ) = cτ (1− pQ) ,

where pQ is the default probability of the bonds under the risk-neutral measure. Then pQ

can be estimated as pQ = 1− vd
τ/vτ .

The value of put component of the profits is:

V (0; eP
τ ) = vτ EQ(eP

τ ) = vτ EQ
([

i− β cτ

]+
)

;

the explicit computation of this value is more complex and requires an appropriate option
pricing model.
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Under the natural measure in general the independence assumption is not sufficient
to produce the factorisation:

V (0; eτ ) = EN [ϕτ f(cτ )] = EN [ϕτ ]EN [f(cτ )] .

This property holds only under proper conditions on the form of the state-price deflator
ϕτ which in general is not only dependent on the interest rates.

4.3 Stock market returns

Assume that the dedicated fund is fully invested in non-dividend-paying stocks. In a Black-
Scholes type framework, we suppose that the term structure of riskless interest rates is
deterministic and flat at a level r and that the market value of the fund is represented
by the price S(t) of a stock portfolio which follows a geometric Brownian motion with
dynamics:

dS(t) = µS(t) dt + σ S(t) dZ(t) ,

where Z(t) is a standard Brownian motion and µ and σ are constant parameters. Therefore
the natural probability measure is given by a lognormal distribution with instantaneous
parameters µ and σ. It is assumed that µ > r. Assume also that the fund return is defined
as the market return:

Iτ :=
S(τ)

S(τ−1)
− 1 .

Since r(t) ≡ r, the risk-free discount factor is simply given by:

vτ = EQ
(
e−
R τ
0 r(z) dz

)
= e−r τ .

Moreover, since:
EN [S(τ)] = S(0) eµ τ ,

and by the independency of the ratios S(τ)/S(τ−1), one obtains:

EN (Iτ ) = eµ − 1 .

The risk-neutral probability measure is given by a lognormal distribution with instan-
taneous parameters r and σ; since the interest rates are deterministic the Q measure is
equal to the forward risk-neutral measure Fτ . Then one has:

EQ(Iτ ) = EFτ (Iτ ) = er − 1 = i ,

where i is the riskless interest rate: as it is usually said, under the risk-neutral world the
future stock returns are obtained “projecting at the risk-free rate”.

The linear component of the profits can be is easily valued. Under the (forward)
risk-neutral approach the base value of the profits is simply given by:

V (0; eB
τ ) = vτ EQ(eB

τ ) = e−r τ (1− β)
(
er − 1

)
.

For the put value one obtains:

V (0; eP
τ ) = vτ EQ(eP

τ ) = e−r τ EQ
([

i− β Iτ

]+
)

;
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this put price can be easily expressed by a Black-Scholes-type formula.
Under the natural probabilities one has, recalling (34):

V (0; eB
τ ) = vB

τ EN (eB
τ ) = e−µB

τ τ (1− β)
(
eµ − 1

)
,

and:
V (0; eP

τ ) = vP
τ EN (eP

τ ) = e−µP
τ τ EN

([
i− β Iτ

]+
)

,

where vB
τ and vP

τ are the risk-adjusted valuation factors appropriate for discounting eB
τ

and eP
τ , respectively; µB

τ and µP
τ are the corresponding risk-adjusted rates.

Both the base value and the put value must be equal under the two approaches; hence
one has:

vB
τ EN (eB

τ ) = vτ EQ(eB
τ ) , vP

τ EN (eP
τ ) = vτ EQ(eP

τ ) .

By the first equality one immediately derives the relation:

µB
τ = r +

1
τ

log
eµ − 1
er − 1

.

Since we assumed µ > r, the risk margin µB
τ − r required for the RAD valuation of

the linear component eB is positive; however this margin is a decreasing function of the
maturity τ .

4.4 Return of floating rate bonds

Let us suppose that the dedicated fund is fully invested in not-defaultable floating rate
bonds, with annual coupons indexed to the one-year default-free rate. Then the fund
return in year τ can be expressed as:

Iτ := jτ ,

where jτ is the interest rate prevailing at time τ − 1 on the market for risk-free debts
maturing at time τ . It can be shown that the forward risk-neutral measure Fτ is such
that:

EFτ (Iτ ) =
vτ−1

vτ
− 1 = iFτ

where iFτ is the current forward rate for the period [τ−1, τ ]. So the forward risk-neutral
expectation of Iτ is simply given by forward rate.

For the base value one immediately obtains:

V (0; eB
τ ) = vτ (1− β)EFτ (Iτ ) = vτ (1− β) iFτ ,

or, using only discount factors:

V (0; eB
τ ) = vτ (1− β)EFτ (Iτ ) = (1− β) (vτ−1 − vτ ) .

Under the natural measure one has:

V (0; eB
τ ) = vB

τ (1− β)EN (jτ ) .
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The consistency between natural and risk-neutral valuation requires that:

vB
τ = vτ

EFτ (Iτ )
EN (Iτ )

= vτ
iFτ

EN (jτ )
;

hence the risk-adjusted discount factor vB
τ is lower than the risk-free discount factor vτ

if and only if the real world expectation of the future spot rate jτ is greater that the
corresponding forward rate iFτ implied in the current term structure. Recalling that πτ :=
iFτ −EN (jτ ) is the term premium required by the market for the maturity τ , then vB

τ < vτ

if and only πτ < 0.

4.4.1 Numerical illustration

Let be τ = 5 and consider the random profit generated by a fund with return Iτ = jτ .
Assume a participation coefficient β = 80% and suppose, for the sake of convenience, that
the statutory reserve at the beginning of the fifth year is R4 = 500. Therefore the base
component of the profit is given by:

eB
5 = R4 (1− β) j5 = 500× 0.2 j5 = 100 j5 .

Assume the following levels of the current default-free spot rates:

i4 = 3% , i5 = 3.20% .

The riskless discount factors are:

v4 = 1.03−4 = 0.88849 , v5 = 1.032−5 = 0.85428 ,

and the forward rate from t = 4 to t = 5 is:

iF5 =
0.88849
0.85428

− 1 = 4.004% .

This is also the value of the forward risk-neutral expectation EF5(j5) of the future spot
rate j5 prevailing on the market in t = 4 for the maturity t = 5.

The base value of the 5-year profit is given by:

V (0; eB
5 ) = v5 EF5(100 j5) = 100× 0.85428× 0.04004 = 3.421 ,

If the natural expectation of j5 is greater than the forward rate, say EN (j5) = 4.5%, then:

vB
5 = v5

iF5
EN (j5)

= 0.85428× 0.04004
0.045

= 0.7601 ,

corresponding to a discount rate:

iB5 :=
(
1/vB

5

)1/5 − 1 = 0.7601−1/5 − 1 = 5.64% .

Thus the expected cash flow EN (100 j5) = 4.5 should be discounted at the 5.64% rate for
5 years in order to obtain a present value equal to V (0; eB

5 ) = 3.421.
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For an expected rate lower than j5, for example if EN (j5) = 3.5%, one has:

vB
5 = 0.85428× 0.04004

0.035
= 0.97727 ,

which implies iB5 = 0.46%.
The discount rate iB5 can also result to be negative. If EN (j5) = 3% one obtains

vB
5 = 1.14015 and iB5 = −2.59%.

Comments – In the first case the certainty equivalent of the random payoff 100 j5, which
is given by 4.004, is lower than the expected value 4.5. For this reason the expected cash
flow must be discounted at the rate 5.64%, with a spread of about 244 bps over the 3.20%
market discount rate.

However, if we suppose that the expected rate represents the market expectation, this
is an unusual situation, since an expected rate greater than the forward rate implies a
negative risk premium. To illustrate this crucial concept it is important to realize that
the risk actually involved in the 5-year investment:

i) is not generated by the uncertainty of the payoff, but
ii) is measured by the alternative investment opportunities which can go lost having

locked up the capital for 5 years.
Referring to the first point, the uncertainty of eB

5 does not involve risk per se since the
random payoff j5 can be replicated at time zero buying a 4-year unit ZCB and selling-short
a 5-year unit ZCB. Since the 4-year investment will provide with certainty the amount 1
after four years, the investment of this proceed for the successive year will provide at t = 5
the payoff 1 + j5 (unknown at time zero, but known at time t = 4). After the liability
1 due at time t = 5 has been paid, the net proceed of the strategy will be exactly j5

11.
Hence in t = 0 the price V0 of eB

5 must be equal to v4 − v5 to avoid arbitrage; moreover
the certainty equivalent of eB

5 must be equal to V0/v5 since the arbitrage principle requires
that the price in t = 0 of the certainty amount V0/v5 due in t = 5 is given by v5 (V0/v5).

While the effect of the uncertainty of the payoff eB
5 is neutralized by the observation

of the market prices v4 and v5, these prices do include risk premiums instead, since they
are determined by the risk aversion and by the preferences on the time allocation of
consumption prevailing on the market. This is equivalent to say that the ZCB with payoff
eB
5 is risky not because of the uncertainty of the payoff, but because of the length of the

time horizon. In typical situations liquidity preference is prevailing on the markets, which
implies that the opportunity cost for a 4-year investment is positive, and lower than for a
5-year investment. The term premiums – which are better understood as “term premiums”
– are correctly measured by the difference between the certain return iF5 for the period
[4, 5] which an investor could lock-in investing his capital at time zero, and the expectation
of the random return j5 which he would realize waiting four years to invest over the same
period. Under the liquidity preference assumption these term premiums are positive and
increasing with maturity12.

11For details on this theorem and for an illustration of its implications see [12].
12The liquidity preference hypothesis was proposed by J.R. Hicks in 1939. As it is well-known the modern

versions of the theory of the interest rates are based on the “preferred habitat” hypothesis, introduced
by F. Modigliani and R. Sutch in 1967. This assumption states that in general the term premiums are
not specified either in sign or in monotonicity. In general the term structure of market term premiums
can change with time; hence these hypotheses play only the role of general principles, leaving room to a
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5 Appendix: the effects of UGL on the VBIF

The effects of the UGL U0 := D0 − Ds
0 at time t = 0 on the value of profits can be

illustrated by comparing the values obtained referring to an asset portfolio with positive
UGL with the corresponding values referred to a portfolio having similar composition but
with U0 = 0. We shall indicate by the superscript ˜ the values obtained for the case
U0 > 0.

5.1 Effects on the excess-return component

Passing from the portfolio without UGL to the portfolio with positive UGL, the value U0

is completely transferred on the excess-return component EG
0 :

ẼG
0 = EG

0 + U0 .

This result indicates that in the case of not profit-sharing policies the UGL can be im-
mediately realized by the insurer by trading activity, since the possible effects on the fund
return do not increase the value of the liabilities. This corresponds to the property that
for not profit-sharing policies the stochastic reserve V0 is independent of the underlying.

5.2 Effects on the base component

The UGL are transferred to the base value of profits (i.e. to the VBIF gross of the cost of
the put) proportionally to fraction of the fund return retained by the insurer. Denoting
by β the average of the participation coefficient on the outstanding policy portfolio and
by α := 1− β the corresponding retention coefficient, then one has:

ẼB
0 = EB

0 + α U0 .

5.3 Effects on the value of the options

It can be shown that the following relation holds:

C̃0 − C0 = P̃0 − P0 + β U0 .

Thus the UGL increase the value of the put option if and only if the corresponding increase
in the call value is greater that the fraction β U0 of the UGL earned by the insurer. One
can also write:

P̃0

P0
= 1 +

C̃0 − (C0 + β U0)
P0

.

The following relation also holds:

U0 = (Ẽ0 − E0) + (C̃0 − C0) ;

that is the UGL (and therefore the increase in the EG value) are divided among the
increment Ẽ0−E0 of the VBIF and the increment C̃0−C0 of the call value.

variety of estimation problems. The preferred habitat assumption does not rule out the liquidity preference
hypothesis, which is most frequently supported by the empirical evidence.
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Part II

A valuation model under financial
uncertainty

6 A two factor pricing model

Typically the reference funds backing life insurance liabilities contain both bonds and
stocks (at least); thus in order to model properly the yearly returns Iτ which determine
the readjustment of the contractual benefits we have to model both interest rate and stock
market risk.

Remark. As a general consistency rule, assets and liabilities must be valued under the
same market model; thus the valuation model must have at least as many risk factors
as are required to price the asset portfolio. Of course, additional factors are needed if
the liabilities are also linked to some exogenous market index; for example, if the policy
also provides some kind of inflation protection of benefits, the valuation model for the
liabilities must include an additional source of uncertainty for the real interest rate risk,
independently of inflation linked bonds are held in the reference fund.

In many applications we adopt a two-factor diffusion model obtained by joining a
one-factor Cox-Ingersoll-Ross (CIR) model for the interest rate risk and a Black-Scholes
(BS) model for the stock market risk; the two sources of uncertainty are correlated13.

6.1 Interest rate uncertainty

The single source of uncertainty is the instantaneous short rate r(t), that follows a diffusion
process described by the stochastic differential equation14:

dr = f r(r, t) dt + gr(r, t) dZr , (58)

where Zr is a standard Brownian motion. In the CIR model the drift function is chosen
as:

f r(r, t) := α (γ − r) , α, γ > 0 ,

and the diffusion function is defined by:

gr(r, t) := ρ
√

r , ρ > 0 .

Thus it is assumed a mean-reverting drift, with long term rate γ and speed of adjust-
ment α, and a ”square root” diffusion, with volatility parameter ρ. As it is well-known, this
“mean-reverting square-root” process implies a non-central chi-squared transition density
for r(t). At time zero, the mean of the distribution of r(t) is given by:

EN [r(t)] = γ + [r(0)− γ] e−α t , (59)
13For liabilities providing also inflation protection a three-factor model, obtained by properly extending

the CIR component in order to include both real and nominal interest rates (see [17], [18]), is employed.
14To simplify the notations we omit here some time dependencies. Hence we shall simply write r, Zr, S

and ZS to indicate the stochastic processes r(t), Zr(t), S(t) and ZS(t) .
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and the variance is:

VarN [r(t)] =
ρ2

2α

(
1− e−α t

) [
2 r(t) e−α t + γ

(
1− e−α t

)]
. (60)

Remark. The Vasicek model (and its usual extensions) is more simple than the CIR model
and is widely used for pricing interest rate derivatives. Since this model assumes a normal
transition distribution, it assigns positive probability to negative values of the spot rate;
for long maturities this can have relevant effects, producing discount factors greater than
one. Therefore the Vasicek model appears inadequate to life insurance applications. The
CIR model seems to offer a good trade-off between economic consistency and mathematical
tractability. For a numerical illustration see the appendix 6.9.

In the CIR model the preferences prevailing on the market (the market price of interest
rate risk) are specified by the function:

hr(r, t) := π

√
r

ρ
, π ∈ R .

Under the CIR approach – which is a general equilibrium approach – it is shown that this
form of the preference function avoids riskless arbitrage.

6.2 Stock price uncertainty

Also for the stock market we assume a single source of uncertainty, expressed by a non-
dividend-paying stock index S(t); the diffusion process for the stock index is given by the
stochastic differential equation:

dS = fS(S, t) dt + gS(S, t) dZS , (61)

where ZS is a standard Brownian motion with the property:

CovN [dZr, dZS ] = η dt , η ∈ R .

Since we assume a BS-type model, we specify fS and gS as:

fS(S, t) := µS , µ ∈ R ,

and:
gS(S, t) := σ S , σ > 0 ,

thus assuming that S is a geometric Brownian motion, with instantaneous expected return
µ and volatility σ, which implies a lognormal transition density for S. At time zero the
mean and the variance of the random variable S(t) are given by:

EN [S(t)] = S(0) eµ t , VarN [S(t)] = S2(0) e2 µ t
(
eσ2 t − 1

)
.

To prevent arbitrage, the market price of risk for the stock market has the classical
form:

hS(S, t) :=
µ− r

σ
; (62)

thus no additional parameter is needed in order to specify the preferences in this case15.
15In the usual formulations of the BS model no assumption on the risk premiums is made at this stage,

since relation (62) will be obtained as a consequence of the hedging argument which leads to the valuation
equation.
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6.3 The general valuation equation

By the Markov property of the diffusion processes, the time t price:

V (t; YT ) ,

of any security with payoff YT due at time T is a function of the state variables; that is:

V (t) = V (r, S, t) , 0 ≤ t ≤ T . (63)

Under the usual perfect market conditions the no-arbitrage principle, via the hedging
argument, leads to the general valuation equation:

1
2

(gr)2
∂2V

∂r2
+

1
2

(gS)2
∂2V

∂S2
+ η gr gS ∂2V

∂r∂S

+ (f r + gr hr)
∂V

∂r
+ (fS − gS hS)

∂V

∂S
+

∂V

∂t
= r V .

(64)

This equation must be solved under the appropriate boundary conditions, including the
terminal condition:

V (T ) = YT . (65)

6.3.1 The risk-neutral measure

By our choice of the functions f r, gr, fS and gS and of the correlation between the two
sources of uncertainty, the parameter vector related to the natural measure N (i.e. the
parameters specifying the bivariate real world probability distribution of the state variables
r and S) is given by:

p = {α, γ, ρ, µ, σ, η} , (66)

while the parameter vector for the risk premiums is simply r = {π}. By inspection of
the valuation equation (64) one observes that the coefficients of the first order derivatives
with respect to r and S are not expressed by the real world drift functions f r and fS , but
are given by the modified functions:

f̂ r := f r + hr gr = α(γ − r) + π r = αγ − (α− π) r , (67)

and:
f̂S := fS − hS gS = r S . (68)

These are the risk adjusted drifts16 which determine the form of the risk-neutral measure
Q. It is convenient to express the risk adjusted drift f̂ r as:

f̂ r = (α− π)
(

α

α− π
γ − r

)
,

that is:
f̂ r = α̂ (γ̂ − r) , (69)

16The valuation equation (64) can be easily recognized as the backward Kolmogoroff equation for the

bivariate diffusion {r(t), S(t)} with drifts bfr and bfS , with diffusion coefficients gr and gr, correlation η
and ”killing rate function” r(t) (see [16], pp. 222-224).
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where:
α̂ := α− π , γ̂ :=

α

α− π
γ . (70)

Hence also under the risk-neutral measure the drift of r can be formally represented as a
mean-reverting drift. It should be noted however that α̂ and γ̂ are not necessarily positive.

With this notation the Q measure is specified by the risk adjusted parameter vector:
by:

p̂ = {α̂, γ̂, ρ, σ, η} . (71)

Any solution of the valuation equation will be a function of this set of parameters and any
calibration of the model to the observed prices will be performed by optimally choosing
these parameters. The estimation of the effective mean reverting parameters for r and the
instantaneous expected return for S is not needed for pricing purposes, since their value
has no effect on the prices.

An example of a risk-neutral probability distribution can be given by calibrating the
CIR component of the pricing model. We considered a cross section of swap rates and
interest rate caps/floors quoted on the Euribor market at December 31, 2004. The current
value of r(t) and the vector p̂ of the risk-neutral parameters (on annual basis) are as follows:

r(0) = 0.01934 , α̂ = 0.21923 , γ̂ = 0.05068 , ρ = 0.04918 . (72)

In figure 4 the corresponding probability density functions p of the random variable r(T )
are illustrated for values of T ranging from 1 year to 20 years.

A similar representation for the risk neutral distribution of the stock price component
of the model is more difficult, since under the Q measure the drift function of the stock
price process is a stochastic process itself, different from S. Only for illustration purposes,
let us suppose here that r(t) is deterministic at the constant level r (which also implies
η = 0). Then the random variable S(T ) is lognormal also under the risk-neutral measure,
with mean and standard deviation:

EQ[S(T )] = S(0) er T , StdQ[S(T )] = S(0) er T
√

eσ2 T − 1 .

In figure 5 the lognormal density functions p of the random variable S(T ) for T up to 20
years are illustrated, assuming S(0) = 100, r = 0.04 and σ = 0.20.

6.4 Prices from risk-adjusted expectations

As it is well-known, the no-arbitrage assumption requires the existence of an equivalent
martingale measure Q such that the “discounted price process”:

V (t) e−
R t
0 r(z) dz , 0 ≤ t ≤ T ,

is a martingale with respect to Q. Under this martingale property the solution of the
valuation equation under condition (65) has the integral expression:

V (t;YT ) = EQ
t

[
e−
R T

t r(z) dz YT

]
, (73)

also known as Feynman-Kac representation. For t = 0 and referring to the random profit
at the end of year τ this gives the “VBIF expression”:

V (0; eτ ) = EQ
(
ξτ eτ

)
,
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Figure 4: Risk-neutral density functions of r(T ) as of Dec 31, 2004

Figure 5: Risk-neutral density functions of S(T ) with constant interest rate
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where:
ξτ := e−

R τ
0 r(z) dz .

6.4.1 Endogenous yield curves

The term structure of the interest rates iτ prevailing on the market at time t = 0 can be
immediately derived by the prices vτ of the unit ZCBs maturing at time t = τ , using the
relation:

iτ :=
(

1
vτ

) 1
τ

− 1 , τ = 1, 2, . . . .

The form of the yield curve can be endogenously derived by the CIR component of the
valuation model solving the valuation equation under the terminal condition:

V (τ ; Yτ ) = 1 .

The solution V (0;Yτ ) = vτ has the following closed form expression:

vτ = A(τ) e−r(0) B(τ) , (74)

where A(τ) and B(τ) are deterministic function of the time-to-maturity τ (see [6]). Al-
ternative measures of return are immediately derived. For example the continuously com-
pounded version of iτ , the so-called yield-to-maturity rτ , is obtained as:

rτ = log(1 + iτ ) = − log vτ

τ
.

Given the exponential form (74) of the discount factor, the yield-to-maturity is a linear
(“affine”) function of the r(t) process:

rτ = − log A(τ)
τ

+ r(0)
B(τ)

τ
; (75)

for this reason it usually said that the CIR model belongs to the class of the “affine term
structure models”.

The 1-year forward rate iFτ for the period [τ −1, τ ] can be directly derived by the
corresponding forward price vF

τ := vτ/vτ−1 as:

iFτ =
1
vF
τ

− 1 .

In table 4 the term structure of the ZCB prices vτ , of the spot interest rates iτ and of
the implied one-year forward rates iFτ corresponding to the set of parameters (72) estimated
on December 31, 2004 is reported. In figure 6 the corresponding spot and forward yield
curves are illustrated.

6.4.2 Endogenous volatility curves

It can be shown that under the CIR component of the model the variance of the instan-
taneous percentage change of the unit ZCB price vτ is given by:

Vart

(
dvτ

vτ

)
= ρ2 r

(
∂vτ

vτ ∂r

)2

;
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τ vτ iτ (%) iFτ (%)
0 . 1.95 .
1 0.97772 2.28 2.28
2 0.95069 2.56 2.84
3 0.92037 2.80 3.29
4 0.88791 3.02 3.66
5 0.85422 3.20 3.94
6 0.81999 3.36 4.17
7 0.78575 3.50 4.36
8 0.75189 3.63 4.50
9 0.71868 3.74 4.62

10 0.68634 3.84 4.71
11 0.65499 3.92 4.79
12 0.62473 4.00 4.84
13 0.59560 4.07 4.89
14 0.56763 4.13 4.93
15 0.54082 4.18 4.96
16 0.51516 4.23 4.98
17 0.49063 4.28 5.00
18 0.46720 4.32 5.01
19 0.44485 4.36 5.03
20 0.42352 4.39 5.04
25 0.33102 4.52 5.06
30 0.25856 4.61 5.07
35 0.20192 4.68 5.07
40 0.15768 4.73 5.07

Table 4: Term structure of interest rates on December 31, 2004

by expression (74) one derives ∂vτ/∂r = −vτ Bτ ; therefore one obtains:

στ :=

√
Vart

(
dvτ

vτ

)
= ρ

√
r B(τ) , (76)

which provides the term structure of the ZCB volatility.
The volatility curve of ZCBs corresponding to the parameter estimate on December

31, 2004 is illustrated in figure 7.

6.5 Natural expectations consistent with risk-neutral expectations

Since market prices are determined by the natural expectations “distorted” by preferences,
prevailing risk premiums and natural expectations cannot be derived separately from direct
cross-sectional observation of the market. If the risk-neutral parameters of the valuation
model have been estimated on current market data, some exogenous information must be
added in order to specify the natural probabilities underlying the model; of course some
insight could be obtained from the analysis of historical time series. Even though this
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Figure 6: The term structure of riskless interest rates as of December 31, 2004

Figure 7: The term structure of ZCB volatilities as of December 31, 2004

enlarged specification involves some degree of subjectivity, attention should be paid to the
consistency with the estimated risk-neutral probabilities.
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6.5.1 Natural parameters from risk-neutral parameters

In the CIR model a simple and intuitive way for including a subjective view in the risk-
neutral setting is to specify the level of the long-run instantaneous interest rate γ. With
this information the mean reversion coefficient α and the term-premium coefficient π are
immediately derived from (70) as:

α =
α̂ γ̂

γ
, π = α− α̂ . (77)

The valuation model is then completely specified under the natural probability measure.
For example, if one assumes γ = 0.025, at the valuation date December 31, 2004 one

obtains:

α =
0.21923× 0.05068

0.025
= 0.44444 ,

π = 0.44444− 0.21923 = 0.22521 .
(78)

These set of parameters provide a chi-squared distribution for r(T ) different from the risk-
neutral distributions illustrated in figure 4. In figure 8 the natural and the risk-neutral
probability density p(r) corresponding to the parameter set (72) and (78), respectively,
are illustrated for T = 10 years. From (59) and (60) the mean and the standard deviation
of the natural distribution are:

EN [r(10)] = 0.024934 , StdN [r(10)] = 0.00823 .

For the risk-neutral distribution one obtains:

EQ[r(10)] = 0.047183 , StdQ[r(10)] = 0.01555 .

For illustration, one could suppose a much more high expectation of an interest rates
rise, setting γ = 0.055. Then one has:

α =
0.21923× 0.05068

0.055
= 0.20202 ,

π = 0.20202− 0.21923 = −0.017209 .
(79)

The natural and the risk-neutral probability density of r(10) corresponding to the param-
eter set (72) and (79), respectively, are illustrated in figure 9. The first two moments of
the new real world distribution are:

EN [r(10)] = 0.050270 , StdN [r(10)] = 0.016562 .

6.5.2 Closed form expressions for natural expectations

In the CIR model useful closed form expression for the natural expectation of futures
prices and rates can be derived. For example, denoting by v(T, T + τ) the price at time
t = T of the τ -year unit ZCB, one has, recalling expression (74):

EN [v(T, T + τ)] = A(τ)EN [e−r(T ) B(τ)] .
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Figure 8: Natural and risk-neutral density function for r(10) (Dec 31, 2004; γ = 0.025)

Figure 9: Natural and risk-neutral density function for r(10) (Dec 31, 2004; γ = 0.055)
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Denoting by:
mgfT (z) := EN [e−r(T ) z] .

the moment generating function at time t = 0 of the random variable r(T ), the expected
price is given by:

EN [v(T, T + τ)] = A(τ)mgfT [B(τ)] .

The explicit expression of the m.g.f. for the non-central chi-squared distribution can be
found in [7] (pp.251-252).

The expected future spot rates can be derived consequently; for example, the expected
1-year interest rate at time t = τ−1 (for τ = 2, 3, . . . ) is given by:

EN (jτ ) = EN

[
1

v(τ−1, τ)

]
− 1 = A(1)EN [er(τ) B(1)]− 1 = A(1)mgfτ [−B(1)]− 1 .

In figure 10 the term structure of the expected 1-year spot rates jτ on December 31,
2004 is illustrated, assuming γ = 0.025, thus using the natural parameters specified by
(78). The current term structures of spot and 1-year forward rates given in figure 6 is also
reported for a comparison. The differences πτ := iFτ −EN (jτ ) provide the term premiums
corresponding to the choice γ = 0.025.

The term structures corresponding to the assumption γ = 0.055, i.e. produces by
the natural parameters specified by (79), are reported in figure 11. If γ = 0.055 actually
express the expectation prevailing on the market on the valuation date, the term-premiums
are negative (which is consistent with the negative value of the parameter π).

The form of the entire yield curve at the future date T can be given by r(T, T + τ),
which denotes the yield fixed at time T for ZCB maturing in τ years fromT . Given the
linear relation (75) between yield-to-maturity and r the expectation of r(T, T + τ) has the
straightforward expression:

EN [r(T, T + τ)] = − log A(τ)
τ

+ EN [r(T )]
B(τ)

τ
. (80)

where the expectation EN [r(T )] is given by (59).
The expected yield curves for future dates from 1 year to 20 years corresponding

to the assumption γ = 0.025 are reported in figure 12. The current yield curve is also
reported with dotted line. The expected term structures display a slightly increasing
trend and approach asymptotically the boundary curve corresponding to the long term
expectations.

The expected yield curves reported in figure 13 refer to the assumption γ = 0.055.
This implies now a long term yield curve having a negative slope.

6.6 Measures of financial risk

Since the price V (t) is a function of the state variables r and S, it is natural to express
the risk inherent to these sources of uncertainty as a sensitivity measure. For the interest
rate risk it is usual to define:

Ωr(YT ) := − ∂V

V ∂r
; (81)
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Figure 10: Term structures of current and expected interest rates (Dec 31, 2004; γ = 0.025)

Figure 11: Term structures of current and expected interest rates (Dec 31, 2004; γ = 0.055)
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Figure 12: Yield curves for future dates as expected on December 31, 2004 (γ = 0.025)

Figure 13: Yield curves for future dates as expected on December 31, 2004 (γ = 0.055)
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for the particular case of the deterministic unit ZCB we define:

ωT := − ∂vT

vT ∂r
= B(T ) . (82)

The “stochastic duration” is defined as the maturity of the deterministic ZCB with
the same risk of YT ; hence is obtained by:

B−1
(
Ωr(YT )

)
, (83)

where B−1(·) denotes the inverse function of B(T ) (which is well defined, since B(T ) is a
continuous, monotonic increasing function).

Remark. Because of the mean reversion effect the function ωT is bounded; hence for high
values of Ωr, that is for contracts with strong interest rate risk, the stochastic duration
could also not exist. Of course this is not a problem for controlling interest rate risk
since one can directly use the sensitivity Ωr as a measure of risk. In typical life insurance
applications the stochastic duration usually is well defined and is typically shorter than
the maturity T of the policy.

Remark. Usually it turns out that the interest rate sensitivity (and the stochastic duration)
of a participating policy is considerably lower than the sensitivity of a corresponding non
participating policy. This self-immunization property is essentially similar to the analogous
property displayed by floating rate notes, having interest rate sensitivity similar to short
term bonds, despite their mid/long maturity (see [12], pp. 137-138). This is an important
result since it suggests that the traditional duration mismatching between assets and
liabilities in life insurance can be strongly reduced (in terms of sensitivity) for portfolios
of participating policies.

Values of the stochastic duration for an outstanding policy portfolio, as well as appli-
cations to asset-liability management are reported in [9], p. 86, pp. 90-91.

The sensitivity of price to stock market risk has a similar definition:

ΩS(YT ) :=
∂V

V ∂S
; (84)

the derivative with respect to S is well-known as the Delta of the contract:

Delta :=
∂V

∂S
. (85)

Of course, for YT = 1 one has ΩS = 0 since vT is independent of S.

6.6.1 Parallel shift duration

In the applications the price sensitivities are often computed referring to finite, instead of
infinitesimal changes of the state variables. As concerning the sensitivity with respect to
r it should be noted that in the CIR model – as well as in any mean reverting interest rate
model – a given shift ∆r of the instantaneous interest rate r produces a non-uniform shift
of the yield curve, since the long term interest rate is independent of r. This is consistent
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Figure 14: Yield curves with shifted values of r(0) in the CIR model

Figure 15: Uniformly shifted CIR yield curve
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with the shape of the volatility function στ : even though the volatility increases with the
maturity τ , there is an upper boundary that can not be reached, since the interest rate
for very long maturities tends to be deterministic. In figure 14 different yield-to-maturity
curves rτ obtained by shifted values of r(0) are illustrated.

In the current practice financial analysts usually measure price sensitivities referring
to (positive) parallel shifts of the yield curve. Even if these interest rate changes are
inconsistent with the mean reversion assumption, they can be “forced” by re-calibrating
the parameters of the model on a shifted version of the original term structure. If α̂, γ̂ and
ρ are the risk-neutral parameters calibrated on the current market data and if rτ are the
corresponding yield-to-maturities provided by the model, one can use the shifted yields
rτ +∆r as a new cross-section of virtual data and then derive the new set of parameters α̂+,
γ̂+ and ρ+. If V is the original price and if V + is the model price provided by this new set
of risk-neutral parameters (and by the shifted value r(0)+∆r of the instantaneous interest
rate), the ratio (V + − V )/(V ∆r) is the (numerical approximation of the) sensitivity of V
with respect to a parallel shift of the yield curve17.

Though this approach solves the problem, the calibration procedure of the model
on the shifted term structure could be somewhat expensive and could produce also an
uncontrolled shift of the term structure volatility (see section 6.7 on this point). By
considering the detailed expression of (74) it can be shown that a satisfactory set of
shifted parameters can be simply obtained by the following relations:

r(0)+ = r(0) + ∆r ,

α̂+ = α̂ ,

γ̂+ = γ̂ + ∆r
ρ2/α̂√

α̂2 + 2 ρ2 − α̂
,

ρ̂+ = ρ̂ .

(86)

These parameters provides an approximation of the exact term structure of shifted yield-
to-maturities rτ + ∆r. It can be shown however that the approximation error is typically
small (whit respect to parameter calibration errors). Moreover the transformation (86)
does not produce any change in the volatility parameter of the CIR model.

An example of a parallel shift of the CIR yield curve provided by the transformation
(86) with ∆r = 0.01 is given in figure 15. The corresponding parameters are:

r(0) = 0.02 , α̂ = 0.24485 , γ̂ = 0.062532 , ρ = 0.12 ;
r(0)+ = 0.03 , α̂+ = 0.24485 , γ̂ = 0.073617 , ρ = 0.12 .

6.7 Problems in parameter identification

The parameters α̂, γ̂ and ρ of the CIR component of the valuation model can be estimated
by calibration on the market of the interest rate sensitive securities. Data typically used
for the estimation are given by the current cross section of swap rates quoted on the
Euribor market. Since under the CIR model the swap rates can be expressed in closed
form using the explicit formula (74) for vτ , the calibration can be obtained by simple

17A more demanding procedure consists in considering both a positive shift ∆r+ = ∆r > 0 and a
negative shift ∆r− = −∆r, thus obtaining two shifted prices V + and V −. A more accurate approximation
of the sensitivity is then provided by the ratio (V + − V −)/(2V ∆r).
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nonlinear regression procedures, i.e. minimizing the sum of squared error Σ2 between the
model price and the observed prices.

It should be note however that under the CIR model it can happen that different
sets of parameters are found having very similar levels of Σ2 but different values for the
volatility parameter ρ. As an example, let us consider the following sets of estimated
risk-neutral parameters:

p1 : r(0) = 0.018142 , α̂ = 0.28072 , γ̂ = 0.057702 , ρ = 0.06000 ;
p2 : r(0) = 0.018213 , α̂ = 0.26634 , γ̂ = 0.059488 , ρ = 0.09000 .

As shown in figure 16, the yield curves corresponding to the two sets of parameters can
be considered equivalent for typical life insurance applications. However the volatility
structures illustrated in figure 17 are quite different.

While the use of these different parameter sets produces similar prices for linear prod-
ucts (that is for products which can be expressed as static portfolio of unit ZCBs), different
volatility curves can produce important discrepancies in the valuation of contracts with
non linear payoff, as the options embedded in life insurance liabilities.

This difficulty can be overcame extending the set of market data to include prices
of interest rate options in the estimation procedure. In the following examples we shall
use CIR parameters calibrated on both the swap rates and a set of quoted prices for
interest rate caps and floors, that can be easily done given that explicit formulae for
the price of these derivatives are available using the CIR model. The method usually
produces parameters estimates which explain fairly well the observed option prices while
maintaining a good fitting with the observed yield curve.

The remaining parameters σ and η have in some sense a more strategic nature and can
be exogenously specified. Usually we assume for σ the same value of the historical volatility
of the stock component of the reference fund; of course also implied volatilies could be
used. For the correlation coefficient η we adopt figures derived by classical econometric
studies on the Italian market (a slightly negative value is usually assumed); however for
typical values of the other parameters the value of η seems to have a weak influence on
the valuation of typical life insurance portfolios.

6.8 Numerical valuation procedure

Given the complexity of the profit-sharing rule, the valuation of profits V (0; eτ ) must
be usually derived by the valuation equation using numerical methods. A very flexible
method is given by computing the risk-neutral expectation EQ(ξτ eτ ) using Monte Carlo
simulations for the bivariate process {r(t), S(t)}. Properly incrementing the starting values
r(0) and S(0) of the Monte Carlo recursions we also obtain numerical derivatives of the
price, which provide the relevant financial risk measures.

6.9 Appendix: the Vasicek model

In the original version of the Vasicek model the instantaneous interest rate r(t) is a mean-
reverting diffusion process with constant diffusion function; the dynamics of r(t) is then
given by:

dr = α (γ − r) dt + ρ dZ . (87)
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Figure 16: Term structures of interest rates corresponding to two different sets of param-
eters

Figure 17: Term structures of volatilities corresponding to two different sets of parameters
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Under this assumption, at time t = 0 the random variable r(t) has a normal probability
distribution, with mean:

EN [r(t)] = γ + [r(0)− γ] e−α t ,

and standard deviation:

StdN [r(t)] =

√
ρ2

2α
(1− e−2 α t) .

For illustration, assume the following values for the parameter of this process:

r(0) = 0.04 , α = 0.1 , γ = 0.01 , ρ = 0.04 .

For t = 10 years one obtains:

EN [r(10)] = 0.01 + (0.04− 0.01) e−1 = 0.021 ,

and:

StdN [r(10)] =

√
0.042

0.4
(1− e−2) =

√
0.006917 = 0.0832 .

Denoting by ε a standard normal random variable, one has:

r(10) = StdN [r(10)] ε + EN [r(10)] = 0.0832 ε + 0.021 .

Then the probability of a negative value of r(10) is given by:

P[r(10) < 0] = P
(

ε < − 0.021
0.0832

)
= N(−0.2529) = 40% .

Also for the Vasicek model a closed form expression for the unit ZCB price vτ can
be derived if the form of the preference function hr(r, t) is specified. However the high
probability of a negative value of r(t) can produce an unsatisfactory behaviour of the term
structure model for long maturities. For example, for the previous values of the natural
parameters and posing hr(r, t) = 0, one obtains a decreasing yield curve assuming negative
values for maturities longer that 16 years. For τ = 16 one has:

v16 = 0.98738 , i16 = 0.079% ;

for τ = 17:
v17 = 1.02403 , i17 = −0.14% .
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Part III

Application to a simplified portfolio

The implications of the general valuation principles introduced in the Part II can be
illustrated referring to a simplified asset-liability portfolio.

7 Run-off analysis

7.1 The policy portfolio

We consider a policy portfolio composed of profit-sharing endowment contracts, both with
single premium and with constant annual premiums. Let us denote by n the term of the
policies at the issuance and by a the current time-from-issue; we assume that n and a
are measured in integer number of years. The policies can be classified in three “layers”
with different values of n and a. The policies of the first layer are the oldest; they have a
technical interest rate i = 4% and a participation coefficient β = 80%. The contracts of the
second layer have a technical rate i = 3% but a higher participation coefficient β = 85%.
Third layer’s policies are the most recent with i = 2.5% and β = 85%18. For the three
layers a minimum return h retained by the insurance company is assumed at the 1%
level19. The cash flow streams of expected premiums and benefits (net of readjustments)
are reported in figure 18. Premiums are expected to be paid for 16 years, while benefits
are due up to 28 years. In the same figure the value of the expected technical reserve Rt

(net of readjustments) is also illustrated; the initial value of the reserve is R0 = 1971.63.

18All the policies are assumed to be written on a life aged x = 40 years for an initial sum insured
C0 = 100. Each layer contains 1 single premium policy with n = 30 and annual premium policies with n
ranging from 10 to 30 years, with step 2 years. For each value of n, the time-from-issue in each layer is
chosen as follows:

first layer – single premium policy: a = 10; annual premium policies: a = 7, 8, 9;
second layer – single premium policy: a = 5; annual premium policies: a = 5, 6;
third layer – single premium policy: a = 2; annual premium policies: a = 3, 4.

Hence the policy portfolio is composed of 45 policies (19 in the first layer, 13 in the second and in the third
layer).

The mortality tables used for the first order valuation were the Italian 1981 tables (SIM81) for the first
layer and the 1992 tables (SIM92) for the second and third layer.

19For single premium policies the general form of the readjustment rate of the sum insured Cτ ,
that is the relative increment ρτ := Cτ/Cτ−1 − 1, is given by:

ρτ :=
max

�
min{β Iτ , Iτ− h} − i, δ

	

1 + i

where δ ≥ 0 is a minimum guaranteed spread over the technical rate i and h ≥ 0 is a minimum return
retained by the insurer. In both layers we set δ = 0 and h = 1%.

For policies with constant annual premium the readjustment rule has to be partially applied since only
the excess return on the investment of the saving premium can be credited to the insured. Usually the
approximated rule depending on then ratio τ/n is applied:

Cτ = Cτ−1 (1 + ρτ )− C0 (τ/n) ρτ .
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Figure 18: Expected cash flow stream of premiums and benefits and expected reserve

Figure 19: Cash flow stream generated by the asset portfolio
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7.2 The asset portfolio and the investment strategy

In order to illustrate how the cost of the embedded options depends on the investment
strategy of the reference fund we consider two different sets of assumptions on the current
asset allocation of the fund backing the policy portfolio and on the investment strategy
chosen by the fund manager.

7.2.1 Fixed rate bond portfolio

As a first example we assume that at time t = 0 the dedicated fund is totally composed
by fixed rate government bonds with time-to-maturity ranging from 2 years to 25 years.
The coupons of each bond are set equal to the current swap rate on the corresponding
time-to-maturity. We also assume for simplicity that the at time zero the statutory value
Ds

0 of the fund is equal to the market value D0; hence the initial UGL are zero20. In
figure 19 the cash flow stream of coupons and notional generated by the outstanding asset
portfolio is illustrated on an annual grid.

For this portfolio a conservative investment strategy is assumed. Benefits are paid
using earned premiums whenever it is possible. All bonds are held until maturity unless
they are sold to pay benefits or to realize profits. The profit at time τ is defined as the
difference, when positive, between the statutory value Ds

τ of the fund and the statutory
reserve Rτ . This profit is immediately earned by the insurer and is realized by selling at
the current market value the shortest maturity bonds held in the investment portfolio. All
reinvestments (of coupons, notional matured and premiums in excess) are made rolling-
over one-year ZCBs at market price. If Ds

τ < Rτ the fund is refinanced buying one-year
ZCBs at market price; the corresponding refinancing cost is computed as a negative profit.

Under this kind of frozen strategy, in the first years the fund return defined by the
usual accounting rules is essentially a weighted average of the nominal yields of the bonds
held in the portfolio. Hence by the par-yield assumption the fund return is an average
of the spot rates at time zero. When time passes the fixed rate component of the fund
decreases since the coupons and the notionals are reinvested in one-year ZCBs. Therefore
the fund return becomes progressively closer to the current one-year market return.

7.2.2 Short term ZCB portfolio

As an alternative example of asset management we considered a short term investment
strategy. Also in this case the benefits are paid with the earned premiums if possible.
As concerning the asset portfolio we set again D0 = Ds

0 = 1971.63 but we assumed now
that the segregated fund at time zero is totally invested in one-year ZCBs and that all
the reinvestments are made in bonds of this kind. The annual profits are immediately
realized by selling ZCBs at market value and the fund is refinanced – when required –
buying one-year ZCBs at market price, the corresponding cost providing a negative profit.

20Since the nominal yield of each bond is equal to the corresponding par-yield, all bonds quote at par
at time zero. Given that D0 = Ds

0 the value of the asset portfolio is equal to 1971.63, since Ds
0 = R0 by

definition.
The time-to-maturity considered were: 2, 3, 5, 6, 7, 8, 9, 10, 20, 25 years and the notionals were chosen

in order that the price of each bond as a per cent of the total portfolio value would be respectively:
5, 5, 10, 10, 10, 10, 10, 10, 10, 20.
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Under this short term roll-over strategy the fund returns are given by the one-year
return prevailing on the market in each year. In typical situations this short term interest
rate will be lower than the interest rates on longer maturities. Moreover, the forward
risk-neutral expectations of the future one-year spot rates used for deriving the intrinsic
value IV0 are given by the one-year forward rates at time t = 0. The crucial point is that
under this liquid strategy the fund manager cannot take advantage of the accounting rule
for reducing the volatility of the returns. In the first years the returns given by the short
term strategy will be quite different (more volatile and with a lower value, on the average)
from the corresponding returns provided by the frozen strategy on the fixed-rate portfolio.
Given that the “freezing” effect of the returns provided by the fixed-rate strategy decreases
whit time, the two strategies tend to be similar on the long run.

It should be pointed out that in efficient bond markets the short term strategy is
equivalent to a strategy based on a portfolio of variable rate government bonds. Hence
the liquid strategy can be also denoted as a “variable rate bond strategy”21.

7.3 Applying the valuation procedure

The analysis of the asset-liability portfolio under the two sets of investment assumptions
was performed using the single-factor Cox-Ingersoll-Ross model calibrated on market data
as of December 31, 2004. The risk neutral parameters are the same used in the examples
of Part II and specified in expression (72):

r(0) = 0.01934 , α̂ = 0.21923 , γ̂ = 0.05068 , ρ = 0.04918 .

They were estimated on a cross section of swap rates and interest rate caps/floors quoted
on the Euribor market at the valuation date. The form of the risk-neutral probability
distributions implied by these parameters is shown in figure 4. The resulting term structure
of spot interest rates an the implied term structure of one-year forward rates are reported
in table 4 and illustrated in figure 6. The corresponding volatility curve is shown in figure
7.

The investment strategy assumed for the dedicated fund was translated in algorithmic
form and then implemented in a Monte Carlo procedure. In the simulation 1000 sample
paths of instantaneous interest rate r(t) were generated under the risk-neutral measure,
the length of each paths being equal to the largest maturity of the cash flow present
in the portfolio (29 years). Market values and statutory values were computed at each
step and the rules governing the investment strategy were applied all along the paths.
The corresponding streams of profits/costs were discounted with the path-specific risk-
free discount factor and the market prices were derived by computing the average of the
present values over all the sample paths. In the valuation procedure the VBIF E0 and
the base value EB

0 of the VBIF were derived and the price P0 of the embedded put option
was obtained as the difference EB

0 − E0. As usual, the intrinsic value IV0 of the option
is defined discounting with the risk-free rates the future profits generated by the forward
risk-neutral market rates. Therefore IV0 was obtained by a single run of the Monte Carlo
procedure on the sample path corresponding to the current CIR forward rate curve.

21In actual markets a variable rate bond and the corresponding short term roll-over strategy could be
not perfect substitutes because of liquidity problems. In these cases a liquidity premium is often added to
the variable coupons in the form of a deterministic spread.
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In table 5 the results of the valuation under the fixed rate bond investment strategy are
reported. The analogous results assuming the short term roll-over strategy are reported
in table 6. The valuation has been performed also assuming a set of risk-neutral CIR
parameters implying a positive shift of the yield curve of 100 bps but preserving a similar
shape of the volatility curve (see section 6.6.1). The shifted values and the corresponding
percentage changes are reported in the last two columns of tables 5 and 6. In both cases
classical figures of Macaulay duration computed on the expected cash-flow streams of
assets and liabilities are added.

shifted ∆ (%)
Statutory reserve (R0) 1.971,63 1.971,63
Market value of assets (D0) 1.971,63 1.971,63
Statutory value of assets (Ds

0) 1.971,63 1.971,63
Initial UGL (D0 −Ds

0) 0,00 0,00
VBIF (E0) 115,29 130,42 13,12
VBIF/Reserve (%) 5,85 6,61
Stochastic reserve (V0 = R0 −E0) 1.856,34 1841,21 -0,82
Base value of profits (EB

0 ) 211,51 206,00 -2,61
Price of put option (P0 = EB

0 −E0) 96,23 75,58 -21,46
Put price/Reserve(%) 4,88 3,83
Non-participating value (EG

0 ) 166,28 203,08 22,13
Price of call option (C0 = EG

0 −E0) 50,99 72,67
Call price/Reserve (%) 2,59 3,69
Unadjusted CE (Ê0 = E0 + TV0) 122,18 135,84
Intrinsic value of the put (IV0) 89,34 70,17
Time value of the put (TV0) 6,89 5,42
Value of expected premiums 1.402,20 1.338,73 -4,53
Macaulay duration of expected premiums 4,66
Value of expected liabilities 3.207,65 2.946,31 -8,15
Macaulay duration of expected liabilities 8,57
Value of expected net liabilities 1.805,45 1.607,58 -10,96
Macaulay duration of expected net liabilities 11,61
Macaulay duration of assets 8,69

Table 5: Run-off valuation - Fixed rate bond investment strategy

The strong reduction in the price of the embedded option under the frozen strategy is
remarkable. While the base value is roughly independent of the investment strategy, the
put option is equal to 4.88% of the initial reserve R0 under the conservative strategy and
rises to 7.83% of R0 under the liquid strategy.

As expected, under the frozen strategy the stochastic reserve is roughly insensitive to
interest rate changes; it decreases of about 0.82% after the positive shift. The base value
displays a higher (negative) sensitivity (−2.61%) and the put price has a strong (negative)
sensitivity (−21.46%). This implies a positive sensitivity of the VBIF, which increases of
13.12%.
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shifted ∆ (%)
Statutory reserve (R0) 1.971,63 1.971,63
Market value of assets (D0) 1.971,63 1.971,63
Statutory value of assets (Ds

0) 1.971,63 1.971,63
Initial UGL (D0 −Ds

0) 0,00 0,00
VBIF (E0) 67,42 183,67 172,43
VBIF/Reserve (%) 3,42 9,32
Stochastic reserve (V0 = R0 −E0) 1.904,21 1.787,96 -6,15
Base value of profits (EB

0 ) 221,78 248,99 12,27
Price of put option (P0 = EB

0 −E0) 154,37 55,33 -64.16
Put price/Reserve(%) 7,83 3,31
Non-paricipatin value (EG

0 ) 165,21 203,08 22,92
Price of call option (C0 = EG

0 −E0) 97,79 179,09
Call price/Reserve (%) 4,96 9,08
Unadjusted CE (Ê0 = E0 + TV0) 101.07 208,45
Intrinsic value of the put (IV0) 120,72 201,13
Time value of the put (TV0) 33,65 24,78
Value of expected premiums 1.402,20 1.338,73 -4,53
Macaulay duration of expected premiums 4,66
Value of expected liabilities 3.207,65 2.946,31 -8,15
Macaulay duration of expected liabilities 8,57
Value of expected net liabilities 1.805,45 1.607,58 -10,96
Macaulay duration of expected net liabilities 11,61
Duration of assets 1,00

Table 6: Run-off valuation - Short term ZCB strategy

With the short term strategy the stochastic reserve is more interest rate sensitive,
displaying a percentage change of about −6.15%. Since this change of value is obtained
under a market-sensitive investment strategy, it could be interesting to make a compar-
ison with sensitivity measures derived as if the cash-flow streams of asset and liabilities
were deterministic. Under a deterministic valuation model the sensitivity of V0 should
be essentially similar to the Macaulay duration of the expected net liabilities, which is
equal to 11.61 years, or to their (negative) relative change 10.96%. The lower value of
the relative (negative) change of the stochastic reserve obtained by the stochastic model
(6.15% ) is a consequence of the indexation of benefits to the market interest rates via the
profit-sharing mechanism. The self-immunization effect on the liability stream provided
by this cash-flow sensitivity is properly captured in a stochastic framework.

8 Ongoing analysis

In general a conservative investment strategy is strongly conditioned by the structure of the
expected liabilities. In a run-off analysis of the in-force business the investment strategy
takes into account only the stream of premiums and benefits generated by the outstanding
policy portfolio. In a put-minimizing strategy the estimated cost of the embedded options
could be largely affected by this asset-liability structure.
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In typical situations however the run-off assumptions is not realistic since it is natural
to assume that the asset-liability portfolio will be continuously fed by contracts provided
by the new business. Thus in order to control the impact of the run-off assumption
on the cost of minimum guarantees we also performed an ongoing analysis under some
stylised assumptions on the new business. We considered future years τ until the largest
maturity of the in-force policy (28 years) and we assumed that in each year new policies
will be written by the insurer for a statutory reserve equal to 3% of the current statutory
reserve R0. For simplicity we considered only a single-premium profit-sharing endowment
policies with term 10 years and participation coefficient β = 85%. The technical interest
rate – which also provided the minimum guaranteed return – was generated within the
stochastic procedure. In each year of each sample path the 5-year swap rate was derived
by the current simulated term structure and the technical rate i of the new policy was
chosen as the 75% of this market rate. Projected mortality tables were used for computing
actuarial expectations.

As concerning the investment of future premiums two different simplified assumptions
were made. The purchase of a 10-year par-yield coupon bond or the investment in a 1-year
roll-over strategy were considered.

The ongoing analysis of the business in-force at time t = 0 was made considering
the outstanding asset-liability portfolio “as-if” it was a component of the larger portfolio
including the new business. For the composition of the asset portfolio outstanding at
time zero the fixed rate bond assumption was maintained, as-well-as the corresponding
conservative strategy. The two different hypotheses on the reinvestment of premiums were
considered separately, assuming again a holding strategy (and the corresponding effects of
the accounting rules) for the 10-year bonds purchased.

The valuation of the in-force component was made by difference. In a first run the
global asset-liability portfolio (in-force and new business) was analysed; in a second step
only the new business portfolio was considered. The “as if” values of the in-force business
were derived as the difference of the results from the first and the second step.

The results of the valuation are reported in table 7. The put options embedded in the
in-force business evaluated in the ongoing portfolio are slightly higher than in the run-off
case. If reinvestment are made in fixed rate bonds the put price rises from 4.88% to 5.37%
of the initial statutory reserve of the in-force portfolio. Reinvestments in short term bonds
produce an higher value of the put option which equals 5.94% of R0.

Reinv.: 10 years Reinv.: 1 year
Statutory reserve (R0 = Ds

0 = D0) 1.971,63 1.971,63
Price of put option (P0 = EB

0 −E0) 105,89 117,10
Put price/Reserve(%) 5,37 5,94
Price of call option (C0 = EG

0 −E0) 74,72 84,29
Call price/Reserve (%) 3,79 4,28

Table 7: Ongoing valuation - Fixed rate bond investment strategy
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8.1 Expected returns

It could be interesting to analyse also the expected sample path of the fund returns Iτ

under real world probabilities. In order to specify natural probabilities some exogenous
information must be added to the risk-neutral parameters of the model estimated on
the market. As illustrated in Part II, in the CIR model a simple and intuitive way for
including a subjective view in the risk-neutral setting is to specify the level of the long-run
instantaneous interest rate γ. With this information the mean reversion coefficient α and
the term-premium coefficient π are immediately derived and the valuation model is then
completely specified under the natural probability measure.

As an example, we considered again the valuation date December 31, 2004 and we
assumed the value γ = 0.025, just considered in Part II. The implications of this choice
can be illustrated computing the expectation at time zero EN

0 (jτ ) of the future 1-year
spot rates jτ . The graph of these expected rates was given in figure 10, where the curves
of the current spot rates and of the current 1-year forward rates are also reported. If
one assumes that the choice γ = 0.025 actually captures the expectations prevailing on
the market at time t = 0, the difference iFτ − EN

0 (jτ ) between the forward rates and
the corresponding expected short rates provides the corresponding term structure of the
market term premiums.

Since all the parameters of the pricing model have bee specified, one can derive the real
world probability distribution of the future values of fund return by running the Monte
Carlo valuation procedure under the natural probability measure. For consistency, the
sample paths of the interest rate r(t) are generated using only the dynamical parameters
α, γ, ρ but the market prices along each path have to be computed under the risk-neutral
measure, that using the risk-neutral parameters (thus including the information on π).
In figure 20 the expected paths of the fund return Iτ is reported for both the run-off
and the ongoing assumption, under the conservative investment strategy. The paths are
plotted for 25 years. The solid line represents the expected fund returns for the run-off
case. The expected fund returns provided by the ongoing analysis are also illustrated,
assuming reinvestment of premiums in 10-year bonds (dashed line) and in 1-year ZCBs
(dotted line). The empirical volatility of the fund returns can be measured by the sample
standard deviation. In figure 21 the on the run-off are compared with the corresponding
expected values plus and minus one standard deviation.

9 Valuation under undedicated strategies

The investment strategy in one-year ZCBs provides just an example of “undedicated strat-
egy”, that is of an investment strategy independent of the expected liability stream. If
one is interested in the ongoing analysis it is reasonable to consider the composition of the
outstanding asset portfolio not so important in order to determine the investment strat-
egy, since the future asset allocation will be strongly depending on the assumptions made
on the future composition of the policy portfolio. On the other hand the assumptions on
the newly written policies, as well as on the corresponding investments, are necessarily of
a generic and stylised nature, also considering the long time-horizon of the life insurance
business. By these arguments it is interesting to derive a valuation of the embedded op-
tions assuming undedicated investment strategies of more general type than the short term
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Figure 20: Expected paths of fund returns under run-off and ongoing assumptions

Figure 21: Confidence intervals of the expected fund returns (run-off assumption)

62



strategy just considered. This approach can also provide a fair profit test methodology for
new life insurance products. A detailed illustration of this subject can be found in [11],
where a rather general class of undedicated investment strategies is considered.
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Part IV

IV-TV decomposition of put options

10 European options on stock

At time t let us consider a European put option with exercise time T and strike price K
written on a non-dividend-paying stock with price St. The terminal payoff of the option
is given by:

PT := max{K − ST , 0} .

In an arbitrage model with no interest rate risk the put price at time t = 0 can be
given by the general expression:

P0 = e−r T EQ
(
max{K − ST , 0}) , (88)

where r is the market risk-free rate of return and EQ is the conditional expectation under
the risk-neutral probability measure Q; in the Black-Scholes model the Q measure is given
by a lognormal probability distribution with instantaneous parameters r e σS .

Since S is independent of r (which is deterministic) the risk-neutral measure Q is also
the forward risk-neutral measure.

In the Black-Scholes model the explicit expression of P0 is:

P0 = K e−r T N(−d2)− S0 N(−d1) ,

where:

d1 :=
log(S0/K) + (r + σ2/2) T

σ
√

T
, d2 := d1 − σ

√
T .

Let us define the intrinsic value of the option as the value obtained interchanging the
expectation operator with the “max” function; that is:

IV0 := e−r T max{K −EQ(ST ), 0} . (89)

Since:
EQ(ST ) = S0 er T ,

one obtains:

IV0 = e−r T max{K − S0 er T , 0} = max{K e−r T − S0, 0} .

Remark. This expression is slightly different from the intrinsic value usually defined in
option pricing, where:

IV0 := max{K − S0, 0} .

We adopt here expression (89) which seems more in line with CFO Forum definition.

By the concavity of the function m(S) := max{K−S, 0} the Jensen inequality holds:

m
[
EQ(S)

] ≤ EQ
[
m(S)

]
;
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by (88) and (89) one then obtains:

0 ≤ IV0 ≤ P0 .

The time value of the put at time t = 0 can be defined as the residual component
TV(0) of the option; i.e.:

TV0 := P0 − IV0 .

Obviously one has 0 ≤ TV0 ≤ P0.
In figures 22 and 24 are illustrated the prices of the put and the corresponding intrinsic

values as a function of the strike price K for different values of the maturity T (figure 22)
and of the volatility σ of the underlying (figure 24). It is useful to express the intrinsic
value as a percentage of the put price. The values IV0/P0 corresponding to the figures
22 and 24 are reported in figures 23 and 25. The intrinsic value is zero for values of K
less than or equal to the forward price S0 erT ; for greater values of the strike IV0/P0 is a
monotonically increasing concave function of K and asymptotically approaches the 100%
value for K increasing. For K given the intrinsic value is a decreasing function (the time
value is an increasing function) of both the option maturity and of the volatility of the
underlying.

11 Cliquet options on stocks

11.1 Investment with annual guarantees and maturity guarantees

At time t = 0 let us consider a specified portfolio of non-dividend-paying stocks with price
St and the investment of a unit amount into a contract maturing after an integer number
T of years and providing the terminal payoff:

YT :=
T∏

τ=1

max
{

Sτ

Sτ−1
, e r

}
, (90)

where r is a minimum guaranteed yield. Clearly this contract provides minimum annual
guarantees, in so far as it provides the minimum return r in each year of the investment
horizon. Since any fund return in excess of r is “locked-in” in each year this is often
referred to as a contract with “cliquet” type (or “ratchet” type) guarantees.

Let us consider an analogous investment contract with terminal payoff:

Y ′
τ := max

{
T∏

τ=1

Sτ

Sτ−1
,

T∏

T=1

e r

}
= max

{
ST

S0
, e r T

}
. (91)

This is usually said a contract with maturity guarantee, since it provides the annual
minimum return r only at maturity.

Since the following inequality holds:

T∏

n=1

max {xn, yn} ≥ max

{
T∏

n=1

xn ,
T∏

n=1

yn

}
,
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Figure 22: European put prices and corresponding intrinsic values

Figure 23: IV/P ratios for different maturities
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Figure 24: European put prices and corresponding intrinsic values

Figure 25: IV/P ratios for different volatilities
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one immediately obtains:
YT ≥ Y ′

T .

Thus the payoff provided by the contract with annual guarantees is not lower than the
payoff given by the contract with maturity guarantee. Of course for T = 1 the two
contracts are identical, but for T > 1 the strict inequality usually holds. In practical
applications the difference between the two payoffs can be very relevant.

11.2 Put decomposition

We can define the “base component” of the contract as the contract obtained by excluding
the guarantees, which can be simply done letting r → −∞, that is posing e r = 0 in (90).
Given that the stocks are limited liability, St cannot be negative and the payoff of the
base contract reduces to:

BT :=
T∏

τ=1

Sτ

Sτ−1
=

ST

S0
.

It is worth to observe that this payoff is the same that would be provided by the base
component defined for the corresponding contract with maturity guarantee (91).

The “put component” is defined as the contact providing the payoff:

PT := YT −BT ;

since BT ≤ YT the payoff PT is non-negative. Of course this is a cliquet type option which
reduces to a usual European put option only for T = 1. For maturity greater than one
year this option is path dependent and for typical values of the parameters is usually is
much more costly of the corresponding European option.

11.3 Valuation with no interest rate uncertainty

In a model with no interest rate uncertainty the price at time t = 0 of the “put” can be
represented as:

P0 = Y0 −B0 = e−r T EQ
0

(
YT

)− e−r T EQ
0

(
BT

)
, (92)

where, as usual, r is the risk-free rate and Q is the risk-neutral measure. Also in this case
Q is also the forward risk-neutral measure.

Since S does not pay dividends, one has:

EQ
(
ST

)
= S0 er T ;

hence:
B(0) = 1 . (93)

11.4 Valuation with the Black-Scholes model

In the Black-Scholes model a nice closed form expression for the price Y0 can be derived.
It can be easily shown (see section 11.5.1) that by the properties of the conditional expec-
tations and of the geometric Brownian motion the price of the contract is given by:

Y0 =
[
N

(
d(1)

1

)
+ e−(r− r) N

(−d(1)

2

)]T
, (94)
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where:

d(1)

1 =
r − r + σ2/2

σ
, d(1)

2 = d(1)

1 − σ .

Then from (92) and (93) one obtains:

P0 =
[
N

(
d(1)

1

)
+ e−(r− r) N

(−d(1)

2

)]T
− 1 . (95)

Also in this case we define the intrinsic value of the put by interchanging the expec-
tation with the “max” function, then posing:

IV0 := e−rT
T∏

τ=1

max
{
EQ

0

(
Sτ

Sτ−1

)
, e r

}
− 1 .

By the independence of the ratios Sτ/Sτ−1 one has EQ
0 [Sτ/Sτ−1] = er. Therefore one

obtains the expression:

IV0 = e−rT
T∏

τ=1

max {er, e r} − 1 = e−rT
(
max {er, e r} )T − 1 ;

that is:

IV0 = max
{

1, e( r−r) T
}
− 1 . (96)

Also in this case one has the inequalities:

0 ≤ IV0 ≤ P0 .

Consequently one can define the time value as:

TV0 := P0 − IV0 ,

which implies also the inequalities 0 ≤ TV0 ≤ P0.
In figures 26 and 28 the cliquet put prices and the corresponding intrinsic values are

illustrated as a function of the minimum guaranteed return r. The graph of the functions
is plotted for different values of T (figure 26) and σ (figure 28). In the figures 27 and
29 the corresponding graphs of IV0/P0 are plotted. Obviously IV0/P0 is zero for values
of r lower that the market return r; for greater values of the guaranteed yield the per
cent intrinsic value is a monotonically increasing concave function of r and approaches
asymptotically the 100% level when r increases. For the same value of the minimum
guaranteed rate the intrinsic value is a decreasing function (the time value is an increasing
function) of both the maturity of the option and of the volatility of S. However compared
to an analogous contract with maturity guarantee, the intrinsic value of the contract
with annual guarantees displays a lower sensitivity to the maturity T and an increased
sensitivity to the volatility.
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11.4.1 Valuation with no-flat yield curve

Without relaxing the assumption of deterministic interest rates, let us now slightly extend
the flat yield curve hypothesis by assuming a different interest rate rτ for each maturity
t = τ . The sequence {r1, r2, . . . , rT } provides the term structure of interest rates prevailing
on the market at time zero. The interest rate rτ represents the (continuously compounded,
annual) spot rate on the time interval [0, τ ]. It is convenient to refer to the one-year
(continuously compounded) forward rates, defined by:

rF
τ := rτ − rτ−1 , τ = 2, 3, . . . , T ,

and rF
1 := r1. The term structure of spot rates rτ or, equivalently the term structure

of the forward rates rF
τ can be easily estimated on market data, e.g. on the swap rates

quoted on the Euribor market.
With these notations the discount factor on the time interval [0, τ ] is given by:

e−rτ T =
T∏

τ=1

erF
τ ,

and the general representation property of the price provides now:

Y0 = V (0;YT ) =
T∏

τ=1

e−rF
τ EQ

0

(
YT

)
. (97)

It can be shown (see section 11.5.2) that expression (94) has now the more general form:

Y0 =
T∏

τ=1

[
N

(
d(τ)

1

)
+ e−(rF

τ − r) N
(−d(τ)

2

)]
,

where:

d(τ)

1 =
rF
τ − r + σ2/2

σ
, d(τ)

2 = d(τ)

1 − σ .

Therefore the price of the put is:

P0 =
T∏

τ=1

[
N

(
d(τ)

1

)
+ e−(rF

τ − r) N
(−d(τ)

2

)]− 1 , (98)

For the intrinsic value one obtains:

IV0 :=
T∏

τ=1

e−rF
τ

T∏

τ=1

max
{
EQ

0

(
Sτ

Sτ−1

)
, e r

}
− 1 .

The ratios Sτ/Sτ−1 are independent random variables, with risk-neutral mean EQ
0 [Sτ/Sτ−1] =

erF
τ . Therefore one has:

IV0 =
T∏

τ=1

e−rF
τ

T∏

τ=1

max
{

erF
τ , e r

}
− 1 =

T∏

τ=1

e−rF
τ max

{
erF

τ , e r
}
− 1 ;

that is:

IV0 =
T∏

τ=1

max
{

1, e( r−rF
τ )

}
− 1 . (99)
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11.5 Appendix: derivation of pricing formulas for cliquet options

11.5.1 Flat yield curve

We slightly extend our notation denoting by EQ
t (YT ) the risk-neutral expectation at time

t (i.e. conditional to the information set at time t) of the random amount YT due at time
T ≥ t.

In the BS model the price at time t = 0 of YT is expressed by:

Y0 = V (0;YT ) = e−r T EQ
0

(
YT

)
, (100)

where Q is a lognormal probability measure with instantaneous parameters r and σ.
Referring to the payoff YT expressed by (90), by the properties of conditional expectations
one has:

Y0 = e−r T EQ
0

[
T∏

τ=1

max
{

Sτ

Sτ−1
, e r

}]

= e−r T EQ
0

[
T−1∏

τ=1

max
{

Sτ

Sτ−1
, e r

}
EQ

T−1

(
max

{
ST

ST−1
, e r

})]
.

By the no-arbitrage representation property at time T−1 one has:

e−r EQ
T−1

[
max

{
ST

ST−1
, e r

}]
= V

(
T−1;max

{
ST

ST−1
, e r

})
, (101)

This price can be written as:

V

(
T−1;max

{
ST

ST−1
, e r

})
=

1
ST−1

V
(
T−1;max

{
ST , KT−1

})
,

where KT−1 := ST−1 e r is known at time T−1. By the BS formula one gets:

V
(
T−1;max

{
ST , KT−1

})
= ST−1 N(d(1)

1 ) + e−r KT−1 N(d(1)

2 )

= ST−1

[
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hence by (101):
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After T iterations one finally obtains:

Y0 =
[
N

(
d(1)

1

)
+ e−(r− r) N

(−d(1)

2

)]T
.

11.5.2 General yield curve
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τ=1

e−rF
τ EQ

0

(
YT

)
. (102)

Referring to the payoff YT expressed by (90), by the properties of conditional expectations
one has:
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By the no-arbitrage representation property at time T−1 one has:
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This price can be written as:
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As a second step one has:
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12 Options embedded in profit-sharing policies

The valuation of the put options embedded in the typical profit-sharing life insurance poli-
cies involves more difficult problems given the complex characterization of the underlying.
Moreover using any standard term structure model the form of the intrinsic value as a
function of the minimum guaranteed rate usually is complicated by the slope of the yield
curves.

To illustrate these points let us consider at time t = 0 an elementary policy portfolio
containing a single premium endowment contract with term 30 years, just written on a
life aged 40 years. The participation coefficient is β = 80% and the minimum guaranteed
return is set equal to the technical rate i. The initial sum assured is fixed in order to have
a statutory reserve R0 = 100 using standard 1992 Italian mortality tables (SIM92).

The price and the intrinsic value of the put option embedded in this simple policy
were derived under two alternative sets of assumptions concerning the composition of the
outstanding asset portfolio and the corresponding investment strategy.

The VBIF E0 at time t = 0 for the asset-liability portfolio was obtained using a
single-factor Cox-Ingersoll-Ross (CIR) model. The investment strategy assumed for the
dedicated fund (the “segregated fund”) was translated in algorithmic form and then im-
plemented in a Monte Carlo procedure simulated under the risk-neutral measure. The
valuation date was December 31, 2003, hence the risk-neutral parameters of the CIR
model were specified by a calibration on market prices observed at that date. The cross
section of market data was given by swap rates and interest rate caps/floors quoted on
the Euribor market. In figure 6 the resulting term structure of spot interest rate an the
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Figure 26: Cliquet put prices and corresponding intrinsic values

Figure 27: IV/P ratios for different values of T
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Figure 28: Cliquet put prices and corresponding intrinsic values

Figure 29: IV/P ratios for different values of σ
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implied term structure of one-year forward rates is illustrated. In figure 7 the estimated
volatility curve for unit ZCBs of different maturities is also given.

In the pricing procedure the base value EB
0 of the VBIF was also derived and the price

P0 of the embedded put option was obtained as the difference EB
0 − E0. As usual, the

intrinsic value IV0 of the option is defined discounting with the risk-free rates the future
profits generated by the forward risk-neutral market rates. Therefore IV0 was obtained
by a single run of the Monte Carlo procedure on the sample path corresponding to the
current CIR forward rate curve.

The valuation of the asset-liability portfolio was performed for different levels of the
technical interest rate. The assumptions concerning the asset portfolio and the investment
strategy are specified as follows.

13 Fixed rate bond portfolio

Fixed rate bond portfolio

As a first example we assume that at time t = 0 the dedicated fund is totally composed by
fixed rate government bonds with different time-to-maturity ranging from 2 years to 25
years. The coupons of each bond are set equal to the current swap rate on the correspond-
ing time-to-maturity. We also assume for simplicity that the at time zero the statutory
value Ds

0 of the fund is equal to the market value D0; hence the initial UGL are zero22. All
bonds are held until maturity unless they are sold to pay benefits or to realize profits. The
profit at time τ is defined as the difference, when positive, between the statutory value
Ds

τ of the fund and the statutory reserve Rτ . These profit is immediately earned by the
insurer and is realized by selling at the current market value the shortest maturity bonds
held in the investment portfolio. Reinvestments are made rolling-over one-year ZCBs at
market price. If Ds

τ < Rτ the fund is refinanced buying one-year ZCBs at market price;
the corresponding refinancing cost is computed as a negative profit.

Under this kind of frozen strategy in the first years the fund return defined by usual
accounting rules is essentially a weighted average of the nominal yields of the bonds held
in the portfolio, hence by the par-yield assumption it is an average of the spot rates at
time zero. When time passes the fixed rate component of the fund decreases since the
coupons and the face amounts are reinvested in one-year ZCBs. Therefore the fund return
becomes progressively closer to the current one-year market return.

14 Short term ZCB portfolio

The description of the alternative assumptions on the asset portfolio is straightforward.
It is assumed that the segregated fund at time zero is totally invested in one-year ZCBs
and that all the reinvestments are made in bonds of this kind. Also in this case we assume
that Ds

0 = D0. The annual profits are immediately realized by selling ZCBs at market

22Since the nominal yield of each bond is equal to the corresponding par-yield, all bonds quote at par.
Given that D0 = Ds

0 = R0 the value of the asset portfolio is 100.
The maturities considered were: 2, 3, 5, 6, 7, 8, 9, 10, 25 years and the face values were chosen in order

to have the corresponding prices (which also express the portfolio weights as a per cent of the total portfolio
value) as follows: 5, 5, 10, 10, 10, 10, 10, 20, 20.
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value and the fund is refinanced – when required – buying one-year ZCBs at market price,
the corresponding cost providing a negative profit.

Under this short term roll-over strategy the fund return are given by the one-year
return prevailing on the market in each year. In typical situations this short term interest
rate will be lower than the interest rates on longer maturities (and this is certainty the case
at the valuation date December 31, 2004). Moreover, the forward risk-neutral expectation
of the future one-year rates used for deriving the intrinsic value IV0 are given by the one-
year forward rates at time t = 0 illustrated in figure 6. The crucial point is that under
this strategy the fund manager cannot take advantage of the accounting rule for reducing
the volatility of the returns. In the first years the returns given by the short-term strategy
will be quite different (more volatile and lower, on the average) from the corresponding
returns of the fixed-rate portfolio. Given that the “freezing” effect of the returns provided
by the fixed-rate strategy decreases whit the life of the policy, the two strategy tend to be
similar on the long run.

The put prices provided by the valuation model under the two strategies for some
relevant values of the minimum guaranteed return are compared in table 8.

The values of P0 and IV0 as functions of the minimum guaranteed rate i are illustrated
in figure 30 and 31 for the fixed rate bond strategy (FRB) and for the short-term strategy
(1YZCB), respectively. As in the examples of previous sections both P0 and IV0 are
increasing and concave functions of the strike value i under the two strategies. However
the usual concavity property of the percentage value IV0/P0 does not hold in this case23.
This is shown in figure 32 where the ratios IV0/P0 are illustrated, with solid line for the
FRB strategy and with dotted line for the 1YZCB strategy. An accurate analysis suggests
that the shape of these graphs can be largely explained by considering the slope and the
concavity of the yield curve. As concerning the FRB strategy, for example, the IV is
zero for values of i lower than 2.9% which is approximately equal to the average coupon
yield of the bonds held in the portfolio at time zero. After this level the ratio IV0/P0 is
monotonically increasing, displaying hover a change of convexity for values of i around
4%. This effect should be a consequence of shape of forward rate curve (see figure 6) which
for maturities greater than 15 years become nearly flat at the level of about 5% , which is
equal to 4%/β.

The shape of the forward curve is even more important for the 1YZCB strategy. In
this case, since the forward risk-neutral expectation of the fund returns are given by the
one-year forward rates, it results that the IV is positive starting from the level i = 1.9
which is approximately equal to the 80% of the first forward rate. At these levels of i
the put option still has a very low price, hence the ratio IV0/P0 rises very suddenly at a
level of about 40%. The put price and the intrinsic value increase roughly proportionally
for middle levels of i (say between 2.2% and 3.5%); this corresponds to values of IV0/P0

fluctuating around a nearly flat level. For values of the technical rate greater than 3.5%
the ratio IV0/P0 begin to increase again and approximates the graph relative to the FRB
strategy.

23Further analyses at different valuation dates suggest that also the monotonicity property of IV0/P0

under the 1YZCB strategy could go lost.
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Figure 30: Put price and IV with fixed rate bond portfolio

Figure 31: Put price and IV with short term ZCB portfolio
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i P0 P0

(FRB) (1YZCB)

1.5 0.0004 0.0152
2.0 0.0225 0.3644
2.3 0.1011 1.0202
2.5 0.2216 1.6590
2.8 0.6316 3.0079
3.0 1.5543 4.2044
3.3 4.0060 6.5114
3.5 6.0963 8.4127
3.8 10.0270 12.0157
4.0 13.1182 14.8732
4.5 22.2255 23.4345

Table 8: Put prices for alternative investment strategies

Figure 32: IV/P ratios for alternative investment strategies
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Part V

Reporting on the application to the RAS
Group portfolios

15 General description

The valuation has been performed on December 31, 2004 on the in-force portfolios of
profit-sharing life insurance policies of all the Italian companies of the RAS Group. Data
at a single-contract level have been used. The technical details of the individual policies
in the liability portfolios were considered; the single positions in the asset portfolios were
analysed. All that data were provided directly by RAS.

The value of business in force (VBIF), the value of the minimum guarantee options
(the put component of VBIF), the expected return of the segregated funds, the time value
of the puts and other quantities useful for controlling values and risks of the asset-liability
portfolios have been computed.

The analysis has been performed according to the best practice of the financial and
actuarial valuation. A stochastic pricing model based on the no-arbitrage principle has
been used. The model was calibrated on market data, in order to capture the current
interest rate levels, the interest rate volatilities, the stock price volatilities and correlations.
The parameter model estimates used in the valuation procedure have been provided by
Alef.

In the valuation procedures closed form pricing expressions as well as Monte Carlo
simulations have been used. The accounting rules defining the segregated fund returns have
been taken into account. Financial uncertainty has been analysed by modelling interest
rate risk for each relevant currency, stock price risk, credit risk. Technical uncertainty
has been measured taking into account mortality/longevity risk, surrender risk, expenses
inflation risk.

The results have been harmonized with the traditional actuarial valuation creating
a logical connection between the single scenario approach and the stochastic valuation
model, specified under both the risk-neutral and the real world probabilities. Financial
and technical risks, as well as the cost of the embedded options, have been measured in
terms of value (risk premiums and/or additional costs) and in terms of risk discount spread
(discount rate margins).

16 Relevant details

16.1 Relevant contractual details of policies

The contractual details of the outstanding policies have been accurately analysed. The
valuation has been performed considering the individual positions; no approximation by
model points has been made. The specific profit-sharing mechanisms have been exactly
modelled. For each contract the ratio between the time-to-maturity and the maturity-at-
issue, which determines the degree of readjustment of the assured benefits has been taken
into account. Portfolios denominated in euros, US dollars, Japanese yen and Swiss francs
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have been analysed.

16.2 Basic structure of the valuation model

The valuation is based on a two-factor diffusion model obtained by combining a one-factor
Cox-Ingersoll-Ross (CIR) model for interest rate risk and the Black-Scholes (BS) model
for stock market risk; the two sources of uncertainty are correlated. The CIR model
has been chosen to avoid the inconsistency of negative interest rates affecting some other
popular models (like the Vasicek model or the Heath-Jarrow-Morton model with constant
volatility) when long maturities are involved. Corporate bonds have been treated using
an extended version of the CIR model calibrated on the observed credit spreads. A set of
different parameters has bee used for each currency.

16.3 Specification of the valuation model

For each currency the parameters concerning the interest rate risk model have been esti-
mated on the swap rates and on a set of quoted prices of interest rate caps and floors. For
example for what concerns the euro the interest rate swaps for maturity up to 30 years
and the interest rate caps/floors quoted on the Euribor market have been used.

16.4 Defining the investment strategy

The cost of the embedded options and the expected fund returns are strongly dependent
on the choice of the investment strategy of the segregated funds. The details of this
strategy, which also includes the effects of the accounting rules defining the fund return,
were defined by RAS and have been implemented in algorithmic form. The chosen strategy
was rather conservative in nature, trying to classify as long as possible as held-to-maturity
the high-coupon bonds contained in the asset portfolios. For the policies denominated in
euros and US dollars, given the composition of the outstanding investment portfolios this
strategy has implied a relevant reduction of the cost of the embedded options.

16.5 The computing procedure

The investment strategy has been implemented into a Monte Carlo simulation procedure.
In each iteration a sample path of market returns is simulated having time length equal
to the maximum maturity of the cash flows generated by the outstanding asset-liability
portfolio. A sequence of annual profits/losses is generated implementing the investment
strategy for each sample path; the cash flows are then discounted by the path-specific
discount factor. The value of the cash flow stream (the VBIF) is obtained by taking the
average of the present values over a large number of simulations.

The sample paths of market returns are generated by the two-factor (CIR-BS) stochas-
tic model using the corresponding risk-neutral probability distribution. The parameters
of this distribution are specified by the calibration procedure on the market data. Since
the cash flows generated under the risk-neutral probability are by definition properly risk-
adjusted they have been discounted using the riskless discount rate, that is by the discount
factor appropriate for deterministic cash flows.

The cost of the minimum guarantees (that is the price of the put options embedded
in the outstanding portfolio) has been derived “by difference”. A virtual policy portfolio
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mimicking the actual portfolio but with no minimum guarantees has been defined; then
the value of the put options has been obtained as the difference between the VBIF of the
virtual portfolio (the “base value”) and the VBIF of the actual portfolio.

16.6 Details on the Monte Carlo simulations

The number of iterations required in order to obtain sufficiently low estimation errors is
strongly dependent on the volatility of the stochastic processes that model the underlying
of the policies. The returns of typical segregated funds display low variability, since the
equity component, which gives the larger contribution to the volatility, has usually little
importance with respect to the bond component. Moreover the accounting rules could
allow the fund manager to reduce further the return volatility if conservative investment
strategies (frozen strategies) are permitted. Empirical evidence suggests that 1000 itera-
tions are usually sufficient to obtain a good accuracy in VBIF estimation in typical life
insurance applications. In some cases 5000 sample paths have been generated in order to
control the stability of the simulation results.

As concerning the time length of the sample paths the most relevant component of
the VBIF is usually given by the profits generated up to 20-30 years. However, in order
to get an accurate valuation also for longer maturity contracts the sample paths have
been generated until the contractual term of the outstanding policies. For example for the
fund Vitariv of RAS 105-years sample paths were generated, since a package of whole-life
policies was in force in the liability portfolio.

16.7 Intrinsic value of embedded options

The “intrinsic value” of the embedded options has been defined and computed by discount-
ing at the riskless rate the option payoff corresponding to the expected fund returns taken
under the forward risk-neutral probabilities. This mimics the traditional single-scenario
approach in the risk-neutral probability framework. Consequently the “time value” is
defined as the difference between the option price and the intrinsic value.

16.8 Different levels of VBIF

Three levels of VBIF useful for a comparison with the traditional deterministic approach
have been considered:
i) value of profits adjusted for financial risks and allowing for the intrinsic value of the
embedded options (VFR);
ii) value adjusted for financial risks and allowing for the total cost of the options, i.e.
including also the time value of the options (VTV);
iii) value adjusted for financial risks, for the cost of the options and for technical risks
(VTR), typically mortality/longevity risk, surrender risk and expenses inflation risk.

Each of these three levels of VBIF has been derived as Certainty Equivalent provided
by the stochastic approach.

16.9 Risk capital and cost of capital

Since a risk-adjusted probability for technical risks cannot be directly estimated on the
market, the risk premiums required for deriving the third level of VBIF (the VTR) must be
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specified using an alternative approach. Since 2001 the RAS Group has been measuring
risk based capitals for all the risk drivers of the insurance business. The risk capital
valuation model is consistent with the stochastic model used for the embedded value;
hence the risk capital figures computed by RAS for technical risks have been adopted
and the corresponding costs of capital have been assumed as a proxy of the technical risk
premiums.

The technical risk capital considered refer to lapses/surrender, mortality and busi-
ness risk and were computed at company level and at a 99, 93% confidence level. This
information has been used in the risk margin derivation without taking any credit for
diversification. The cost of capital has been derived using a 400 bps spread between the
shareholders return and the investment return.

16.10 Derivation of discount rate margins

By comparing the Certainty Equivalent with the traditional deterministic approach three
kinds of discount rate margins corresponding to the three levels of VBIF have ben derived:
i) margin for financial risk and for the intrinsic value of the embedded put options(MFR);
ii) margin for the time value of the embedded put options (MTV);
iii) margin for technical risks (MTR).

To obtain the MFR, MTV and MTR margin the real world expectation of future
cash flows provided by the traditional approach has been considered and the discount rate
providing a present value equal to the corresponding VBIF level (VFR, VTV and VTR,
respectively) has been derived.

Similar procedures have been applied to the Unit-Linked business and have led to the
identification of the corresponding MFR, MTV, MTR.

16.11 Run-off analysis and ongoing analysis

A conservative investment strategy is conditioned by the structure of the expected lia-
bilities. In a run-off analysis of the in-force business the investment strategy takes into
account only the stream of premiums and benefits generated by the outstanding policy
portfolio. The estimated cost of the embedded options could be largely affected by this
asset-liability structure. To control the impact of the run-off assumption on the cost of
minimum guarantees also an ongoing analysis has been performed. Under some stylised,
yet reasonable assumptions on the new business, the investment strategy has been sim-
ulated also allowing for the asset-liability cash flow streams generated by the ongoing
portfolio. The put options embedded in the in-force business have been evaluated under
this strategy.
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Guide to Abbreviations Used

VBIF – Value of Business In Force

RAD – Risk-Adjusted Discounting

DCE – Discounted Certainty Equivalent

IV – Intrinsic Value of the embedded options

TV – Time Value of the embedded option

ZCB – Zero-Coupon Bond

RN – Risk-Neutral probability

FRN – Forward Risk-Neutral probability

RW – Real World probability (natural probability)

UGL – Unrealized Gains and Losses

HTM – Held-To-Maturity assets

AFS – Available-For-Sale assets

VFR – Value of profits adjusted for Financial Risks and for the IV

VTV – Value of profits adjusted also for the TV

VTR – Value of profits adjusted also for Technical Risks

MFR – discount rate Margin for Financial Risk and for IV

MTV – discount rate Margin also including the TV

MTR – discount rate Margin also including the cost Technical Risks
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