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Abstract. This paper describes a stochastic programming model that was developed for asset liability
management of a Finnish pension insurance company. In many respects the model resembles those presented
in the literature, but it has some unique features stemming from the statutory restrictions for Finnish pension
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the resulting optimization problem and evaluation of the solution. Out-of-sample tests clearly favor the
strategies suggested by our model over static fixed-mix and dynamic portfolio insurance strategies.
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1. Introduction

Stochastic programming has proven to be an efficient approach in designing effective strate-
gies in wealth- and asset liability management in practice. This is due to its ability to cope
with the dynamics and complex constraint structures usually inherent in such problems. In
principle, stochastic programming is not tied to any particular form of objective function
or model of the stochastic factors as long as the distribution of the stochastic factors is
independent of the decision variables in the model. Successful applications of stochastic
programming to asset liability management have been reported e.g. in (Nielsen and Zenios,
1996), (Carino et al., 1998), (Carifio and Ziemba, 1998), (Hgyland, 1998), (Consigli and
Dempster, 1998), (Kouwenberg, 2001), and (Geyer et al., 2003). See also the collections
(Ziemba and Mulvey, 1998) and (Zenios and Ziemba, 2004) and the references therein. For
a general introduction to stochastic programming we refer the reader to the official (COSP)
stochastic programming site: www.stoprog.org.

This paper describes a stochastic programming model and its computer implementation
for asset liability management of a Finnish pension insurance company. Finnish pension
companies manage large investment funds and, like most pension companies in Europe,
they are facing a large number of retiring policyholders at around 2010-2020. Our model
addresses a long term dynamic investment problem where the aim is to cover the uncertain
future liabilities with dynamic investment strategies. The assets are considered as the
aggregate investment classes of cash, bonds, stocks, property and loans to policyholders.
In addition to investment decisions, our model looks for optimal bonus payments and it
takes explicitly into account various portfolio and transaction restrictions as well as some
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legal restrictions coming from the intricate pension system in Finland which is based on the
defined benefit rule. The legal restrictions form a unique part of the model not present in
earlier applications of stochastic programming.

We pay particular attention to describing the uncertain factors in the model which
include investment returns, cash-flows, and the technical reserves used in the definition of
the statutory restrictions. This is important since the solution of a stochastic programming
model depends usually heavily on the underlying model for the stochastic factors. We use
the stochastic model for assets and liabilities developed in (Koivu et al., 2003). This model
is based on a vector equilibrium correction model which, in addition to short term dynamics,
takes into account long term equilibrium relations between certain economic factors (Engle
and Granger, 1987).

Stochastic models such as the one in (Koivu et al., 2003) are based on an infinite
sample spaces, which result in infinite dimensional optimization problems. We solve these
problems numerically through discretization as described in (Pennanen and Koivu, 2002)
and analyzed in (Pennanen). This is convenient for the user who only needs to come up
with an appropriate econometric description of the stochastic factors. The discretization
and numerical solution of the discretized models are fully automated and hidden from the
user.

The model was implemented and tested against static fixed-mix and dynamic portfolio
insurance strategies. Fixed-mix strategies are simple decision rules that always rebalance
the investment portfolio to maintain fixed asset proportions. Portfolio insurance strategies
are based on the constant proportion portfolio insurance framework of (Perold and Sharpe,
1988) and (Black and Jones, 1988), where the proportion of risky assets is kept as a constant
multiple of the difference between the portfolio value and a protective floor. If the portfolio
value hits or falls below the floor, all the funds are invested in less risky assets.

These decision strategies are by no means realistic models for the behavior of a real
pension insurance company. However, they are often used for various simulation purposes in
practice, which motivates their use as benchmarks. Other, more sophisticated but computation-
intensive, choices of benchmarks have been used in (Hgyland, 1998; Kouwenberg, 2001); see
also (Fleten et al., 2002). We used the out-of-sample testing procedure recommended e.g. by
(Dardis and Mueller, 2001) of Tillinghast-Towers Perrin. In the tests, the strategies based
on our stochastic programming model clearly outperform both the fixed-mix and portfo-
lio insurance strategies. Similar results have been obtained with the more sophisticated
benchmarks in (Hgyland, 1998; Kouwenberg, 2001; Fleten et al., 2002).

The rest of the paper is organized as follows. A mathematical model of the ALM problem
is presented in Section 2. Section 3 outlines the model for the underlying stochastic factors.
Section 4 describes the procedure used for discretization of the optimization model. Section 5
outlines a computer implementation of our model and reports the results of numerical tests.

2. The optimization model
Our model is a multistage stochastic program where a sequence of decisions (asset allocations

etc.) is interlaced with a sequence of observations of random variables (asset returns etc.).
At each stage, decisions are made based on the information revealed up to that point, so the
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decision variables at a stage are functions of the random variables observed up to that stage.
This kind of interdependent dynamics of information and decisions is typical in sequential
decision making under uncertainty, which is what ALM and many other wealth management
problems are; see for example (Ziemba and Mulvey, 1998) or (Follmer and Schied, 2002).

The decision stages are indexed by ¢t = 0,1,...,7, where t = 0 denotes the present time,
and the set of assets is indexed by j € J, with

J = {cash, bonds, stocks, property, loans to policyholders}.

The decision variables characterize the asset management strategy as well as the com-
pany’s solvency situation and the bonus strategy. Uncertainties result from random future
investment returns as well as from random cash flows and technical reserves described
below. There are several constraints stemming from the regulations of the Finnish pension
system. The objective is to optimize the development of the company’s solvency situation
as described by the Ministry of Social Affairs and Health as well as the amount of bonuses
paid to policyholders.

We will first describe the asset management model, followed by the model of statutory
restrictions and finally the objective. Decision variables are random variables for all ¢ except
for t = 0. For parameters, randomness will be indicated explicitly.

2.1. ASSET MANAGEMENT

Asset management constitutes a central part of the model. The following formulation is
fairly standard in asset management applications of stochastic programming.
Inventory constraints describe the dynamics of holdings in each asset class:

hoj = h +poj — 50,
ht,j :Rt7jht—1,j +prj— Sty t= 1,....,T—1, j€J,

where

h? = initial holdings in asset j,

R; ; = return on asset j over period [t — 1,t] (random)
are parameters, and

pt; = (nonnegative) purchases of asset j at time ¢,
s¢,; = (nonnegative) sales of asset j at time ¢,

h: ; = holdings in asset j in period [t,t + 1]

are decision variables. As usual, we do not allow portfolio rebalancing at the horizon, which
is why the index t goes only up to 17" — 1 in the inventory constraints. Also, the company
does not have control over the loans since, according to the Finnish law the policyholders
have the right to borrow money from the company against their paid pension premiums.
The amount invested in loans is thus determined by the policyholders. Holdings in loans are
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stochastic and we will assume them to be proportional to the technical reserves; see Section
2.2.1 below.
Budget constraints guarantee that the total expenses do not exceed revenues:

Z(l + C?)pOJ +H_1 < Z(l — C;)S()J + Fo,

jeJ jeJ
Z(l + C?)pt,j + 1 H 1 < Z(l — C?)St,j + Z Dtyjhtflyj +F t=1,...,T -1,
Jje€J Jje€J Jj€J

where

cf = transaction cost for buying asset j,

c;f = transaction cost for selling asset j,
7; = length of period [t — 1,¢] in years,

H_1 = transfers to the bonus reserve a year before stage t = 0,

D, ; = dividend paid on asset j over period [t — 1,¢] (random),

F; = cash flows in period [t — 1,¢] (random)
are parameters and
Hy, t=0,...,T — 1 = transfers to the bonus reserve per year during period [¢,¢ + 1]

are decision variables. The net cash flow F; is the difference between pension contributions
and expenditures during period [t — 1,¢]. The company can pay a proportion of its accu-
mulated wealth as bonuses to its policyholders. These bonuses are paid as reductions of
the pension contributions. The amount of the total bonuses is determined at the end of
each year, and the sum is transferred to the bonus reserve. The whole bonus reserve is then
paid out during the following year. For periods longer than one year, we assume that H;
is kept constant throughout the period, hence 7z H;_1 gives the value of bonuses paid to
policyholders during period [t — 1,¢].
Portfolio constraints give bounds for the allowed range of portfolio weights:

ljwtghtngujwt t=0,....T—-1, je€J,

where
wy = Z hi,j = total wealth at time ¢t =0,...,T — 1,
jeJ

and

l; = lower bound for the proportion of w; in asset j,

uj = upper bound for the proportion of w; in asset j

are parameters whose values are given in Table I. The upper bounds for stocks and property
are statutory restrictions. The lower bound for cash investments is set to guarantee sufficient
liquidity.
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Table I. Lower and upper bounds for investment proportions

J L U
Cash 0.01 1
Bonds 0 1

Stocks 0 0.5

Property 0 0.4

Table II. Upper bounds for transactions

j bg.’ b;
Cash 0.2 0.2
Bonds 0.2 0.2
Stocks 0.2 0.2
Property 0.01 0.01

Note that the total wealth w; at stage t = 0,...,T — 1 is computed after portfolio
rebalancing. At the horizon, there is no rebalancing so we define it as

wr = Z(RT,]' + Dy j)hr—1; + Fr — mrHp_1.
Jj€J
Transaction constraints bound the sales and purchases to a given fraction of w;:
pwgnb?wt t=0,....,T—1, j€J,
st,jgnbjwt t=0,....T—1, j€J,

where

b? = upper bound for purchases of asset j per year as a fraction of total wealth,

bj = upper bound for sales of asset j per year as a fraction of total wealth

are parameters. The values of b? and b7 are displayed in Table II. The tight rebalancing
restrictions for property are set because of illiquidity of the Finnish property markets. For
other asset classes the yearly rebalancing is restricted to be at most 20% of the total wealth.
These restrictions model the policies of the company as well as the requirement that the
size of transactions should be kept at levels that do not affect market prices.

2.2. STATUTORY RESTRICTIONS

The statutory restrictions for Finnish pension insurance companies are quite strict, and they
form a unique part of our stochastic programming model. Besides imposing constraints on
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the decision variables, these rules form the basis for defining the objective function in our
model.

2.2.1. Solvency capital

The Finnish pension insurance companies are obliged to comply with several restrictions
described in the legislation, government decrees or regulations given by the Ministry of Social
Affairs and Health. A fundamental restriction is that the assets of a company must always
cover its technical reserves L;, which corresponds to the present value of future pension
expenditure discounted with the so called “technical interest rate”. A detailed description
for determining the value of L; is given in (Koivu et al., 2003). The assets include, besides
the total amount of investments wy, a transitory item of the net amount of other debts and
credits in the balance sheet. This relatively small amount is calculated approximately as a
fixed proportion ¢© of the technical reserves. The difference

Ct = Wt +CGLt — Lt = Wt — (1 — CG)Lt

of assets and the technical reserves is called the solvency capital. If at any time, C; becomes
negative, the company is declared bankrupt.

2.2.2. Solvency limits

Besides bankruptcy, (C; < 0), there are several target levels that have been set to char-
acterize the pension insurance companies’ solvency situation. These levels form an early
warning system, so that the company and the supervising authorities can take action before
a bankruptcy actually happens. A fundamental concept in the system is the solvency border
By, defined in (1) below. If the solvency capital Cy falls below this limit the financial position
is considered to be at risk, and the company is required to present to the authorities a plan
for recovering a safe position. In addition, the company is not allowed to give any bonuses
to its policyholders.

The target zone for the ratio Cy/B; is [2,4]. In this zone, the financial position of a
company is considered to be quite good. There is still discussion about how strictly the
upper limit should be observed (in practice, no company has yet exceeded the upper limit).
Therefore, we will ignore the upper limit in the model.

The concept of the solvency border corresponds to the solvency requirements in the
European Union (EU) insurance directives. There is, however, an essential difference in the
calculation method. The Finnish solvency border is based on the investment portfolio of a
company. The fluctuation of the solvency capital is mainly caused by the investment market,
and therefore the risk of going bankrupt is strongly dependent of the company’s investment
risk. The starting point of the Finnish system is that the probability of ruin in one year at
the solvency border should be approximately 2.5%, and therefore the value of the border is
required to be dependent on the investment portfolio. In contrast, the EU directives take
no account of the company’s investments. It is widely regarded that the EU regulations are
insufficient, and a project is now established to renew the EU solvency requirements. The
solvency border B; is given by

. Ly + H,
B,=1a E mihg ; + b\/ E Uj,kht,jht,k (t7t)7 (1)
: . Wy

jeJ j.ked
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where a = —0.972/100, b = 1.782/100, and the parameters

0.18 093 0.01 3.08 1.06 -0.02
0.66 0.01 11.47 1280 -3.62 11.19
m= 16.20|, o= 3.08 12.80 460.51 91.50 9.67
3.70 1.05 —3.62 91.50 176.55 —1.31
0.72 —-0.02 11.19 9.67 —-1.31 11.18

give the means and covariances for the asset classes (in the order: cash, bonds, stocks,
property, loans to policyholders), according to the government decree, of one-year rate of
returns over the technical interest rate. For asset classes like stocks, the parameter o; ; is
substantially larger that for safer classes like bonds. In reality, the values of m and o are
not fixed for eternity, but are updated by the Ministry of Social Affairs and Health on an
irregular basis. The current values were set in 1999. We have decided to keep the values m
and o fixed in our optimization model partly because of the infrequent updating and also
because any uncertainty in these parameters would be hard to model. Note that B; is a
nonconvex function of the variables in the model.

2.2.3. Upper bound for bonuses

Finnish pension insurance companies compete with each other by paying out bonuses to
their policyholders. To attract new customers companies would like to keep the amount of
bonuses very high, but because the pension system is statutory, the government has aimed
to restrict the amount of bonuses so that a sufficient proportion of the assets is preserved
in the system to guarantee future pensions. Therefore, the Ministry of Social Affairs and
Health imposes a formula for the maximum amount of each year’s bonus transfers. The
maximum depends on the solvency capital Cy and the solvency border B, of the company
according to the formula 3 ~ ~

H{"™ = ¢(Cy/By) (Cr — By)

where ¢(z) is a piecewise linear function which has the minimum value of 0 when z < 1 and
the maximum value of 0.04 when z > 4. It follows that H;"** is also a nonconvex function
of the variables in the model.

2.2.4. Convex approrimations
In the optimization model, the nonconvex solvency border is replaced by

B =a ijht’j +b Z o khtjhek,
jed ke

which is convex in the variables. We have B, > B, since (Ly + Hy)/wy < 1 unless the
company is bankrupt. Replacing B; by B; in the model, makes the constraints in the model
more restrictive, so we will stay on the safe side, except when the company is bankrupt. In
the case of bankruptcy, the solvency border is underestimated by a factor of (L; + Hy)/wy.

We will also replace the nonconvex function FIF“ by a convex approximation, namely,

HM™> = 0.03max{C; — By, 0}.
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This is based on the fact that the historical average of ¢(z) has been close to 0.03.

2.3. OBJECTIVE FUNCTION

There are many possibilities for measuring the performance of a company. Natural candi-
dates would be expected utility of wealth or solvency capital under various utility functions.
Here, we will describe a utility function that takes explicitly into account the unique features
of the Finnish pension system.

As described in Section 2.2.2, the Ministry of Social Affairs and Health measures pension
insurance companies’ solvency situation by the ratio Cy/B; of the solvency capital and the
solvency border. The Ministry defines four zones according to which companies’ solvency
situation is classified:

Ci/B; € [2,00) : target
C:/B; € [1,2) : below target
C;/B; € [0,1) : crisis

Ct/B; € (—00,0) : bankrupt.

We replace By throughout by its convex approximation By given above, and we define three
shortfall variables:

SFy1 > 2By — Cy t=1,...,T -1,
SFio> By —Cy+H;/0.03 t=1,...,T—1,
SF; 3> —C} t=1,...,T,

each of which gives the amount by which a zone is missed. These will be penalized in the
objective function. The inequality for SF; > incorporates the constraint

Ht S H’tnl ax

for bonus transfers. The penalty for SF; o will be chosen large enough to guarantee that, at
the optimum, the upper bound is satisfied.

Fort =0,...,T — 1, the state of the company will be evaluated by the following utility
function

3
u(Cy, By, Hy, Ly) = Cy/Ly — Y 72SF, /Ly + u’(Hy [ Ly),
z=1
where 7, are positive parameters and u’ is a nondecreasing concave function that will be
specified according to the preferences of the company. However, the choice of u® has to be

made in accordance with the penalty parameter ~» in order to guarantee that the upper
bound for H; is not violated at the optimum. At stage T', the utility is measured by

ur(Cr, Lt) = Cr /Lt — v3SFr3/Lr.

The overall objective function in our model is the discounted expected utility

T-1
EF {Z diu(Cy, By, Hy, Lt) + drur(Cr, LT)} ;
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where d; is the discount factor for stage t. The problem is to maximize this expression over
all the decision variables and subject to all the constraints described above.

2.4. PROBLEM SUMMARY
Deterministic parameters:

h? = initial holdings in asset j,

<X

= transaction cost for buying asset 7,

¢’ = transaction cost for selling asset j,

~
<

. = lower bound for wealth in asset j as a fraction of total wealth,
; = upper bound for wealth in asset j as a fraction of total wealth,

Uj
b]; = upper bound for purchases of asset j per year as a fraction of total wealth,
= upper bound for sales of asset j per year as a fraction of total wealth,

c¢” = the amount of transitory items as a fraction of the technical reserves,
a = the (negative) weight for the return component in the solvency border,
b = the weight for the standard deviation component in the solvency border,
mj = mean yearly return of asset j according to the government decree,
ojx = covariance of one-year returns according to the government decree,
7; = length of period [t — 1,¢] in years,

v, = penalty parameters in the objective function,
Stochastic parameters:

R; ; = return on asset j over period [t — 1,t],
D, ; = dividend paid on asset j over period [t — 1,1],
F; = cash flows from period [t — 1,¢],

L; = technical reserves at time t,
Decision variables:

ht,j = holdings in asset j from period ¢ to ¢t + 1,
pt,j = purchases of asset j at time ¢,

st = sales of asset j at time ¢,

wy = total wealth at time ¢,

H; = transfers to bonus reserve at time ¢,

C; = solvency capital at time ¢,

B, = solvency border at time ¢,

SF; . = shortfall from zone z at time ¢.
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Our stochastic programming model is

maximize EP{ e dtu(Ct,Bt,Ht,Lt)+dTuT(CT,LT)}

0
hoj = hj +poj — 50
htv] = Rt7]ht_]-7] + pt?] - Stmj’

DijsStj = 0,
>+ Apoj + H-1 < > (1 —=¢)s0, + Fo,
jed jed
D+ pej+mHey <Y (1—=¢)sej+ D Dijhi1j+ F,
jed jed jed
we = th,ja
jed

Liwy < hyj < ujwy,
Dty < Ttb§wt7
st,j < Tebjw,
Cr=w; — (1 - CG)Lh
B > az mihy; +b Z ajkhtjhe g,
jeJ j,ked
SF;1 > 2B — Cy,
SF,5 > By — Cy + 100H,/3,
SF;3 > —C,
forall ¢t=1,...., T -1, je€J,

wr = Z(RTJ + DT,j)hT—Lj + Fp — mpHp_4.

jed
Cr =wr — (1 — %)Ly,
SFkrsz > —Cr,

(h,p,s,w,H,C,B,SF) € N

where P is the probability distribution of the random parameters, EX denotes the expecta-
tion operator, and the constraints are required to hold almost surely with respect to P. The
symbol N stands for the subspace of nonanticipative decision rules, i.e. the set of strategies
where the decision at each stage depends only on the random variables whose values have
been observed by that stage.

Our model is a convex optimization problem that is nonlinear both in the objective and
the constraints. There are 19 decision variables in each stage t = 0,...,7 — 1 (recall that
for loans to policyholders, hy j, ps; and s ; are determined by L;) and 3 in the last stage.

The probability distribution P of the random parameters is an important part of the
model, and the solution will depend on it in an essential way. We assume that the random
parameters follow the stochastic model developed in (Koivu et al., 2003). This model is
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Table III. Return and dividend formulas

Asset class Ry Dy ;
Cash ((1—&—57})(1—}—573,1))% 1
Bonds ( IYZ;:l ) o %(b’rt_1 + bre) T
Stocks Stsil %(% + DSLzu)ﬂ
Property Pil (%( R;thjfl + RETTZ”) - 0.03) Tt
Loans 1 %(brt—l + br) T

briefly outlined in the following section. Since this model has continuous distributions,
the resulting optimization problem is infinite-dimensional. Solutions of the problem are
then sought numerically through discretization. As in (Pennanen and Koivu, 2002), the
discretization is obtained by approximating the continuos probability measure by a discrete
one. This is described in Section 4.

3. Modeling the stochastic factors

The stochastic factors in the optimization model are first expressed in terms of seven
economic variables, namely short term interest rate sr, long term bond yield br, stock
price index S, dividend index Div, property price index P, rental index Rent and wage
index W. These variables are then modeled by a time series model.

The formulas for calculating R; ; and Dy ; for each asset class are displayed in Table III,
where 7 denotes the length of the time period in years and the parameter D), denotes the
average duration of the company’s bond portfolio.

The return for cash investments is approximated by the geometric average of the short
term interest rate during the holding period. The formula for bond returns is based on
a duration approximation as in (Campbell et al., 1997, Chapter 10). The parameter D
is set equal to five years. The dividends for stock and property investments present the
average dividend and rental yield, respectively, during the holding period. For property
investments the maintenance costs, which are assumed to be a constant 3% of the property
value, are deducted from the rental yield. Similarly to bonds, the cash income for loans is
approximated by an average of bond yield. This is based on the fact that the interest on
newly given loans is usually set equal to the current bond yield. The return for loans is
equal to one because these instruments are not traded in the market.

The Finnish earnings-related pension scheme follows the defined benefit principle, where
the pension insurance company guarantees the pension payments which are tied to the
development of the policyholder’s salaries. It follows that, the technical reserves L and
cash flows F' depend on policyholder’s wages and population dynamics. These are assumed
independent, so that their development can be modeled separately. The values of L and
F depend also on the technical interest rate, which determines the total growth rate for
the reserves. In the model, the technical interest rate is calculated based on recent asset
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returns and it is an important part of the model because, to a great extent, it determines
the correlations between the investment variables and the reserves. The development of
wages is described by the general Finnish wage index. For a more detailed description of
the development of L and F, see (Koivu et al., 2003).
The quarterly development of
[ Insry |
In bry
In St
x; = | In Div,
In Pt
In Rent;
L In Wt i

will be modeled with a Vector Equilibrium Correction (VEqC) model, popularized by (En-
gle and Granger, 1987) and (Johansen, 1995). During the last decade VEqC models have
been widely used in modeling and forecasting economic and financial time series, see e.g.
(Campbell and Shiller, 1987; Clements and Hendry, 1998; Clements and Hendry, 1999) and
(Anderson et al., 2000). We consider a VEqC model

k
Aszy =Y Aidsxy—i+ a(fai 1 — p) + €, (2)

i=1
where 4; € R™7, e R™! 1, e R, o € R™!, As denotes the shifted difference operator
Agl’t = Axt )

with § € R7, and ¢; are independent normally distributed random variables with zero mean
and variance matrix ¥ € R7*7. When the model is stationary the parameter vector §
determines the average drift for the time series. The term a(3'z;—1 — u) takes into account
the long-term behavior of x; around statistical equilibria described by the linear equations
Bz = p. It is assumed that, in the long run,

E[f'x] = p,

and that if z; deviates from the equilibria it will tend to move back to them. The matrix
«a determines the speed of adjustment toward the equilibria. In a sense, VEqC-models
incorporate long-run equilibrium relationships (often derived from economic theory) with
short-run dynamic characteristics deduced from historical data.

We take 6 and p as user specified parameters. This enables incorporation of expert
information in specifying the expected growth rates for x; as well as long term equilibrium
values for such quantities as mean reversion levels, interest rate spread and dividend yield.
In particular, this gives control over mean returns which have been shown (in the context of
the Markowitz model) to have a big impact on the optimal portfolio choice, see (Chopra and
Ziemba, 1993). The appropriate lag-length k& and the remaining parameters are estimated
from quarterly data from Finland and the EU-area. The estimated parameter values used in
the numerical tests of Section 5 are given in the Appendix. For a more detailed description
of the model; see (Koivu et al., 2003).
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4. Discretization

In our optimization model, we are interested in the conditional distributions of x4y, given
x4, typically for h > 4. This can be calculated conveniently as follows. After specifying the
model (2), we write it as a Vector Auto-Regressive (VAR) model in levels

k
wp =T+ A+ D)y + D (Ai— Aim1)a—i — Apay_p—1 + ¢ + €,
=2
where I' = o3’ and ¢ = —apu+(I—Y_F_; A;)é. This, in turn, can be written in the companion
form B
Ty = ATy + ¢+ &,
where
[ xy [I+A1+T Ay — Ay -+ Ap — A1 —Ap
Tr—1 _ 1 0 e 0 0
i’t - . ) A - . . . . 9
[Ttk L 0 0 I 0
[c (et
0 0
e=|.1, & =
10 10
It follows that \
Topn =AMz + ) AV e ey, (3)
i=1

where ep, = 2?21 AM=ig;. The random term ey, is normally distributed with zero mean, and
from the independence of €; it follows that e, has the variance matrix

b Y ... 0
Bp= AN A
i=1 0 --- 0

A convenient feature of (3) is that the dimension of the random term never exceeds 7(k+1)
even if h is increased. In the model of (Koivu et al., 2003), k& = 1, so the dimension will be
at most 14.

We discretize the model (3) using integration quadratures as described in (Pennanen and
Koivu, 2002). This results in scenario trees that converge weakly to the original process as
the number of branches is increased. This technique is just as easy to implement as the
better known method of conditional sampling, where a scenario tree with a given period
structure (71, ...,7r) and branching structure (v1,...,v7) can be generated as follows; see
e.g. (Chiralaksanakul, 2003). For each ¢t = 0,...,T, denote by N; the set of nodes in the
scenario tree at stage t. The set Ny consists only of the root node which is labeled by 0.
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The rest of the nodes will be labeled by positive integers in the order they are generated.
The number h; = 47, gives the length of period [t — 1,¢] in quarters.

Set m := 0, Z,, := the current state of the world, and Nj := {m}.
fort:=1to T
N =10
for ne Ny
Draw a random sample of v, points {e}, }i*, from N(0, Zy,)
for i:=1to 1,
m:=m+1
T = Sy AVie 4+ APz, + €
N :i= Ne U {m}
end
end
end

The random samples required above are easily generated by computing the spectral

decomposition
7(k+1)

Zh— Z )\huh

where )\2 are the eigenvalues of ¥, in decreasing order and u}L are the corresponding
eigenvectors. If X, has rank d;, we have

S = CuChi,
where Cj, = [1/)\}Lu}z, cees \/)\itu‘;t], and then the desired sample is obtained as

e, = CpFy, (up, ),

7+, is a random sample from Upy,, the di-dimensional uniform distribution on

where {u}, };
[0,1]% and th is the di-fold Cartesian product of univariate standard normal distribution
functions. An advantage of computing the spectral decomposition (instead of the Cholesky
decomposition as e.g. in (Hgyland et al., 2003)) is that when ¥, is singular, d; gives the
true dimension of the random term. For example, when h =1, d; = 7.

The random samples {u}u 7t above can be viewed as discrete approximations of Uy,. As
n (Pennanen and Koivu, 2002), we will replace these random samples by low discrepancy
point-sets that have been designed to give good approximations of Ug,. In the numerical
tests in the next section we will use point-sets from the Sobol sequence; see for example
(Niederreiter, 1992; Jéckel, 2002). This produces a scenario tree with the same branching
structure as the above conditional sampling procedure but a potentially better approxima-
tion of the original stochastic process, because the low discrepancy points are constructed
to be more evenly distributed over Uy, than typical random points. The computation times
with Sobol sequences is roughly equal to that with Monte Carlo. Another advantage of using
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the spectral decomposition (instead of Cholesky decomposition) in forming the square root
of the covariance matrix is that it allows for significant variance reduction in connection
with low discrepancy point-sets; see e.g. (Acworth et al., 1998).

5. Numerical results

5.1. IMPLEMENTATION

Figure 1 sketches the structure of the overall optimization system. The scenario generator
(written in C programming language) takes as input the period and branching structures
of the scenario tree and the time series model for the stochastic factors and generates the
scenario tree for the assets and liabilities. The tree can be visually and otherwise inspected
e.g. in spreadsheet programs until the outcomes are satisfactory. The scenario tree is then
written into a text file in AMPL format described in (Fourer et al., 2002). The optimization
model written in AMPL modeling language and the data from the scenario generator are
processed in AMPL and fed to MOSEK!, which is an interior-point solver for convex
(nonlinear) programs. The solution details and statistics produced by AMPL/MOSEK can
again be visualized e.g. in spreadsheet programs. The system can be used under most Unix
and Windows platforms.

INPUT COMPUTER SYSTEM OUTPUT
Data Econometric Multiperiod
- Market data model i st_octhastlc del
optimization mode
- Expert - Assets p
information - Wage index
- ¥ Solution
Scenario generator Solver Optimal strat
> - Optimal strategy
- Statistics - AMPL " o
) ) - Mosek - Statistics
v Graphics - Graphics
Data Liability model
- Initial values » - Cash flows
- Population - Technical

forecasts reserves

Figure 1. Stochastic optimization system

5.2. COMPUTATIONAL EXPERIMENTS

We chose the beginning of year 2002 as the first stage t = 0 in our experiments. The initial
values for the time series model and the model parameters

ho = (1563, 622, 5573, 3914, 2158)

! www.mosek.com
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and H_; = 151.341 (million euros) were chosen accordingly. As an example, we generated a
scenario tree with period structure (1,3, 6) years and branching structure (25,10, 10) (2500
scenarios). This takes less than a second on Intel Pentium 4, 2.33GHz, with 1Gb of SDRam.
Figure 2 plots the values of some important parameters on the scenario tree.

H
orNernoNwoBERE

OFr NWMOIOONO®O
P S A R T

ornergov0obERE

a.

onpooBREEEBRNE

Stock index

g. Yearly cash flows (Meuro)

Figure 2. Scenario tree of the example.

f. Rental index

h. Technical reserves (Meuro)

We solved the corresponding stochastic programming model for five sets of shortfall
penalty coefficients given in Table IV. These (somewhat arbitrarily chosen) values corre-
spond to different attitudes towards the attainment of the various target zones described in
Subsection 2.3. In all cases we used the piecewise linear utility function

u’(-) = 1.5 min{-,0.01}
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Table IV. Shortfall penalty coefficients in the example

71 V2 3
SP 1 1 10 10
SP 2 0.5 10 10
SP 3 1 1 1
SP 4 0.1 10 10
SP 5 0 0 0

for bonuses. The solution of the corresponding optimization models takes less than 10
seconds each. Figure 3 displays the optimal portfolio weights in stage ¢t = 0 for the five
sets of parameter choices. The first column gives the actual portfolio of the company in the
beginning of year 2002. One can also examine the development of the optimized decision

1
0.9
0.8 -
0.7 A
0.6 1 O property
O stocks
0.5 Dbonds
Ecash
0.4 M loans
0.3
0.2
HE B R ER
0 -
Initial SP1 SP2 SP3 SP4 SP5

Figure 3. Initial portfolio h® and the optimal portfolios corresponding to the parameter values in Table IV.

variables along the scenario tree. Figures 5.2 (a) and (b) plot the optimized C;/L; and H;/L;
ratios, respectively, for SP1 of Table IV. The solvency capital C; is always nonnegative (no
bankruptcy) in every scenario while the bonus transfer /liability ratio H;/L; is equal to 0.01
in almost every scenario.

To gain some insight on the effect of the the shortfall penalties associated with the target
zones, we solved the optimization model SP1 for varying levels of initial wealth wg. This
was done by rescaling the initial portfolio so that the relative portfolio weights remained
unchanged. The model was resolved and the optimized first stage portfolio recorded. The
resulting portfolios are graphed in Figure 5.2 (a) as a function of the ratio wy/Lg. For
comparison, we did the same for SP5, where there is no penalty for the shortfalls; see
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b. Hy/Ls

Figure 4. Optimized solvency capital and bonus ratios along the scenario tree for SP1.

Figure 5.2 (b). The original wealth-liability ratio at the beginning of year 2002 was wq/ Lo =
1.238.

1 1
09 09
08 08
0.7 07
06 1 06 1
05 05 1
041 041
031 031
021 02
0.1 0.1

0 0

10 15 20 10 15 20
a. SP1 b. SP5

Figure 5. The optimal first stage portfolio as a function of wo/Lo (The legend of Figure 3 applies).

Compared to SP5, the optimal portfolios for SP1 have considerably more wealth allocated
to the short interest rate and bonds when wg/Lg < 1.5. This is natural since putting more
wealth to the “safer” instruments reduces the solvency border and also the shortfalls. When
wp/Lo approaches 2, the portfolios begin to look alike. This is caused by the fact that
for high levels of initial wealth the probability of a shortfall is reduced and the effect of
penalties becomes negligible. The most interesting phenomenon is that when the company
approaches bankruptcy (wg/Lo < 1), it moves wealth from short interest rate to bonds and
stocks, even though this results in higher solvency border and higher shortfall penalties for
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the first two zones. This is probably due to the fact that the company is anticipating the
solvency situation in later periods and trying to make safe portfolio allocations by ignoring
to some extent the recommendations embodied in the definition of the solvency border.

5.3. CONVERGENCE OF DISCRETIZATIONS

Being forced to approximate the continuous distribution of the uncertain parameters by
finite distributions, it is natural to ask how the corresponding optimization problems depend
on the number of scenarios. A simple test is to study the behavior of the optimal values
as the number of scenarios is increased. We will do the test for SP1 of Table IV using the
Sobol sequence as described in Section 4. For simplicity, we only considered fully symmetric
scenario trees where each node has an equal number of branches, i.e. branching structure is
(k,k,k) for k =1,2,3.... The solid line in Figure 6 plots the objective value as a function
of the size of the scenario tree. For low values of k, the optimal value goes through large

5400

5200

5000

4800 r

4600

4400 r

4200 | | i

4000 ’l 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Branches per node

Figure 6. Convergence of the optimal value

variations, but as k is increased the optimal value seems to stabilize. In fact, it stabilizes
close to 4504 which is what we obtained with the branching structure (25,10, 10) in the
above example. Convergence of discretizations of multistage stochastic programs has been
studied for example by (Olsen, 1976; Casey and Sen, 2003) and (Pennanen).

For comparison, we did the same test using Monte Carlo sampling in generating the
scenario trees. This resulted in the dotted line in Figure 6. The optimal values obtained
with Monte Carlo seem to converge too but not nearly as fast as the optimal values obtained
with the Sobol sequence.
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5.4. OUT-OF-SAMPLE TEST

We implemented an out-of-sample testing procedure to evaluate the performance of our
stochastic programming model. Optimized strategies corresponding to the five sets of short-
fall penalty coefficients in Table IV were compared with a variety of static fixed-mix and
dynamic portfolio insurance (PI) strategies meeting the statutory restrictions of Table I.
The fixed-mix portfolio weights were chosen according to a grid in order to evenly cover the
region of feasible portfolios.

In the PI strategies the portfolio weights for cash 7. and property m, are varied according
to the same rules as in the fixed-mix case. The rest of the wealth is divided between bonds
and stocks and the proportion of stocks in the portfolio at time t is given by,

o min {(1 — e — Tp) min{p% 1}, 0.5} it Cy > 0,

>t it C, <0,
where p is a risk tolerance parameter indicating how the proportion invested in stocks
increases with the company’s solvency ratio, C;/w;. The percentage invested in stocks is a
constant multiple of the company’s solvency ratio, which was close to 22% initially, with
higher values of p resulting in higher stock market allocations. When the company’s solvency
capital is negative the stock market allocation is set to zero and the remaining wealth is
invested in bonds. PI strategy seems appropriate for a pension insurance company because
it allocates more wealth to risky assets, stocks when the company’s solvency ratio improves
and reduces the stock market exposure as the company approaches insolvency.

As pointed out in the introduction, fixed-mix and PI strategies should not be considered
as fully realistic decision rules. Rather, we view them as the first benchmarks that any
practical decision support system should be able to outperform. Note however, that with
these decision strategies, there is no guarantee that the transaction constraints will be
satisfied. To simplify the comparison of different strategies, bonus transfers H; were set to
zero in each model. In addition, transaction costs were ignored in the case of fixed-mix and
PI strategies to simplify computations. Note that this causes a bias in favor of the fixed-mix
and PI strategies. The scenario trees used in optimization had the same structure as in
the example of Section 5.1, that is, period structure (1,3, 6) years and branching structure
(25,10, 10).

In the test, we evaluated the performance of each strategy over 325 randomly simulated
scenarios of the stochastic parameters over 20 years. Portfolio rebalancing was made every
year, i.e. fixed-mix portfolios are rebalanced to fixed proportions, PI portfolios are rebal-
anced and stochastic programming problems were solved with a new scenario tree, based on
the current values of the stochastic parameters along the simulated scenario. We considered
PI strategies with p € {0.5,1,...,20}. The following describes the testing procedure. As
outlined in Section 3, the stochastic factors in each year can be expressed in terms of a 14-
dimensional vector. Below, Z,, denotes the value of this vector in year y along a randomly
generated scenario s.

for s:=1 to 325
Set Zs0 = To (the current state of the world).
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for y:=0to 19
Generate a scenario tree rooted at Tsy-
Solve the corresponding optimization problems and rebalance
all the portfolios.
Randomly sample Z; 441 from the time series model and
calculate the resulting portfolios and cash-flows at time y + 1.

end

end

Figure 7 plots the performance of all the fixed-mix and PI strategies and the 5 stochastic
programming strategies with respect to the average solvency capital at the end of the
simulation period versus the bankruptcy probability during the period. Considering the

0.2 4

o
1.2

Figure 7. Cr/Lr vs. bankruptcy probability for fixed-mix (4), PI (A) and stochastic programming (e)
strategies.

main risk of the company, bankruptcy, and average solvency capital, the stochastic pro-
gramming strategies clearly dominate both the fixed-mix and PI strategies, even though
the probability of bankruptcy was not explicitly minimized. It is also worth noting that the
best PI strategies outperform the best fixed-mix strategies at all reasonable risk levels. The
riskiest stochastic programming strategy, SP5 of Table IV, went bankrupt in 25 simulations
out of the 325 and the safest, SP1, in only one.

We will compare SP1 more closely with the best performing PI strategy circled in
Figure 7, having the same bankruptcy probability as SP1. In the selected PI strategy
7. = 0.04, m, = 0.15 and p = 1. The development of the solvency capital-reserves ratio
for both strategies is described in Figure 8. The three lines represent the development of
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the sample average and the 95% confidence interval computed from the 325 scenarios. A
higher mean and upwards skewed distribution indicates that the stochastic programming
model can hedge against risks without losing profitability.

35 35
3 3
25 25
2 2
151 151
1 14
05 1 05
012345678 910111213141516171819 012345678 91011121314 1516 17 18 19
a. Stochastic programming. b. Portfolio insurance.

Figure 8. C¢/L: averages and 95% confidence intervals.

Figure 9 shows the distribution of the solvency capital-solvency border ratio Cy/B; at
the beginning of the second year. Due to the aim for high investment returns, the stochastic
programming strategy avoids unnecessarily high levels of Cy/By, and consequently, it hits
the lower border of the target zones frequently.

Figure 10 displays the development of the distribution of C}/B; in the 325 scenarios
over the four zones defined in Subsection 2.3. If we compare the two strategies according
to the target zones, the PI strategy seems to perform better than SP1. However, in the
long run the stochastic programming strategy produces superior returns compared to the
PI strategy, without increasing the company’s bankruptcy risk.

6. Conclusion

This paper presented a stochastic programming model that was developed for asset-liability
management of a Finnish pension insurance company. The modeling was done in two
phases:

1. modeling of the decision problem, which included the specification of the decision
variables, stochastic factors, objective and constraints,

2. modeling of the stochastic factors. For this we used the model developed in (Koivu
et al., 2003).

This resulted in an infinite-dimensional stochastic optimization problem, which was solved
in two steps:

alm_kluwer.tex; 10/05/2004; 13:29; p.22



23

140 140
120 1 120 1
100 1 100 1
80 80
60 60
40 4 40 4
201 201
08 1 12 14 16 18 2 22 24 26 28 3 32 34 08 1 12 14 16 18 2 22 24 26 28 3 32 34
a. Stochastic programming. b. Portfolio insurance.

Figure 9. Distribution of C2/B> at the beginning of the second period

300 300
250 250
200 0O[2,infty) 200 O[2.infty)
0[L2) o[L2)
150 oo.) 150 0o.)
H (-infty,0) B (-infty,0)
100 | 100 -
50 50
0 T T T T T T T T T T T T T T T T T T 0 T T T T T T T T T T T T T T T T T T
0123456780910111213141516171819 0123456780910111213141516171819
a. Stochastic programming. b. Portfolio insurance.

Figure 10. Development of the distribution of C;/B; over the different zones

1. discretization, which resulted in a finite dimensional optimization problem where the
uncertainty was approximated by a scenario tree,

2. numerical solution of the discretized model. This was done using an algebraic modeling
language and an interior point solver for nonlinear convex optimization.

Numerical results indicated that the model is robust and superior to more traditional ALM
approaches.
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Appendix

The parameters for the time series model described in Section 3 were estimated using full
information maximum likelihood and are as follows. The number of lags k =1,

0
0
0.0114 ?'2
0= 10.0114] , u=In 2'5 ,
0.007 20
0.007 '
| 0.009 |
[3.672 3467 0 0 0 0 0
0 2855 0 0 0 0 0
0 0 0 0 0 0 —59.11
Ar=10"t] 0 0 —24250 0 0 0 |,
0 0 0.629 0 3.617 0 0
0 —-0209 0 0 —0.663 8533 0
|0 0 0 0 0 —0638 8712
[0 0.964 0 0 ] 1 -1 0 0]
—1.061 —1.499 0 0 01 0 0
0 0 0 0 00 —1 0
a=10"1| 0 0 —1449 0 |, =10 0 1 0],
—0.238 0 0  0.637 00 0 —1
0 0.080 0 0 00 0 1
0 0 —0024 0 00 0 0]

[53.7113  7.155 —4.7954 —15.978 0.1119 0.2726 |
0.13079 55.719 10.741 —11.647 0.2278 0.4652
—0.0606 0.1332 116.73 45.187 6.3447 —0.5866
Y =10"%[-0.2764 —0.1978 0.5302 62.235 —1.0418 —0.2177
0.0092 0.0184 0.354 —0.0796 2.7519 —0.0069
0.09107 0.1526 —0.1329 —0.0675 —0.0102 0.1668
| —0.174 —0.1929 0.0641 0.3586  0.0113 —0.2396

The initial values for the time series at the beginning of year 2002 were

[3.35] [4.16 ]
4.42 4.33
279.6 242.9
rg = 1In [843.7| , r_1=1In |776.0
118.0 117.7
839.8 831.3
| 140.6| 139.1]
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