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1 Introduction
Pension insurance companies manage enormous investment funds. Their main goal is to invest
policyholders' pension insurance premiums safely and pro�tably in order to meet their liabilities
in the future. The duration of the liabilities is usually very long (over 20 years), which calls for
realistic models for long-term scenarios of investment returns and liability �ows. Such models form
the basis for pension companies' asset and liability management (ALM). Typically, these models
have a macroeconomic �avor in that they try to describe the development of larger investment
classes like interest rates and broad equity indices along with wage indices and in�ation.

To a large extent, the existing models for pension companies have been based on the well
known Wilkie's stochastic investment model; see e.g. Wilkie (1986, 1995), Yakoubov et al. (1999)
and Ranne (1998). The drawback of these models is their cascade structure, which allows the
modeling of one-way causalities only. Vector autoregression (VAR) and their generalizations, vector
equilibrium correction (VEqC) models, do not have this limitation; see for example Sims (1980),
Engle and Granger (1987), Johansen (1995) and Clements and Hendry (1999). VAR-models for
asset liability management have been used for example in Dert (1998), Wright (1998) and Harris
(1999), but to our knowledge, only Boender et al. (1998) have proposed using a VEqC model for
these purposes.

This paper develops a model for assets and liabilities of a Finnish pension company. The
stochastic variables in the model are expressed in terms of seven economic factors whose development
is modeled with a linear time series model in VEqC form. The model incorporates statistical
information with expert views and it has been successfully implemented in a case where the available
data is scarce and subject to changing economic conditions. The expert views are given in the form
of drift parameters (for such quantities as interest rates, equity and property prices), and certain
long-run equilibrium relations (e.g. average levels of interest rate spread and dividend yield). This is
especially important in situations where the available data displays characteristics that are believed
to change in the future (e.g. declining interest rates in EU-area during the 90's). Indeed, according
to Hendry and Doornik (1997), deterministic factors like drift parameters and equilibrium values
matter most for predictive failure.

We will consider assets in the level of larger investment classes, namely, cash, bonds, equities,
property and loans to policyholders. We treat the cash-�ow and the change-in-value components
of total asset returns separately. This is essential in the presence of signi�cant transaction costs.
Also, this enables the modeling of such terms as dividend yield (dividend-price ratio) that has been
shown to have predictive power in describing future changes of dividends; see Campbell and Shiller
(1988). On the liability side, we model the cash-�ows of a pension company and some technical
quantities that have an important role in the Finnish statutory earnings-related pension scheme. In
general, these terms depend on the development of salaries of the pensioners as well as population
dynamics. These two factors are assumed independent, so that their development can be modeled
separately. In this paper, we concentrate on modeling salaries and their co-movement with asset
returns.

All the stochastic parameters in our model will be expressed in terms of the following seven
factors: short-term interest rate, bond yield, stock price index, dividend yield, property price index,
rental yield and wage index. These (or more precisely, simple transformations of them) will, in
turn, be modeled by a structured VEqC model that allows for simple economic interpretations. The
data for estimation is taken from Finland and the EU-area that are of greatest interest to Finnish
pension companies.

The rest of this paper is organized as follows. In the next section, we describe the asset classes
and liabilities and show how their development can be described with the above seven factors. In
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Section 3, we describe the data and study its stationarity properties. We start the development of
our time series model in Section 4, where we build a VAR model for di�erences. The purpose there
is to show how to specify the average drift in the model and to demonstrate the importance of cor-
rect speci�cations through simulations. In Section 5, we augment the VAR model with equilibrium
correction terms thus obtaining our complete model in VEqC form. Section 6 compares the forecast
performance of the developed VEqC-model with three rival models in out-of-estimation-sample fore-
cast experiment. In Section 7, we examine by simulation the statistical properties of the long-term
asset returns produced by the model and calculate the company's long-term cash-�ows and reserves.
In Section 8 the developed model is used in an ALM framework. We compare di�erent dynamic
portfolio allocation strategies and evaluate the company's long-term solvency and bankruptcy risks.
Concluding remarks are presented in Section 9.

2 Assets and liabilities in terms of economic time series
Finnish pension companies update their investment and bonus strategies on a yearly basis. These
decisions are linked with the company's liabilities which extend far into the future. On one hand,
this link comes from the company's goal of meeting the liabilities, and on the other, from the
legislation that aims at regulating the solvency risks of the company. This section describes the
main investment classes, the liabilities, and other quantities that are of interest in the strategic
�nancial planning of a Finnish pension company. Our aim is to express all these quantities in terms
of seven economic factors that will then be modeled with a time series model.

2.1 Assets
A pension company's assets can be divided into �ve main investment classes: cash, long-term bonds,
stocks, property and loans. Our goal is to model the return per wealth invested in each asset class.
The total returns on the assets are split between cash income and change in value components,
which, in general, require separate treatment due to transaction costs etc.

Cash: Pension companies keep a proportion of their assets in cash (short-term deposits) to ensure
a reasonable level of liquid �nancial resources. Because of the short term nature of these investments,
the change in value can be ignored and the whole return can be modeled as cash income. The return
on cash investments can be well approximated by the 3-month Euribor.

Bonds: Currently, about one half of the Finnish pension companies' wealth is invested in long-
term bonds. The primary source of income on bond investments are the coupon payments, which
is cash income. Usually, newly issued bonds sell at par, which implies that coupon payments equal
the current yield. We approximate the cash �ow component of the whole bond portfolio by the
bond yield which is denoted by brt.

According to (Campbell et al., 1997, page 408) the price of a bond can be approximated by
ln Bt ≈ D[k + (1− ρ)c− ln(1 + brt)], (1)

where D and c are the duration and coupon payments, respectively, of the portfolio, and k and ρ
are constants. When the bond is selling at par, we have ρ = 1/(1 + brt) ≈ 1; see (Campbell et al.,
1997, page 407). If we assume in addition that the bond portfolio is updated so that its duration is
fairly constant (which is not far from reality in Finnish pension companies), we get

ln Bt − ln Bt−1 ≈ −D ln
1 + brt

1 + brt−1
.
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Based on this, we approximate the value change of the bond portfolio by

Bt

Bt−1
≈

(
1 + brt−1

1 + brt

)D

The duration will be set equal to the duration of the bond portfolio of a company being modeled.
We will use the yield on German government benchmark bond, whose duration is close to D. In
our calculations we will use D ≈ 5 years.

Stocks: The riskiest but historically the most pro�table long-term investment class is stocks. In
stocks, the majority of the total return comes from the change in value and the dividend payments
constitute the cash income component. We will model the change in value component with a stock
price index and the cash income with the corresponding dividend yield.

Finnish pension companies invest in stocks mainly in Finland and the rest of the European
Union (EU) area. The development of the value of the company's stock portfolio is modeled with a
��xed mix� stock price index S which gives the value of a portfolio that is sequentially rebalanced
to have a fraction θF of stock investments in Finland and θE in the EU area. The quarterly change
in the �xed mix index is

St

St−1
= θF SF

t

SF
t−1

+ θE SE
t

SE
t−1

where SF and SE are stock indices in Finland and EU, respectively. For SE , we use the Datastream
Europe market index, and for SF the Helsinki Stock Exchange (HEX) portfolio price index.

The annual dividend yield corresponding to the �xed mix stock portfolio is calculated as a
weighted average of dividends from Finland and EU as

Y S
t = θF Y F

t + θEY E
t .

The Finnish dividend yield Y F is based on the HEX portfolio price index and the European yield
Y E is based on the Datastream Europe market index.

In this study, we assume that θF = θE = 1
2 , which has the interpretation that a company's stock

portfolio is split evenly between Finland and the rest of the EU.

Property: As an investment class, property resembles stocks in many ways. The return on
property investments consists of potentially large price �uctuations and fairly stable cash income.
Therefore, the return components on property investments are modeled similarly to stocks: the
change in value component is modeled with a property price index and the cash income is modeled
with a rental yield. The main di�erence from stocks is that the cash income component forms the
majority of the total gross return on property investments.

Finnish pension companies invest in property mainly domestically. Although the companies
mostly invest in commercial property, we will use the Finnish residential property price index to
model the price �uctuations of all property investments, This is because the commercial property
market is rather illiquid and the property prices are hard to estimate accurately.

The cash income component will be modeled as the di�erence between the residential rental
yield Y P

t and the maintenance costs. The rental yield gives the rent paid per wealth invested and
the maintenance costs are assumed to be a constant 3% of the property value. The property price
index Pt (¿ /m2) and the corresponding rental index Rt (¿ /m2) are available from Statistics
Finland. The rental yield is given by

Y P
t =

Rt

Pt
. (2)
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Loans: The Finnish pension companies invest part of their funds by giving loans to policyholders.
In the past, these formed a great majority of all investments, but currently they account for about
10 %. There are two kinds of loans, premium loans and investment loans. The premium loans are
an arrangement where a customer can borrow back part of the paid premium according to �xed
rules. For the investment loans, the terms are agreed freely between the company and the borrower.
In the model, the two kinds of loans are combined to form one investment class. The change in
value component for loans is zero. The cash income component will be approximated by a moving
average of bond yield. This is based on the fact that the interest on newly given loans is usually
set equal to current bond yield.

2.2 Liabilities
The Finnish pension insurance companies are responsible for managing the statutory earnings-
related pension scheme. Because the system is statutory, many of its characteristics are common to
all the companies. For example, the amount of the pension is determined by �xed de�ned-bene�t
rules independent on the company where the person is insured. Also the contribution rates and the
technical reserves are calculated according to common formulas con�rmed by the Ministry of Social
A�airs and Health. The technical interest rate for the reserves is also common to all the companies
and its value for each year is con�rmed by the Ministry.

The pension companies are, however, able to choose their own investment policy. Depending on
the investment returns, the company can give bonuses to its customers. These bonuses are paid as
reductions of the contributions, and they are the most important element in the competition between
the companies. The planning of the investment strategy is therefore essential for the success of the
company. For this, the company must take into account the nature of its liabilities as well as its
solvency position.

Reserves: The Finnish statutory earnings-related pension scheme is partly funded. Only part
of the total amounts of old age, disability and unemployment pensions are funded, and the part
time and survivors' pensions are not funded at all. As a whole, about 25% of the total pension
expenditure is paid by the funded part. The rest is �nanced as a pay-as-you-go system.

In the model, the average amounts of the funded pensions are calculated by age and sex. The
technical reserves before increases at the end of the year (see below) are

L =
∑

x,s
V(s, x) E(s, x) a(s, x),

where summation is by sex s and age x, V(s,x) is the number of pensioners or active workers,
E(s,x) is the yearly average of the funded pension and a(s,x) is the actuarial present value (APV)
function depending on mortality and a discount rate of 3%. The de�nition of the APV function is
di�erent for the old age, disability and unemployment pensions and it is given in the actuarial basis
con�rmed by the Ministry of Social A�airs and Health.

Because the funded pension is based on the salaries of the insured persons, the reserves in the
model are dependent on the development of the wage index. The reserves are also dependent on
the technical interest rate in a way explained below. Otherwise, the reserves in the model are
deterministic.

Besides the old age, disability and unemployment pension reserves, the model contains some
other special reserves:

� an equalization reserve for bu�ering the yearly surplus/de�cit of the insurance business
� a clearing reserve for the pay-as-you-go part of the pension expenditure
� a bonus reserve for the bonuses paid to customers as reductions of pension contributions.
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Technical interest rate: Besides the discount rate of 3% used for calculating the actuarial present
value functions, there is a higher rate, the technical interest rate whose value varies yearly. The
amount of the reserves is increased at the end of each year corresponding to the di�erence between
the technical interest rate and the 3% discount rate. This means that the technical interest rate
determines the actual total interest rate for the reserves, and the 3% discount rate is its minimum
value.

The technical interest rate (rtech) is calculated by a formula dependent on the average solvency
level of all the pension companies and funds. In the model, this formula cannot be used because
the solvency level is one of the company's decision variables. Besides, the model contains only the
company's own solvency and not its level in the whole TEL pension scheme. For these reasons, an
approximation is used based on the investment variables, since these are correlated with the general
solvency level of the system. The formula used in the model is

rtech
t = max{3% , γ0 + γ1 brt + γ2(lnSt − lnSt) + γ3(lnPt − lnPt)},

where brt denotes the bond yield, lnSt the logarithm of the stock price index and lnPt the logarithm
of the property price index at time t. The lnSt and lnPt are the expected values of the variables
lnSt and lnPt for year t calculated using average growth rates, de�ned in section 4. The formula was
found using a separate, more detailed simulation model where the actual formula for the technical
interest rate could be calculated. The approximation formula was �tted to the results of this model.
The estimated parameters γi, i = 0, . . . , 3 are all positive suggesting, that the technical interest rate
follows the long term bond yield and increases when the stock and property prices are above their
expected values. The technical interest rate plays a crucial part in the model because, to a great
extent, it determines the correlations between the investment variables and the reserves.

Cash �ows: Besides the investment yields, money �ows in the company as paid contributions
and out as pension expenditure. The pension expenditure is calculated depending on the number
of pensioners and the average funded pensions. The contributions depend on the total salaries
of the insured persons. The contribution rates, which vary by age and sex, are con�rmed by the
Ministry of Social A�airs and Health. The combined cash �ow depends on the development of the
wage index. The Finnish wage index from Statistics Finland is used to represent the average wage
development.

Solvency capital: The solvency capital is the amount by which the total assets of the company
exceed the sum of its reserves. It functions as a bu�er against the variation of the investment results.
Because the reserves of a pension insurance company must always be fully covered by its assets,
a non-positive solvency capital means a bankruptcy. Therefore, the development of the solvency
capital is an important factor in policy evaluations.

The legislation prescribes various minimum and target levels for the solvency capital of a pen-
sion company. The basic quantity is the solvency border, which depends on the structure of the
company's investment portfolio. The lower border of the target zone is twice the amount of the
solvency border. The position of the solvency capital relative to these levels is an indicator of the
solvency risk of the company.

5



3 Time series data
3.1 Historical data
As described above, the assets and liabilities of a Finnish pension company can be approximately
expressed in terms of the following seven economic factors

1. Three month Euribor sr;

2. Five year German government bond br;

3. Fixed mix stock index S;

4. Fixed mix dividend yield Y S ;

5. Property price index P ;

6. Rental yield Y P ;

7. Wage index W .

Our data set will consist of quarterly observations of these factors between 1991/1 - 2001/4. We
have chosen such a short period because of the capital movement liberalization in the EU area
during 1990, which resulted in signi�cant changes in economic conditions. The data prior to 1991
corresponds to a more regulated economy.

Three month Euribor has been quoted only since the beginning of 1999. We extend this series
backwards by using the German 3 month interest rate which is available from Datastream. Rental
index Rt, used in (2) is reported only once a year. Therefore linear interpolation for lnRt is used
to �ll in the gaps in the time series. For the wage index we use a seasonally adjusted series in the
model. We thus obtain an approximation of the full set of quarterly data for all the seven factors
between 1991/1 - 2001/4. We take this as a description of the statistical parameters in our asset
and liability model. The data is displayed in Figure 1.
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Figure 1: Time series.

3.2 Data transformations
The variations in dividend yield are roughly inversely proportional to the variations in the stock
price index; see Figure 1. This is due to the fact that the dividend yield is, by de�nition, the
dividend obtained per wealth invested in stocks where the latter follows the stock price index. Such
multiplicative e�ects are not well modeled by the linear time series models that we are about to
build. We will thus transform the dividend yield into the dividend index

Dt = StY
S
t .

Similarly, instead of modeling the rental yield directly, we model the rental index

Rt = PtY
P
t .

We perform one more transformation, which is to take natural logarithms of all the seven time
series, short-term interest rate, bond rate, stock price- , stock dividend-, property price-, property
rental- and wage indices. This guarantees that the model never predicts negative indices or interest
rates. The logarithmic time series are displayed in Figure 2.

3.3 Unit root tests
Before building an econometric model for the time series, we have to study their stationarity prop-
erties. We perform �ve unit root tests on x and its �rst di�erence. The tests are the augmented
Dickey-Fuller test (ADF)(Dickey and Fuller, 1981), PT and DF-GLS tests by Elliot et al. (1996)
and QT and DF-GLSu tests, suggested by Elliot (1999). In the ADF test the lag length has been
selected according to Schwarz information criterion with a maximum of �ve lags. The selected lag
length is subsequently applied in the other reported tests. The PT and DF-GLS tests are known to
have improved power and better small sample properties compared to the ADF test (Elliot et al.,
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Figure 2: Transformed time series.

1996). The QT and DF-GLSu tests di�er from the PT and DF-GLS tests in the way the initial
observation is treated in the derivation of the test statistics. In the QT and DF-GLSu tests the
initial observation is drawn from its unconditional distribution whereas in the PT and DF-GLS tests
it is set to zero; see Elliot (1999). The results of the unit root tests were robust against di�erent
lag length selection methods, such as Akaike information criterion and General to simple, where the
strategy is to select the highest signi�cant lagged di�erence length e.g. in the ADF regression, less
than or equal to some initial value. The value of z(t) in Table 1 indicates the deterministic terms
included in the unit root regressions. When z(t) = 1 a constant is included and with z(t) = (1, t) a
constant and a trend are included.

The results of the unit root test are displayed in Table 1. They clearly indicate that ln sr, ln br, ln S
and ln D need to be di�erenced once in order to achieve stationarity. This con�rms the �ndings of
Hall et al. (1992), Sherris et al. (1999), Kanioura (2001) and Montoro (2001) regarding the interest
rates. With lnP and lnR the evidence is not so clear. The non-stationarity of these series cannot
be rejected at 5% signi�cance level, except according to QT statistic the ln R is found to be trend
stationary. The analysis of ∆ln P and ∆lnR cannot reliably reject the non-stationarity of the
�rst di�erences either, which is not surprising considering the data used. The assumption, that the
�rst di�erence of the logarithmic price index is stationary seems reasonable on economic grounds.
Also, using quarterly data from 1970/1 to 1997/4, Barot and Takala (1998) concluded that ∆lnP
is stationary. The problem with property data are the long cycles that follow closely the general
economic conditions in Finland. During the deep recession of the 1990's the nominal property prices
fell almost 40% by 1993. As a consequence of strong economic boom the property prices started to
recover a few years later. These large long term �uctuations have caused the observed problems in
unit root testing. We follow the �ndings in Barot and Takala (1998) and treat lnP as a di�erence
stationary process. Accordingly, ln R is treated similarly. All the unit root tests suggest that the
logarithmic wage index is trend stationary. However, since all the other time series are treated as
di�erence stationary we adopt the same strategy for ln W . This assumption is supported by QT ,
DF-GLSu and ADF tests, Table 1. Moreover, Clements and Hendry (2001) argues that di�erence
stationary models are considerably more adaptive forecasting tools compared to trend stationary
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models, when deterministic shifts occur during the forecast period.
Table 1: Unit root test statistics. ***, **, * indicate the rejection of the unit root null at
1%, 5%, 10% signi�cance level.

Time Number Detrending,
series of lags z(t) = PT DF-GLS QT DF-GLSu ADF
ln sr 1 (1) 11.07 -0.34 10.92 -1.35 -1.43
ln br 1 (1) 10.48 -0.62 9.55 -1.67 -1.68
ln S 0 (1,t) 9 -1.69 5 -1.75 -1.62
ln D 0 (1,t) 20.85 -1.38 8.82 -2.32 -3
ln P 1 (1,t) 6.74∗ -2.08 3.51 -2.66 -3.22∗
lnR 1 (1,t) 5.88∗ -2.32 2.60∗∗ -2.7 -3.30∗
ln W 1 (1,t) 2.47∗∗∗ -3.81∗∗∗ 1.31∗∗∗ -3.88∗∗∗ -3.5∗

∆ln sr 0 (1) 1.25∗∗∗ -3.88∗∗∗ 2.06∗∗∗ -3.82∗∗∗ -3.97∗∗∗
∆ ln br 0 (1) 0.69∗∗∗ -5.18∗∗∗ 1.27∗∗∗ -5.39∗∗∗ -5.37∗∗∗
∆lnS 0 (1) 0.70∗∗∗ -4.94∗∗∗ 1.34∗∗∗ -5.85∗∗∗ -6.22∗∗∗
∆lnD 1 (1) 0.44∗∗∗ -6.04∗∗∗ 0.86∗∗∗ -6.05∗∗∗ -5.67∗∗∗
∆lnP 0 (1) 7.1 -1.2 5.48∗ -2.78∗ -2.44
∆ln R 0 (1) 6.07 -1.25 5.33∗ -2.5∗ -2.42
∆lnW 3 (1) 4.95 -1.37 1.69∗∗∗ -2.92∗∗ -5.2∗∗∗

4 A VAR-model with speci�ed drift
Denote the vector of logarithmic variables by

xt =




ln srt

ln brt

ln St

ln Dt

ln Pt

ln Rt

ln Wt




.

Based on the above observations, we assume that ∆xt is stationary. Our �rst attempt consists of
building a VAR model of the form

∆dxt =
k∑

i=1

Ai∆dxt−i + εt, εt ∼ N(0, Σ), (3)

where Ai ∈ R7×7, Σ ∈ R7×7 and ∆d denotes the shifted di�erence operator

∆dxt := ∆xt − d

with d ∈ R7; see also (Clements and Hendry, 1998, page 160). This format is convenient in that
the parameter vector d determines the average drift in simulations. Indeed, if ∆dxt is stationary,
(3) gives

E[∆dxt] =

(
k∑

i=1

Ai

)
E[∆dxt],
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so if (3) is free of unit roots, E[∆dxt] = 0, or

E[∆xt] = d. (4)

The above format is particularly natural for modeling indices.

Example 1 If xt is the scalar process ln St, and Ai = 0, (3) becomes

∆ln St = d + εt, εt ∼ N(0, σ),

which is a discrete-time version of the geometric Brownian motion model of stock price; see for
example Hull (2000).

Moreover, according to Hendry and Clements (2001) modeling di�erences instead of levels gives
protection against structural breaks in data generating process. VAR-models for di�erences of
logarithms of economic time series have been built for example by Eitrheim et al. (1999) for the
Central Bank of Norway.

Looking only at our (far from ideal) data, might suggest that there is a strong negative drift in
the interest rates. However, we believe that E[∆srt] = E[∆brt] = 0 in the long run, so we choose
dsr = dbr = 0 rather than estimating these parameters from the data. On the other hand, the
dividend yield satis�es

∆lnY S
t = ∆ lnDt −∆lnSt = ∆d lnDt −∆d lnSt + dD − dS ,

so if ∆d ln Dt and ∆d ln St follow (3), and if (3) is stationary, we have

E[∆ lnY S
t ] = dD − dS .

Since there is no reason to believe that the dividend yield would have a consistent drift, one way or
the other, we require dD = dS . Similar reasoning for the rental yield suggests dR = dP . It seems
thus reasonable to assume that d has the form

d =




0
0
dS

dS

dP

dP

dW




. (5)

Simply estimating d from the data would not result in a vector of the form (5). This is a clear case
where, �expert� information seems more reliable than statistical information.

The choice of the values of the remaining drift parameters dS , dP and dW is not quite as clear.
Bewley (2000) and Landon-Lane (2000) have presented methods to restrict d when estimating the
parameters of (3). In our case, one could make the restriction that d has to be of the form (5) and
then the remaining parameters could be estimated from the data. In practice, however, pension
companies' managers often have their own estimates for the average drifts for the future development
of various time series. Such estimates are rarely based on statistical data alone. Accordingly, we
will take dS , dP and dW as user-speci�ed parameters. This not only provides a convenient way of
incorporating expert views into the model, but it also simpli�es the estimation process considerably;
see below.
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Our experiments below will be based on the choice

d =




0
0

0.0114
0.0114
0.007
0.007
0.009




.

The value of dS corresponds to 4.6% average of yearly log-return1. It was argued in Barot and Takala
(1998), that in the long run, there is no excess return in residential property prices over in�ation
rate. However, we believe that property investments will gain some real return over in�ation and
set the yearly growth rate of lnP to 2.8%, which is 0.8% over the in�ation target of the European
Central Bank. Finally, the yearly growth rate of ln W is set to 3.6%, which is 1.6% over the in�ation
target.

4.1 Estimation
Having speci�ed the drift parameter d, it remains to choose the lag length k and the matrices Ai

and Ω in model (3). We use PcFiml 9.0 for computing test statistics and parameter estimates; see
Doornik and Hendry (1997). We start by selecting the appropriate lag length k in our VAR-model.
Table 2 presents the lag length reduction test results starting from k = 4. Since, the sequential
F-tests cannot reject the reductions to k = 1 and since the Schwarz (SC) and Hannan-Quinn (HQ)
information criteria in Table 3 have minimum values at k = 1, we select k = 1.

Table 2: Lag length reduction tests

System reduction
from k = to k = Test statistic p-value

2 1 F(49,126) = 1.342 0.0982
3 2 F(49, 90) = 0.8912 0.6663
4 3 F(49, 55) = 1.0998 0.3645

Table 3: Information criteria values

k = np log-likelihood SC HQ
1 49 1167.7489 -48.865 -50.115
2 98 1214.5735 -46.779 -49.28
3 147 1258.4598 -44.56 -48.31
4 196 1334.5532 -43.805 -48.805

Note: np = number of estimated parameters

We then estimate A1 and Σ with the method of maximum likelihood (ML), starting with an
unrestricted model and carry out an iterative procedure, where one insigni�cant parameter per
iteration is removed and ML estimates for the remaining parameters are recomputed until all in-
signi�cant coe�cients at 5% signi�cance level have been removed. For a comparison and discussion

1In our model, the usual return St/St−1 is log-normally distributed with mean exp(dS + 1
2
σ2

S), where σS is the
stock price volatility (Hull, 2000). Our choise of dS gives roughly 7% average yearly return when σS = 20%.
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of di�erent model selection criteria; see Brüggemann and Lütkepohl (2000) and Lütkepohl (1991).
The resulting estimates of A1, their standard errors SE(A1), residual correlation matrix C and
residual standard deviations σ are

A1 = 10−1




3.665 4.887 0 0 0 0 0
0 0 0 0 7.392 0 0
0 0 0 0 0 0 0
0 0 -2.832 0 9.122 0 0
0 0 0.571 0 6.999 0 0
0 -0.162 0 0 0 8.538 0
0 0 0 0 0 -0.825 8.424




SE(A1) = 10−1




1.269 1.428 0 0 0 0 0
0 0 0 0 3.234 0 0
0 0 0 0 0 0 0
0 0 0.842 0 2.811 0 0
0 0 0.273 0 0.868 0 0
0 0.080 0 0 0 0.619 0
0 0 0 0 0 0.246 0.521




C =




1
0.0761 1
-0.0157 -0.0201 1
-0.1976 -0.3084 0.4780 1
-0.0341 -0.0683 0.3192 -0.0275 1
0.1519 0.1084 -0.1433 -0.0111 0.0300 1
-0.1108 -0.2356 0.0680 0.4057 -0.0222 -0.2113 1




σ = 10−2
[

7.5639 7.6128 11.1010 7.7848 1.9880 0.4381 0.1869
]

The likelihood ratio test of over-identifying restrictions χ2(38) = 37.26[0.503], clearly accepts
the made reductions. Table 4 reports the equation residual test results, where the numbers are
the p-values of the test statistics. The reported tests are the F -test for 4th-order residual auto-
correlation, χ2 normality test, F -test for autocorrelated squared residuals and F -test for residual
heteroscedasticity respectively, see Doornik and Hendry (1997). The results reveal some autocorre-
lation problems in ∆ln sr,∆lnS and ∆lnD, which is quite typical for �nancial time series data.
The autocorrelation problems were persistent even in models with longer lag lengths, suggesting
that VARMA models, (see e.g. Lütkepohl and Poskitt (1996), Lütkepohl and Claessen (1997)) could
be more appropriate for the given data set. The residual normality assumption is rejected for ∆lnR
due to one negative outlier. The residual distribution of ∆ln W has fatter tails compared to normal
distribution, which would imply larger variance for the wage index forecasts than observed with
normally distributed errors. This in turn would mean that the reserves would exhibit little larger
�uctuations. However, we believe that this will not considerably a�ect the e�cient asset allocation
decisions obtained for the ALM problem in Section 8.
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Table 4: Equation residual diagnostics

Equation AR 1-4 F Norm χ2 ARCH 1-4 F HET F
∆ln sr 0.0069 0.5134 0.7492 0.0984
∆ln br 0.2533 0.6668 0.7999 0.9590
∆lnS 0.0150 0.2902 0.9625 0.7573
∆ lnD 0.0393 0.2335 0.8165 0.9430
∆lnP 0.0630 0.3898 0.1250 0.1043
∆lnR 0.0727 0.0000 0.5932 0.5895
∆lnW 0.1273 0.0042 0.7088 0.6960

4.2 Simulation experiment
To test the long term behavior of the model we performed 250 twenty-year simulations with the
estimated model (DVARmod) started from

x0 = ln




3.35
4.42
279.6
843.7
118.0
839.8
140.6




, x−1 = ln




4.16
4.33
242.9
776.0
117.7
831.3
139.1




,

which was the situation in the beginning of 2002. For comparison we performed equivalent simu-
lations with a model (DVARsys) where all the regressors are retained and the drift parameters are
estimated without restrictions. The outcomes of the simulations for the DVARmod and DVARsys

models are displayed in Figures 3 and 4 respectively. The outcomes of the DVARsys simulations
highlights the importance of correctly specifying the form of the drift vector, see Figure 4. The short
term interest rate is rapidly declining throughout the simulation period due to estimated negative
drift. Also, the log interest rate spread, log dividend and rental yields are trending due to di�erences
in the estimated drifts of the underlying time series. The average drifts of the DVARmod were what
we desired, but in some respects the model behaves strangely: in many scenarios the logarithmic
short rate, log interest rate spread, log dividend and rental yields have deviated unrealistically from
their usual values; see Figure 3.

Despite the fact that the drift parameters for interest rates were set to zero in DVARmod, the
short term interest rate is generally declining throughout the simulation period. This shows how
strongly the future distributions depend on the initial values of the variables in a VAR model. This
phenomenon could be avoided by changing the initial values, so that the simulation starts from some
neutral conditions, as suggested by Lee and Wilkie (2000), but then the relevant market information
essential to the present investment decisions is lost.

The problems even after specifying the drift vector result from the fact that the above models
only look at the di�erences ∆xt and completely ignores the actual values of xt, which is what we
are really interested in. As demonstrated by the simulations, the average values for xt are largely
determined by the initial values x0 and x−1, which may be poor estimates of the future. This leads
us to consider VEqC-models, which avoid this kind of shortcomings.
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Figure 3: DVARmod simulations.
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Figure 4: DVARsys simulations.

5 A VEqC-model with speci�ed drift and cointegration relations
A vector equilibrium correction model is obtained form the VAR-model for di�erences by adding
an �equilibrium correction term� to the right-hand side of the equations. In the case of our drift-
speci�ed VAR-model we get the model

∆dxt =
k∑

i=1

Ai∆dxt−i + α(β′xt−1 − µ) + εt, εt ∼ N(0, Σ), (6)
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where β ∈ R7×l, µ ∈ Rl and α ∈ R7×l. The additional term takes into account the long-term
behavior of xt around statistical equilibria described by the linear equations β′x = µ. It is assumed
that, in the long run,

E[β′xt] = µ, (7)
and that if xt deviates from the equilibria (due to shocks in economic conditions) it will tend to move
back towards them. The matrix α determines the speed of adjustment towards the equilibria. In this
sense, VEqC-models incorporate long-run equilibrium relationships (often derived from economic
theory) with short-run dynamic characteristics deduced from historical data. VEqC-models for
logarithms of economic time series have been built for example by Eitrheim et al. (1999) for the
Central Bank of Norway and by Anderson et al. (2000) for the Federal Reserve Bank of St.Louis.
The results of Eitrheim et al. (1999) indicate that the inclusion of equilibrium-correction feedbacks
may improve the forecast accuracy of VAR-models for di�erences, especially in the long-run.

The equilibrium correction term is particularly convenient when modeling interest rates.

Example 2 If xt is the scalar process ln rt, d = 0 and Ai = 0, the model becomes

∆ln rt = α(ln rt−1 − µ) + εt, εt ∼ N(0, σ).

With α < 0, this is a discrete-time version of the mean-reverting interest rate model of Black and
Karasinski (1991). With α = −1, we obtain the memoryless model

ln rt = µ + εt, εt ∼ N(0, σ).

Besides mean reversion e�ects for interest rates, the equilibrium correction term is useful also
in controlling long-term averages of the interest rate spread and the yields, which behaved unreal-
istically in the simple VAR-model of the previous section. We follow the two-step Engle-Granger
methodology (Engle and Granger (1987)) by �rst specifying the equilibrium relations, and then
estimating A, α and Σ from the data. Note that by (4) and (7), the matrix β has to satisfy the
consistency condition

β′d = β′E[∆xt] = E[β′∆xt] = E[∆(β′xt)] = 0. (8)
Based on our experiences with the VAR-model, we propose the following four equilibrium rela-

tions.

1. ln srt = µmr. Similarly to mean reverting interest rate models, this suggests that, in the
long run, the short rate drifts towards certain equilibrium level. Although, the unit root tests
in Section 4 indicated ln sr to be non-stationary (due to the changing economic conditions
during the 1990's), many studies have concluded that interest rates are mean reverting and
stationary in the long run; see for example Wu and Zhang (1996) and Fama and Bliss (1987).

2. ln brt − ln srt = µsp. This relation means that the �geometric interest rate spread� brt
srt

has a
long term equilibrium value. Various studies have concluded that the di�erence br− sr of the
long and short term interest rates is stationary; see for example Campbell and Shiller (1987),
Bradley and Lumpkin (1992) and Hall et al. (1992). Campbell et al. (1997) found also the
logarithmic transformation ln(1 + br)− ln(1 + sr) of the interest rate spread to be stationary.
To our knowledge, only (Kanioura, 2001, page 5) has studied the geometric spread. She found
it to be stationary in the United States.

3. ln Dt − lnSt = µdy. Writing this as lnY S
t = µdy, we see that it corresponds to the existence

of an equilibrium value for the dividend yield. This is supported by the �ndings of Campbell
and Shiller (1988), Campbell et al. (1997) and Wilkie (1986).
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4. ln Rt − lnPt = µry. Similarly to dividend yield, this can be written as lnY P
t = µry which

corresponds to a stationary rental yield.

These choices correspond to

β =




1 −1 0 0
0 1 0 0
0 0 −1 0
0 0 1 0
0 0 0 −1
0 0 0 1
0 0 0 0




. (9)

This satis�es (8) with any d of the form (5). In fact, any d satisfying (8) for this choice of β has to be
of the form (5). Similarly to the drift vector d, we take the equilibrium values µ in the cointegration
relations as user-speci�ed parameters.

The historical values of βxt are displayed in Figure 5. In our time frame 1991/1 � 2001/4, these
series do not pass the stationarity tests on conventional signi�cance levels. However, in the light
of the above references and our own intuition, we believe that these series will be stationary in the
long run.

In our experiments, we use the β in (9) and

µ =




ln 3.7
ln 1.2
ln 2.5
ln 7.0


 .

This corresponds to long term equilibrium values of 3.7%, 1.2%, 2.5% and 7% for short rate,
geometric interest rate spread, dividend yield and rental yield, respectively.
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Figure 5: Historical values of the cointegration vectors. The horizontal lines mark the expected
equilibrium levels µ.
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5.1 Estimation
Having speci�ed the drift parameter d and the cointegration relations, we �nd the maximum like-
lihood estimates of the remaining parameters A, α and Σ, using the iterative model reduction
procedure like in section 4.1. This results in the following values.

A1 = 10−1




3.672 3.467 0 0 0 0 0
0 2.855 0 0 0 0 0
0 0 0 0 0 0 -59.11
0 0 -2.425 0 0 0 0
0 0 0.629 0 3.617 0 0
0 -0.209 0 0 -0.663 8.533 0
0 0 0 0 0 -0.638 8.712




SE(A1) = 10−1




1.222 1.466 0 0 0 0 0
0 1.469 0 0 0 0 0
0 0 0 0 0 0 26.50
0 0 0.836 0 0 0 0
0 0 0.231 0 1.065 0 0
0 0.082 0 0 0.222 0.682 0
0 0 0 0 0 0.246 0.589




α = 10−1




0 0.964 0 0
-1.061 -1.499 0 0
0 0 0 0
0 0 -1.449 0
-0.238 0 0 0.637
0 0.080 0 0
0 0 -0.024 0




SE(α) = 10−1




0 0.415 0 0
0.414 0.781 0 0
0 0 0 0
0 0 0.352 0
0.067 0 0 0.160
0 0.032 0 0
0 0 0.011 0




C =




1
0.1308 1
-0.0606 0.1332 1
-0.2764 -0.1978 0.5302 1
0.0092 0.0184 0.354 -0.0796 1
0.0911 0.1526 -0.1329 -0.0675 -0.0102 1
-0.174 -0.1929 0.0641 0.3586 0.0113 -0.2396 1




σ = 10−2
[

7.3288 7.4645 10.804 7.8889 1.6589 0.4085 0.1826
]

Some remarks on α:

� The �rst cointegration vector has a signi�cant negative coe�cient in bond rate equation.
This can be interpreted as a reaction to interest rate expectations: when the short rate is
above its long term average µsr, it is expected to decline in the long run, which causes a
drop in the bond rate. Similarly, short rate being below its average, pushes the bond rate
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up. The �rst cointegration vector appears also in the property price equation with a negative
sign. This implies that low interest rates increases property prices and vice versa. This may
result from the fact that low interest rates decrease the loan servicing costs, which encourages
people/companies to invest in properties.

� The geometric interest rate spread enters the short rate equation with a positive sign (which
is in line with the expectations hypothesis; see e.g. Campbell et al. (1997)), and the bond rate
equation with a negative sign (which in turn contradicts the expectations hypothesis). If the
spread is above its average value µsp, these terms push the interest rates closer to each other,
and if it is below µsp, they push the short rate down and the bond rate up. This is in line
with the �ndings of Campbell (1995) and (Campbell et al., 1997, Section 10.2.2).

� The third cointegration vector, the log dividend yield, appears in the dividend index equation
with a negative sign, so large values of the dividend yield cause a decrease in the dividend
index, and vice versa. This e�ect is similar to �ndings in Campbell and Shiller (1988). It
causes the dividend index to follow the movements in the stock price index, keeping the
dividend yield in a reasonable range.

� The log rental yield enters the property price equation with a positive sign, with the interpre-
tation that large values of the rental yield anticipates an increase in property prices, and vice
versa.

Table 5 reports the equation residual test results for the VEqC-model. Again, the numbers
denote the p-values of the di�erent test statistics. The results are similar to those obtained with
the VAR-model in Section 4. The tests reveal some autocorrelation problems in ∆ln sr,∆ lnS and
∆lnD and again the normality assumption is rejected in the residuals of ∆lnR and ∆lnW due to
few outliers.

Table 5: VEqC-model equation residual diagnostics

Equation AR 1-4 F Norm χ2 ARCH 4 F HET F
∆ ln sr 0.0029 0.3471 0.9232 0.8173
∆ln br 0.1698 0.8191 0.9030 0.9862
∆ lnS 0.0070 0.2516 0.8918 0.8439
∆lnD 0.0037 0.3504 0.6661 0.8877
∆ lnP 0.0551 0.2290 0.6195 0.8498
∆lnR 0.1725 0.0004 0.5072 0.9563
∆ lnW 0.0530 0.0028 0.5326 0.9123

5.2 Simulation experiment
We computed 250 twenty-year simulations with the above VEqC-model (VEqCmod) started from
the same initial values as in Section 4.2. The equilibrium correction terms e�ectively control the
interest rates and the yields that were problematic in the DVAR models; see Figure 6. The mean
reversion apparent in Figure 6 is caused by the inclusion of the equilibrium correction terms, which
considerably reduce the variance of the interest rates as well as the dividend and rental yields.

6 Forecast tests
We test and compare the performance of our VEqCmod model with three rival models in an out-of-
estimation-sample forecast experiment. The forecast test period covers seven new quarterly obser-
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Figure 6: VEqCmod simulations.

vations from 2002/1 to 2003/3. Although the short test period does not allow us to draw signi�cant
conclusions concerning the forecast performance of di�erent models, the test gives us an indica-
tion how the developed VEqCmod model would have performed in volatile �nancial markets during
2002�2003. For comparison, we report the results of the forecast tests for DVARmod, DVARsys and
VEqCsys models. VEqCsys denotes an unrestricted vector equilibrium correction system where the
drifts and the equilibrium values for the equilibrium correction relations of Section 5 are estimated
from historical data without restrictions.

We compare the four models' forecast accuracy by performing tests for structural stability (see
Lütkepohl (1991)) during the forecast period T + 1, . . . , T + h, where T denotes the forecast origin
and h = 7 is the length of the forecast horizon. We calculate a test statistic of the form

λh =
h∑

i=1

u′T+iΣ
−1uT+i ∼ χ2(Nh), (10)

where uT+i can be interpreted as the 1-step ahead forecast errors as we move through the forecast
period, Σ is the residual covariance matrix as in (3) and N = 7 is the dimension of the model. The
null hypothesis for the test is that the process generating (∆xT+1, . . . , ∆xT+h) is the same as that
which generated (∆x1, . . . ,∆xT ) and the hypothesis is rejected if the forecasts di�er too much from
the actually observed values, see e.g. Lütkepohl (1991). The values of the approximate χ2 and an F
variant test statistics, where the unknown quantities in (10) are replaced by estimated values (see
e.g. Lütkepohl (1991) or Clements and Hendry (1998)) together with the p-values of the tests are
reported in Table 6.
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Table 6: Forecast test statistics
Model χ2 p-value F p-value
DVARsys 46.11 0.59 0.94 0.58
DVARmod 54.94 0.26 1.12 0.35
VEqCsys 94.39 0.00 1.93 0.03
VEqCmod 47.47 0.54 0.97 0.55

The null hypothesis of structural stability is rejected only for VEqCsys at the 1% and 5% signi�cance
levels according to χ2 and F statistics, respectively, and VEqCmod and DVARsys seems to produce
the smallest forecast errors during the test period. Figure 7 displays 1- to 7-step ahead forecasts
with their approximate 95% con�dence intervals and the actually observed values of xt during the
forecast period for all the four models. The main reason for the forecast failure of VEqCsys is
apparent from Figure 7(c), where the actually observed value for ln sr and ln S are clearly outside
their forecast con�dence intervals. For the other three models there are no striking di�erences in the
forecast performance, although the con�dence intervals for the VAR-models (Figures 7(a) � 7(b))
are wider than for the VEqC-models (Figures 7(c) � 7(d)). These �ndings together with the results
of the long term simulation experiments of Sections 4.2 and 5.2 give support to our approach of
specifying the drifts and equilibrium values for the equilibrium relations. It is also worth noting
that the VEqC-models contain more economic insight than the pure DVAR models and especially
the parameters of the VEqCmod model are easy to interpret. In the next Section we will use the
developed VEqCmod-model in long term return and liability simulation.

2002 2003

.5

1

1.5

2
ln sr

2002 2003
1

1.5

2
ln br

2002 2003

5.5

6

6.5 ln S

2002 2003

6.5

7

ln D

2002 2003
4.5

4.75

5
ln P

2002 2003

6.7

6.8

6.9
ln R

2002 2003

4.95

5

ln W

(a) DVARsys.

20



2002 2003

.5

1

1.5

2
ln sr

2002 2003
1

1.5

2
ln br

2002 2003

5.5

6

6.5 ln S

2002 2003

6.5

7

ln D

2002 2003
4.5

4.75

5
ln P

2002 2003

6.7

6.8

6.9
ln R

2002 2003

4.95

5

ln W

(b) DVARmod.

2002 2003

.5

1

1.5

2
ln sr

2002 2003
1

1.5

2
ln br

2002 2003

5.5

6

6.5 ln S

2002 2003

6.5

7

ln D

2002 2003
4.5

4.75

5
ln P

2002 2003

6.7

6.8

6.9
ln R

2002 2003

4.95

5

ln W

(c) VEqCsys.

7 Long-term return and liability simulations
We will �rst study the behavior of total returns of the considered asset classes. This will be done by
performing 1000 twenty-year simulations with the above model started from the initial values given
in Section 4.2, and computing the corresponding yearly total returns for each asset class. The total
return of an asset is de�ned as the sum of the change-in-value and the cash income components.
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Figure 7: 1- to 7-step ahead forecasts with 95% con�dence intervals and observed values of xt for
the four models.

Using the approximations of Section 2.1, we get the following expressions for the total returns.

Cash: √
srtsrt−1,

Bonds:
(

1 + brt−1

1 + brt

)D

+
1
2
(brt−1 + brt),

Stocks: St

St−1
+

1
2

(
Dt−1

St−1
+

Dt

St

)
,

Property: Pt

Pt−1
+

1
2

(
Rt−1

Pt−1
+

Rt

Pt

)
− 0.03,

Loans: 1
2
(brt−1 + brt).

Figure 8 displays the development of the means and standard deviations of the yearly total
returns for cash, bonds, stocks, property and loans, based on 1000 twenty-year simulations. During
the �rst few years, the average returns go through large changes, after which they converge to their
equilibrium values. The variations in the average returns towards the end of the simulation horizon
are simply e�ects of the �nite sample size.

The initial conditions for the simulation a�ect the returns and correlation structures considerably
in the �rst few years as the model starts from a disequilibrium. The correlations between the total
returns of the asset classes at the end of years 1 and 20 are shown in Figure 9. Even the signs of
some correlation coe�cients change between years 1 and 20. Once the model converges back to an
equilibrium the yearly correlation structure becomes stable.

The reserves and cash-�ows can be computed based on the values of the time series according to
the rules outlined in Section 2.2. The results of 1000 20-year simulations are displayed in Figure 10.
The reserves grow consistently over time but the variation in the projected cash �ows at the horizon
are substantial. The decreasing trend in cash �ows after a few years results from the retirement of
the large age groups.
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Figure 8: Simulated total returns and their volatilities for Cash (�), Bonds (•), Stocks (×), Property
(N) and Loans (✳) with VEqC(mod)

Cash Bonds Stocks Property Loans
Cash 1
Bonds -0.530 1
Stocks 0.014 -0.153 1

Property -0.123 -0.007 0.553 1
Loans 0.530 -0.999 0.153 0.007 1

(a) Year 1.

Cash Bonds Stocks Property Loans
Cash 1
Bonds 0.240 1
Stocks -0.060 -0.133 1

Property -0.340 -0.113 0.515 1
Loans 0.763 0.229 0.036 -0.218 1

(b) Year 20.

Figure 9: Simulated total return correlations.
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Figure 10: Simulated Reserves and Cash �ows.

8 Evaluation of dynamic portfolio allocation strategies
Given a stochastic model for the asset returns and the liabilities, we would like to compute the
distribution of a company's solvency in the future. This is a nontrivial task since the future solvency
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depends on the values of the reserves and cash �ows as well as the investment strategies that the
company employs now and in all the possible states of the world in the future. Moreover, the Finnish
legislation imposes complicated regulations that the companies' must take into consideration in their
strategic asset allocation, see Hilli et al. (2003). We evaluate the company's long term solvency by
considering two widely studied decision rules for dynamic portfolio allocation, namely �xed-mix and
portfolio insurance strategies; see e.g. Perold and Sharpe (1988), Cesari and Cremonini (2003).

In �xed-mix strategy the portfolio is always rebalanced to a given (�xed) asset distribution
(mix). So a �xed-mix strategy is given by a vector of numbers giving the �xed percentages that the
asset allocations should satisfy now and in the future. In the present setting this is a vector of �ve
numbers giving the portfolio weights for cash, bonds, stocks, property and loans.

The proportion of loans in the investment portfolio each year is kept �xed at 0.145% of the
reserves, which corresponds to 11.5% weight in the initial asset portfolio. This means that the
proportion of loans in the portfolio decreases if the total value of the investments increases faster
than the value of the reserves and vice versa. We will examine by simulation the performance
of di�erent asset mixes obtained by di�erent combinations of the following weights applied to the
remaining portfolio.

Cash: wC ∈ {0, 0.01, . . . , 0.03}, ;
Stocks: wS ∈ {0, 0.025, . . . , 0.5}, ;

Property: wP ∈ {0.1, 0.15, . . . , 0.4}, ;
Bonds: wB = 1− wC − wS − wP .

The upper bounds for stocks and property are statutory restrictions and the bond investments will
be chosen so that the total weights in the remaining portfolio sum up to 100%.

The used portfolio insurance (PI) strategy is based on the constant proportion portfolio insurance
framework of Perold and Sharpe (1988) and Black and Jones (1988). The portfolio weights for cash
and property are varied according to the same rules as in the �xed-mix case. The rest of the wealth
is allocated between the more liquid assets, bonds and stocks. The proportion of stocks in the
portfolio at time t is given by,

wS,t =

{
min

{
(1− wC − wP )min{ρ(Wt−Lt

Wt
) , 1} , 0.5

}
if Wt − Lt ≥ 0,

0 if Wt − Lt < 0,

where ρ is a risk tolerance parameter indicating how the proportion invested in stocks increases with
the company's solvency ratio, (Wt − Lt)/Wt, where Wt and Lt denote the values of the company's
assets and reserves in the beginning of year t, respectively. The percentage invested in stocks is
a constant multiple of the company's solvency ratio, which was close to 22% initially, with higher
values of ρ resulting in higher stock market allocations and again at most 50% of the total wealth
can be invested in stocks. When the company's wealth Wt is less than the value of its reserves Lt

(�oor) the stock market allocation is set to zero and the remaining wealth is invested in bonds. PI
strategy seems appropriate for a pension company because it allocates more wealth to risky assets,
stocks when the company's solvency ratio improves and reduces the stock market exposure as the
company approaches insolvency.

For each �xed-mix portfolio combination and for PI strategies with varying risk tolerances,
ρ ∈ {1, 1.5, . . . , 20}, we perform 1000 simulations with a 20-year time horizon. Figure 11 displays
the average solvency capital/reserves ratio in 20 years versus the insolvency probability for each
�xed-mix portfolio and PI strategy based on the sample of 1000 scenarios. Insolvency means that
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the solvency capital has become negative at least once during the 20-years. The best PI strategies
clearly dominate the best performing �xed-mix strategies at all reasonable risk levels.

The lower boundaries of the clouds of points can be interpreted as the e�cient frontiers of the
�xed-mix and PI strategies, which are displayed in Figure 12. For insolvency probabilities between
0�5% the e�cient PI strategies improve the average solvency capital-reserves ratios from 15 to 35%
compared to �xed-mix portfolios, and the performance gap between the two methods decreases as
the bankruptcy risk increases.
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Figure 11: Average solvency capital/reserves at the horizon against insolvency probability for dif-
ferent �xed-mix (◆) and PI (◦) strategies.
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Figure 12: E�cient frontier of �xed-mix (◆) and PI (◦) strategies.

The compositions of e�cient �xed-mix portfolios and initial portfolio weights for e�cient PI
strategies are displayed in Figure 13 for varying insolvency probabilities. All the e�cient �xed-mix
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and initial PI portfolios have at least 35% of the wealth invested in property and in some portfolios
a small fraction of money invested in cash. Due to PI strategies' ability to react dynamically to
changing solvency situations, the initial stock market allocation in PI portfolios can be kept much
higher compared to �xed-mix portfolios with similar insolvency probabilities.
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(a) Fixed-mix portfolios.
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(b) PI strategies with di�erent values of ρ (right scale, solid
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Figure 13: E�cient portfolios' weights for Cash (�), Bonds (•), Stocks (×) and Property (N).

9 Conclusions
This paper proposed a stochastic model for future development of the main stochastic factors that
are of interest in asset liability management of a Finnish pension company. Some of the most critical
parameters in the model, namely the drift rates and certain long-term equilibrium values, are taken
as user-speci�ed instead of relying completely on statistical information. This is essential when
the available data displays drifts or other characteristics that are believed to change in the future.
The cointegration relations allow the modeling of causalities derived from economic theories and/or
statistical studies.

The presented model should, of course, not be taken as the only possible model of reality. We
would like to emphasize more the general model building procedure that combines statistical infor-
mation with user-speci�ed characteristics. In the proposed approach many variations are possible.
For example, the model for bond investments returns is only a crude approximation of reality and
it could probably be made more accurate by more careful analysis. Also, in modeling property
investments, one could try to replace the residential property price index by something that better
describes the value of the property investments of a Finnish pension company. Finally, instead of
modeling nominal values of the time series, one could incorporate in�ation to the model and model
the real values of the time series2. An alternative possibility for modeling the relation between
in�ation and interest rates would be to use the fact that in�ation is strongly related to logarithmic
changes in the wage index which is already in our model. However, our model does not show any
direct relation between the interest rates and the wage index. This is probably due to the fact that
the three month Euribor series was extended backwards by using data from Germany while the
wage index is that of Finland.

The decision rules for dynamic asset allocation considered in Section 8 give a fairly good approx-
imation of the company's expected future solvency and bankruptcy risks, but are not of course the
best way of designing investment strategies for a pension company. In Hilli et al. (2003) we describe

2The authors are grateful to professor David F. Hendry for suggesting this.
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an optimization model that better takes into account the freedom to update the portfolio in the
future as well as all the relevant constraints that the Finnish legislation imposes. In this approach,
known as stochastic programming, one tries to �nd the best initial portfolio given the objectives of
the company, various portfolio (and other) constraints and the stochastic model for the uncertain
factors.
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