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Abstract - We study box-counting on finite fractal sets and investigate the

convergence of the multifractal f{a) spectrum when varying the degree of
resolution. As model of a two-dimensional multifractal aggregate, we use a

simple two-scaled snowflake fractal for which the flar) spectrum may be
found analytically---the exact result is compared with the box-counting
solution on the finite levels.



Introduction

Most previous characterizations of multifractals [1, 2] have brought a
global description of the scaling properties through the determination of the

continuous spectrum of scaling indices o and their densities f(o). The fla)
spectrum is related to the generalized fractal dimension D, the Renyi
dimension [3], via a Legendre transformation [1].

A great deal of theoretical and experimental interest has developed in a
variety of non-equilibrium growth processes and pattern formation (see e.g.,
[4] - [7] and references therein). Much attention has been paid to the study of
the geometrical properties of highly ramified clusters formed in apparently
unrelated physical, chemical and biological processes. Most of the numerical
analysis of growing patterns have focused on the particular meaningful
dimensions: the Hausdorff dimension Dy, the information dimension Dj
and the correlation dimension D). Only very recently has more attention
been paid to the computation of the whole spectrum of generalized
dimensions [8], [9]. Self-similar fractals are fractals such that all the D;'s

coincide i.e., their f(a) spectrum displays singularities of unique strength
a = Dg. In contrast, multifractals are usually characterized by a monotonic
decreasing dependence of D versus ¢; hence o is no longer unique but may

take on values in a finite range [@min, ®max], while f{a) turns out to be, in
general, a single humped function with Dy as its maximum. Measurements

of the D's and the f(e) spectrum provide global statistical information about
the scaling properties of fractals. The scaling exponent o. measures how fast
the mass within a box decreases, as the box-size is reduced. It therefore
measures the "strength of a singularity” for box-sizes I — 0, i.e., in the
thermodynamic limit of an infinite number of points within a finite

volume. The f(a) spectrum therefore identifies the underlying singularities
and quantifies their relative contributions.

To calculate the generalized dimensions and the f(a) spectrum, box-
counting is perhaps the simplest and the most common method. In an

earlier work [10], we have studied the f{a) construction via box-counting on

a two-scaled Cantor set, and showed how to obtain the optimal f(a)
spectrum by varying the box-sizes. In the present paper we apply the general
ideas of [10] to the study of finite-size effects on a slightly more realistic
model of a fractal aggregate; a simple two-scaled snowflake fractal. This two-
dimensional extension of the Cantor set model used in [10] is a further
example of a finite fractal consisting of a finite number of objects with finite
sizes. We investigate the effects of finite particle size in box-counting by

varying the degrees of resolution, and calculate the optimal f(a) spectrum.
We also use the box-counting solution to calculate the rate of convergence

of the flar) approximation. With our specific choice of length-scales, it is
possible to find analytic expressions for the generalized dimensions Dg and

the flo) spectrum and we may solve the complete box-counting problem. It
is then easy to compare successive approximations of the f(a) spectrum with



the exact result, and thereby calculate the convergence rate of the f(a)
approximations.

Box counting

To use box-counting, we cover the d-dimensional fractal object with a grid of
boxes, all with the same size 14, and calculate the probability to find a
measure in each box. We use the so called fixed radius (fixed volume)
method in contrast to the fixed mass method [11]. In general, the optimal
dividing of the fractal object is found by minimizing the number of boxes
with a non-zero measure. This is obvious, since the approximation of the
Hausdorff dimension given by box-counting on any level n is defined as
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where N(n)(1) is the number of non-empty boxes of length [, and the fact that
the box-counting approximation of Dy is always greater than the exact
value of Dy. The reason for the unequality Do(®) > Dy is that all boxes, filled or
unfilled, are taken with same weight, since ¢ = 0. So by minimizing N(*)(1),
we can find the best approximation of Dy (and D, for g > 0) on any level n.

If we let N be the total number of non-empty boxes, M the total number
of particles (the total mass), and N; the total number of measures (particles)

in the i’th box, the flo)-spectrum is given by [1;10]

fla(q) =qo(q)—1(q) ()
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As was pointed out in [10], it is in general impossible to identify single
particles in an observed image. Instead one may define a smallest "particle”
size, or resolution, being an estimate of the size of the smallest observable
single "particle", and then create a new image built up of these "particles”.
This procedure gives a smallest relevant grid size for the box-counting. If
the image is digitized, there is a natural finest resolution given by the
digitization grid.

o(q) = (4)



Exact box-counting on the snowflake fractal

We will now study the box-counting problem for the finite snowflake
fractal on an arbitrary level n. The snowflake fractal in Fig. 1 can be

generated by the operator T defined by

Tx = 4xl +xL 5)

Figure 1. A two-dimensional snowflake fractal with two
rescalings. The fractal is constructed by dividing a square of size
one into 16 equal squares of size 1/4 and removing all squares
except the four in the middle, which now form a large square, and
the four in the corners. Successive dividings of each new squares
into five new ones give this pattern. The fractal object is shown
on level four, i.e., after four successive divisions.

If we let the operator act on a unit square, ie., x =1 we get 4/ + L, which
means four new squares of size [ (= 1/4) and one of size L (= 1/2). This is the

first level of the set, and higher levels are found by further operation of T.
Level three for instance, is given by



T>(D)=T*@4I+L)
=T61* +4IL + 4Ll +I?)
=641° +16°L +16ILI +16LI* + 4I[* + ALIL + 4L+

On the finest resolution of level three, (see Fig. 2) we have 512 non-

empty boxes of size g = 1/64, with configuration

1 1 1 1
64)-1° 64)=1’L (64)=ILl (64)—II*
( )1 ( )4 ( )4 ( )16

1 1 1 1
64)=LI*> (64)—LIL (64)—I* (64)—1I
( )4 ( )16 ( )16 ( )64

m=6 13 1 1 1 9 1 9 1 1 - 1 3
O | @H=1"L | (=Ll | (¢H—IL" | (6H—LI" | (6)—LIL [H—LI | (6)—L
4 4 16 4 16 16 64
m=5 13 19 1 1 o 1 o 1 1 7 1 3
60)=1" +16)—1"L | ae)-iwt | ae)—i” | ae)-L” | ae)—LIL | a6)—LI | (16)—L
1 4 1 4 1 4 4 16
m=4 4 1 1 1 1 1 1 1
a6)=r + )-1*L a6)- 1Ll + (=1 ae-12+y—-LL | w-4i | @w-r~
1 1 1 4 1 4 1 4
m=3 43 19 1 1, 4 5 1 1, 13
@)= +M-1"L+ )=+ )—IL @=L +M)-LL @-L1+1)—L
1 1 1 4 1 1 1 4
m=2 16 3 12 1 1 9 4 o 1 19 1 3
@)= + @) ~1"L+4)~ILl + (1)~ IL @—L" +(W)-LIL+1)-L1+1)—L
1 1 1 1 1 1 1 4
m=1 " 16 3 1, 1 1 5 1 5 1 1, 13
@)= +@)~I"L+ @=L+ )= +@#)~L" + )—LL+O)=L1+)—L
1 1 1 1 1 1 1 4
m=0 641 +161°L + 16111 + 411> +16L1% + 4LIL + 4121 + L
Table 1. This table shows the contents in the boxes for different box-

sizes for the snow-flake fractal on level 3. We can also see how to
add particles from one level to another. The length of the boxes is
given by (1/2)m. The number in the brackets denotes the number of a
certain box-configuration.

The probability measure in the non-empty boxes are the same on this
level, since the box-size is the same as the size of the "particles". We define a
"particle" as the smallest square at the finest resolution, i.e., the squares of
size I, where n denote the level of the set. This means that only one
"particle" fits into a box at this level (m = 6 in Table 1). In Table 1, we show
the contents in the boxes for different grid sizes of level n = 3. The number
in the brackets is the number of a certain box configuration, i.e., (16)[LIL +
1/4112] means that we have 16 boxes with one ILI-particle and a 1/4 of an IL?-
particle.
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Figure 2. The snowflake fractal at level 3. Note that we show only
a quarter of the entire fractal.

Since we know the total measure of the fractal on level n (which is
(1/2)n), we can easily calculate the probability measure as the mass in a box
divided by the total mass of the fractal, to get the partition sum on each
level of resolution. For instance, the probability of a box containing IL! +
(1/4)IL2 is given by

w6

) h

For a general level n of the fractal set (i.e., after n operations of T on a unit
square) the complete box-counting problem can be solved, for any box-size
(1/2)m, for m=1,2, ... ,2n in the following five steps;

1) Use the operator T" to find the configuration of the snowflake fractal
at level n, where " becomes the smallest "particle" with the size (1/4).



2) Partition all the "particles" of sizes greater than (1/4)", to pieces of size
(1/4)", as shown for box-level m = 6 in Table 1.

3) For each level m add the "particles" as illustrated in Table 1 to find the
configuration at all levels m=1,2, ..., 2n (i.e., for all box-sizes | = 1/2, 1/4, ...,
(1/2)2n). We know for instance that the [2L-box must be a neighbour to the 13-
box (see Fig. 2).

4) Calculate the probability measure in the boxes on each level, to
construct the partition sum I', and

5) use the Egs. (2) - (4) to calculate the spectrum of scaling indices fla).

It is now a straightforward analysis to find recursive relations for the
coefficients and the probability measures for a general level n. If we let m be
the box-level, we get the following partition sum

N
I =27y @) ©
i=1
where N is given by
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From Eq. (3) we then get

sl =l S | ®

min2 |3
and from Eq. (4)
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and finally we get the flo) spectrum

) =qa” = 7, (q) (10)

The generalized dimensions are given by

(m)
( D’Em))q - T,,q _(;1) 1)

and, in particular the Hausdorff dimension
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N
(D), = ;ln{z ag'")} (12)
i=1
See appendix for the calculations of the coefficients a”’.

In the calculation of the fla) spectrum, we find two different families,
due to the symmetry of the snowflake fractal. The reason is that boxes of
length (1/4)™ matches the smallest particles (i.e., those in the corners) to give

the correct a-value. In Fig. 3 and Fig. 4, we show the exact f{a) curve [10]

8.27
a(g)=2+ 13
1 V1+16-277 —1-16-277 (13)
8q-27 1 1+16-277 —1
o = - 1 14
f(eta) V1+16-279-1-16-277 In2 n{ 3 } (14)

compared with successive approximations f,(")(a,(™) for the two families on
level n = 16. The odd family consists of the boxes of size (1/2)™ where m is an
odd number, and the even family corresponds to those for which m is an
even number. On this level, the snowflake fractal consists of 8/6 "particles"
of size 4-16.
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Figure 3. The exact f(ct) spectrum (thick line) compared with the

solutions from the box-counting for the even family on
resolution-level 16 (thin lines).
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Figure 4. The exact f(a) spectrum (thick line) compared with the
solutions from the box-counting for the odd family on
resolution-level 16 (thin lines).

We also observe that for negative g-values the best approximation of the

fler) spectrum is given by the result from small boxes, and for g > 0 the best
result is given by boxes of the same size as the largest particle in the set (i.e.,
the Lr-particle). It is therefore easy to find the optimal approximation of an

fla) spectrum by varying the size of the boxes.

The convergence of the f(o) spectrum

To calculate the convergence of the f(a) spectrum from the box-counting

solution, we will consider the two limits g — - and g — +c where simple
analytic expressions may be found. From Egs. (13) and (14) we have the exact
values

(. f),,..= 1 3/2) (15)

and

(e.f),,,..=(0.0) (16)

and we want to calculate the distance between these points and the points,
given by the box-counting with different resolutions. From the box-
counting calculation we have



(aJﬁW”N =-—L—(1npmm1nawb (17)
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respectively, where
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Form > n+1, a'”) is not trivially given, but can be found from the recursive
relations in the appendix.

In Eq. (20) we can distinguish between the two families, (the odd and the
even) shown in Fig. 3 and Fig. 4 and we have

(§+—1—, 1+i) m odd
2 2m m
(o). = (23)
E, In(1+m/2) o even
| 2 mln2
and
(a,f)rm) =(1+l, i) m<n+1 (24)
g+ m m

The distance to the exact values are then given by



by

d(m)(q e —oo) =9
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and

d™(q — +e0) = g

We then get the convergence

d(l) = _1

In(1/1)

for the odd family d(m)(qg — -o0) and for d(™)(q — +00), (m < n+1) where [ is the
size of the boxes. For the even family the convergence is slower (for box-

In(1+m/2)

m odd
(25)
m even
ms<n+1 (26)
(27)

sizes > 1/8) due to the factor [(m+2)/2] in Eq. (20).

In Fig. 5 we show a plot of In(1/d(1)) versus In(in(1/1)) for both the families
when g —-o0, where the odd family gives the straight line with slope 1. The

convergence for g — +oo, is shown in Fig. 6, where the straight line
represents the values m < n+I. Remark how well both families overlap.
From the box-counting solution in the previous section it is possible to
calculate the convergence for any values of g, and in Fig. 7 we show the
convergence of the Hausdorff dimension, Do to the exact value [10]
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Figure 5. The convergence of f(a) for ¢ — -0 is illustrated in this
plot of In(1/d(1)) vs In(In(1/1)). The odd family is the solid curve, and
the even family the dashed curve.
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Figure 6. The convergence of f(a) for ¢ — +oo is the same as for

q — -co except for m > n+1 (the left part of the figure). The two
families overlap and have the same convergence.
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Figure 7. The convergence of the Hausdorff dimension Dy is
shown for the two families. The dashed curve represents the even

family.

Concluding remarks

Real fractal objects, like aggregates, show fractal properties only within a
certain interval of length scales. This is due to the finite number of particles
and finite-size effects. The structure becomes non-fractal for length scales
comparable to the lattice length, as well as outside some typical correlation
length. When partitioning a two-dimensional image (e.g., a projection, like
a transmission electron micrograph of aggregated Co particles [12]), the effect
of the finite particle size will play an important role for the determination

of the f(a) spectrum, especially for negative g-values. This is due to the
finite resolution and the fact that the boxes will not be necessarily centered
on particles (objects) of the fractal. Some of the boxes will contain a
vanishingly small measure, giving unreasonably large contribution to the
partition sum for large negative g-values. We have used a two-
dimensional, two-scaled fractal set at finite levels to model a fractal
aggregate. The simple choice of length scales in our model makes it possible
to solve the complete box-counting problem on any level of resolution.

From the box-counting solution and the exact given f(a) spectrum, we can
calculate the convergence of the box-counting approximation. Due to the

symmetry of our model, we find two different families of f{a) spectrum. The
convergence properties for the two families are very much the same,
especially for box-sizes smaller than the largest particle (i.e., the square in
the middle, see Fig. 1) of the set. To find the optimal approximation, one



should use only boxes smaller than the largest particles in the set, which
gives the best approximation for g > 0. Larger boxes do not resolve the
details of the fractal structure. For negative g-values, one must vary the box-
size to find the optimal approximation, and for a given value of f one
should select the smallest a-value. The slow convergence (see Eq. (27))
shows that a very large number of points (particles) is neded to get a
accurate f(or) spectrum from an experimant. However, an experimantal
fractal image, (e.g., a micrograph of aggregated particles) is not fractal on
lengt-scales larger than some correlation length and there is often a
maximum number of particles of the order 103. For negative g-values the
convergence will then not be as good as for the snowflake on which we are
able to place our boxes in an optimal way.
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Appendix

To find recursive relations for the coefficients (a!) in the box-counting
solution, we first reexpressed them as

a? = 44" (28)

It is then easy to find separate recursive relation for ¢” and b We find the
following recursive relation for the coefficients ¢}’

) = U-2) 4 G-D
¢ =cV P+ (29)

for the indices

j=3,...,m; i=2,...,j
’ o . (30)
j=n+1,...2n; i=2,..,2(n+1)—j
and the following recursive relation
¢V =cd P (31)

for the indices

j=n+2, ..., 2n; i=2n+3-j,..,n+1

The initial values of the coefficients c¢in the recursive relations above is
given by



¢ =1; i=1,2,...,2n
{ 1 J (32)

P =1

Finally, the second coefficients bin Eq. (28) is given by

o[22 -

for the indices

i=1,...m i=1,..,j
{J J (34)

j=n+l,...2n; i=1,..2(n+1)—j
and by the recursive relation

b0 = B0 41 (35)

for the indices
j=n+2,..,2n i=2n+3-j,..,n+1
where the brackets [ ] denote the integer part. For the probability measures

in the boxes, which are given by the mass in a certain box divided by the
total mass of the fractal, we find the recursive relation

N
P =1t 2

for the indices

j=2,...,n+1; i=2,...,j
! o) . (37)
j=n+2,...,2n; i=2,..,2(n+1)—j
and the recursive relation
w1 g-n
D =D (38)
4
for the indices
j=n+2,..,2n i=2n+3-j,...,n+1
The initial values for the probabilities is given by
, 1 \[@i+D/2]
pP = (5) j=1,2,-2n (39)

where the brackets [ ] denotes the integer part.



c =1, i=1,2,....2n
{ 1 J (32)

@ _
¢, =1

Finally, the second coefficients bin Eq. (28) is given by

o | L221) (33)

for the indices

. . . (34)
j=n+1,...2n; i=1...,2(n+1)—j

and by the recursive relation

{j=l,...,n; i=1...,j

B9 = bI 41 (35)

for the indices
j=n+2,...2n i=2n+3-j,..,n+1
where the brackets [ ] denote the integer part. For the probability measures

in the boxes, which are given by the mass in a certain box divided by the
total mass of the fractal, we find the recursive relation

D ST
p? = Epi(il Y (36)

for the indices

j=2,....,n+1; i=2,..,j
g o . (37)
j=n+2,...2n; i=2,...,2(n+1)—j
and the recursive relation
w1 ¢
D =D (38)
4
for the indices
j=n+2,...2n i=2n+3-j ..,n+l
The initial values for the probabilities is given by
] 1 [(3j+l)/2]
pi(j) =(§\J j=1,2’°”’2n (39)

where the brackets [ ] denotes the integer part.
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