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1. INTRODUCTION 
 

One question one may ask about fractals is: Why do we need non-
integer dimensions? A short answer to the question is that for some strange 
objects it is not possible to find a well defined measure (other than zero) 
without introducing non-integer or fractal dimensions. What this means will 
be explained later in the thesis.  

 
A fractal object in three dimensional space is characterized by a large 

surface-to-volume ratio. For example, the need of a rapid gas exchange 
explains the existence of the large surface-to-volume ratio observed in a lung. 
The area of a human lung measured with the resolution 100 µm is as large as 
that of a tennis-court (has the size of 102 m2) while the volume enclosed by it 
is a few litres [1] (has the size of 10-3 m3). Another case where a large surface-
to-volume ratio is needed, is for the materials used for efficient catalysis. A 
characteristic property of a fractal is that its measure depends on the 
resolution used in the measurement. Typically, the surface area of an object 
converges very fast to a finite limiting value as the resolution is increased, but 
for fractals the area diverges 

 
The theory of fractals radically differs from traditional Euclidean 

geometry, fractal geometry describes objects that are self-similar, or scale 
invariant. This means that when some parts of such an object is magnified; it 
is seen to bear an exact resemblance to the whole, the likeness continuing 
with the parts of the parts and so on to infinity. The self-similar structure is 
perhaps the main reason for the striking beauty of so many fractals [2]. A set 
is strictly self-similar if it can be expressed as a union of sets, each of which is 
a reduced copy of (is geometrically similar to) the full set. However, not all 
fractal objects exhibit this precise form. In a coastline, for instance, there is an 
irregular nesting of gulfs, bays, harbours, and coves that are observed over a 
broad range of spatial scales. A magnified view of one part of the coastline 
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may not precisely reproduce the full picture, but it will have the same 
qualitative appearance. A coastline displays the kind of fractal behaviour that 
is called statistical self-similarity. Fractals also must be devoid of translational 
symmetry--that is, the smoothness associated with Euclidean lines, planes, 
and spheres. Instead a rough, jagged quality is maintained at every scale at 
which an object can be examined. The nature of fractals is reflected in the 
word itself, coined by Benoit B. Mandelbrot, [3] derived from the Latin verb 
frangere, "to break," and the related adjective fractus, "irregular and 
fragmented." His book "The Fractal Geometry of Nature (1982)" is the standard 
reference and contains both the elementary concepts and an unusually broad 
range of new and rather advanced ideas, such as multifractals, currently 
under active study. 

 
The simplest fractal is the Cantor bar (named after the 19th- century 

German mathematician Georg Cantor). It is constructed by dividing a line in 
3 intervals and removing the middle interval. The procedure is repeated 
indefinitely, first on the 2 remaining intervals, then on 4 intervals produced 
by that operation, and so on, until the object has an infinitely large number of 
intervals each of which is infinitely small. 

 
Fractals are not relegated exclusively to the realm of mathematics. If the 

definition is broadened a bit, such objects can be found virtually everywhere 
in the natural world. The difference is that "natural" fractals are randomly, 
statistically, or stochastically rather than exactly scale symmetric. The rough 
shape revealed on one length scale bears only an approximate resemblance to 
that on another, but the length scale being used is not apparent just by 
looking at the shape. Moreover, there are both upper and lower limits to the 
range in size over which the fractals in nature are indeed fractal. Above and 
below that range, the shapes are either rough (but not self-similar) or smooth-
-in other words, conventionally Euclidean. 

 
Whether natural or mathematical, all fractals have particular fractal 

dimensions. These are not the familiar Euclidean dimensions given by 
integers--1, 2, or 3--but a different kind of quantity. Usually noninteger, a 
fractal dimension indicates the extent to which the fractal object fills the 
Euclidean dimension in which it is embedded. A natural fractal of fractal 
dimension 2.8, for example, would be a sponge-like shape nearly 3-
dimensional in appearance. A natural fractal of fractal dimension 2.2 would 
be a much smoother object that just misses being flat. 
 

The roots of fractal geometry can be traced to the late 19th century, 
when mathematicians started to challenge Euclid's principles. Fractional 
dimensions were not discussed until 1919, however, when the German 
mathematician Felix Hausdorff[4] put forward the idea in connection with the 
small-scale structure of mathematical shapes.  As completed by the Russian 
mathematician A. S. Besicovitch, Hausdorff's dimensionality was a 
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forerunner of fractal dimensionality. Other mathematicians of the time, 
however, considered such strange shapes as "pathologies" that had no 
significance. 

 
This attitude persisted until the mid-20th century and the work of 

Mandelbrot. His 1961 study of similarities in large- and small-scale 
fluctuations of the stock market was followed by work on phenomena 
involving nonstandard scaling, including the turbulent motion of fluids and 
the distribution of galaxies in the universe. A 1967 paper on the length of the 
English coast showed that irregular shorelines are fractals whose lengths 
increase with increasing degree of measurable detail. By 1975, Mandelbrot 
had developed a theory of fractals, and publications by him and others made 
fractal geometry accessible to a wider audience. The subject began to gain 
importance in the sciences. As mentioned, fractal geometry appears in many 
fields of science, in the study of landscapes (e.g., coast lines, mountains, rivers 
and sediments), in the study of plants, metals and composite materials, in 
crystals, aggregates, flows, galaxy formations, populations and in economical 
systems etc. The dimensions and scaling indices also characterise universality 
classes of systems. They are equal for systems of a given class, since they 
describe the same scaling properties. 

 
Mandelbrot later also investigated another fractal terrain, that of shapes 

distorted in some way from one length to another. These fractals are now 
called nonlinear, since the relationships between their parts is subject to 
change. They retain some degree of self-similarity, but it is a local rather than 
global characteristic in them. The general definition of the word fractal may 
thus need further refinement, to indicate more precisely which shapes should 
be included and which excluded by the term. 

 
The most intriguing of the nonlinear fractals thus far has been the 

mathematical set named after Mandelbrot by the American mathematicians 
John Hubbard and Adrien Douady. The more the set is magnified, the more 
its unpredictability increases, until unpredictability comes to dominate the 
bud-like shape that is the set's major element of stability. The set has become 
the source of stunning colour computer graphics images. It is also important 
in mathematics because of its centrality to dynamical system theory. An 
entire Mandelbrot set is actually a catalogue of dynamical mathematical 
objects--that is, objects generated through an iterative process called Julia sets. 
These derive from the work done by a French mathematician, Gaston Julia, 
on the iteration of nonlinear transformations in a complex plane. 
 

Scientists have begun to investigate the fractal character of a wide range 
of phenomena[5], [6]. Researchers are interested in doing so for the practical 
reason that behaviour on a fractal shape may differ markedly from that on a 
Euclidean shape. Physics is by far the discipline most affected by fractal 
geometry. In condensed-matter, or solid-state physics, for example, the so-
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called "percolation cluster" model used to describe critical phenomena 
involved in phase transitions and in mixtures of atoms with opposing 
properties is clearly fractal. This has implications, as well, for a host of 
attributes, including electrical conductivity. The percolation cluster model 
may also apply to the atomic structure of glasses, gels, and other amorphous 
materials, and their fractal nature may give them unique heat-transport 
properties that could be exploited technologically. 

 
 
Mathematical physics, for its part, has a particular interest in nonlinear 

fractals. When dynamical systems--those that change their behaviour over 
time--become chaotic, or totally unpredictable, physicists describe the route 
they take with such fractals. Called strange attractors, these objects are not 
real physical entities but abstractions that exist in "phase space," an expanse 
with as many dimensions as physicists need to describe dynamical physical 
behaviour. One point in phase space represents a single measurement of the 
state of a dynamical system as it evolves over time. When all such points are 
connected, they form a trajectory that lies on the surface of a strange attractor. 
Most physicists who study chaos do so with carefully controlled laboratory 
setups of turbulent fluid flow. Individual strange attractors have been 
identified for different kinds of turbulent fluid flow, suggesting the existence 
of numerous routes to chaos [7], [8], [9]. 

 
Although not concerned with fractals to the same extent as physics, 

other sciences have discovered them. In biology, the anomolous thermal 
relaxation rate of iron-containing proteins has been explained as resulting 
from the fractal shape of the linear polymer chain that comprises all proteins.  
The distribution pattern of atoms on the protein surface, a different aspect of 
protein structure, also appears to be fractal. Many more fractals have been 
detected in geology, including both random exterior surfaces--ragged 
mountains and valleys--and interior fractal surfaces in the brittle crust, such 
as California's famous San Andreas fault. Earthquake processes for small 
tremors--those of magnitude 6 or less--appear to be fractal in time as well as 
space, since these quakes occur in self-similar clusters rather than at regular 
intervals. Meteorology provides a different kind of space-time fractal: the 
contour of the area over which tropical rain falls is self-similar, and the 
amount of rain that falls varies in a self-similar fashion over time. Finally, on 
the interface of science and art, computer-graphics specialists, using a 
recursive splitting technique, have produced striking new fractal images of 
great statistical complexity. Landscapes made this way have been used as 
backgrounds in many motion pictures; trees and other branching structures 
have been used in still lifes and animations. 

 
Another major area of condensed-matter physics to invoke the concept 

of self-similarity is that of kinetic growth, in which particles are gradually 
added to a structure in such a way that once they stick, they neither come off 
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nor rearrange themselves.  In the case of the simplest model of kinetic 
growth, the most important physical phenomenon to which it applies appears 
to be the fingering of a less-viscous fluid (water) through a more viscous fluid 
(oil) lodged in a porous substance (limestone and other kinds of rock). A 
more complex model explains the growth of colloidal agglomerates. 
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FRACTAL DIMENSION 
 

Fractal dimension can be defined in many ways, but before giving a 
definition I would like to discuss how to measure the size of general (fractal) 
objects. Since we want to measure objects with varying degree of resolution, 
we cover them by boxes, squares or line-segments and count how many are 
needed for a complete covering. In the following we will call squares and 
line-segments boxes (in two and one dimension respectively) as well. The 
objects are covered/enclosed in d-dimensional boxes of size l, where d is the 
topological dimension of the set. The topological dimension is always an 
integer. The fractals we will discuss may be considered to be sets of points in 
coordinate space or in phase-space. They may be single isolated points like 
galaxies in the Universe or molecules combined to complicated patterns like 
aggregates. The set of points that make up a line in Euclidean space has the 
topological dimension d = 1, and the fractal dimension D = 1. The set of 
points that form a sheet has d = 2 , D = 2 and a ball d = 3 and D = 3.  

 
 

2.1:  Measuring general sets 
 
To illustrate the general method of measuring, consider a smooth curve 

in Euclidean space, see Fig. 1. 
 

  

 
 

Figure 1. The  total measure (length, area and volume) of the curve is found by 
counting the number of boxes needed for the covering, multiplied with the box-
size (l, l2, l3) in the limit  l → 0. 

 
The measure (here the length) of the curve is found by counting the number 
of equally sized line-segments of length l, N(l), needed to cover the curve. The 
total length is then given by 

 

 L =
lim

l → 0
N (l ) ⋅ l = L 0l

−1l1 = L 0l
0 = L 0      (1) 
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since the number of segments needed to cover the curve is inversely 
proportional to the segment size, i.e., N(l) ∝ l-1 = L0l-1. In the limit   l → 0  the 
measure asymptotically equals the length of the curve and is independent of 
l. If we instead measure the area of the curve we replace the line-segments by 
a grid of squares. The total area of the curve is then given by 
 

 A =
lim

l → 0
N(l) ⋅ l2 = A 0l

−1l2 = A 0l
1 = 0     (2) 

 
Similarly the volume of the curve is zero. We observe that the only 

interesting measure of a curve is the length, i.e., the only meaningful 
dimension of a curve is d = 1.  

 
If we instead consider a set of points defining a smooth surface in 

Euclidean space, we cover the set with squares of size l2 and counts the 
number of squares needed to cover the set, see Fig. 2.  

 

  

 
Figure 2. The total measure (length, area and volume) of a surface is found by 
counting the number of boxes needed  for the covering, multiplied with the box-
size (l, l2, l3) as l → 0. 

 
 
The measure of the area is then given by 
 

 A =
lim

l → 0
N(l) ⋅ l2 = A 0l

−2l2 = A 0l
0 = A 0     (3) 

 
where N(l) ∝ l-2 = A0l-2. Similarly we can define a "length" and a "volume" of 
the surface by 
 

 L =
lim

l → 0
N(l) ⋅l = L 0l

−2l1 = L 0l
−1 = ∞     (4) 

and 
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 V =
lim

l → 0
N(l) ⋅ l3 = V0l

−2l3 = V0l
1 = 0     (5) 

 
As we can see, the only interesting measure of a surface is the area. In 

other words; the only interesting dimension for the study of an ordinary 
smooth surface in Euclidean space is d = 2. However, one may easily define 
sets of points that are curves, which twist so badly that their length  is infinite  
(see the triadic Koch curve below, in the limit n → ∞). Some curves, so called 
Peano curves even fill the plane. Before discussing such strange sets we have 
to generalize the measure of size for a given set. 
 

In general, the d-dimensional measure is defined as 
 

 M d =
lim

l → 0
N( l) ⋅ ld        (6) 

 
where N(l) is the number of boxes of size l needed to cover the curve and d the 
topological dimension of the set. As l → 0, three things may happen. 1) If d > 
D, the measure diverges; 2) if d < D, the measure becomes zero. Only when 3) 
d = D the measure may approach a finite, non zero value. Thus, by requiring 
Md to be constant (not zero), we define the value of the critical dimension D 
which we will refer to as the fractal dimension. In the literature there exist 
alternative definitions of fractal dimension [3-6]. The important property in 
the calculation of fractal dimensions is how the number of boxes needed to 
cover the set scales with the box-size. This means that if N(l) ∝ l-D in the limit l 
→ 0, only d = D gives a finite measure since 
 

 M d =
lim

l → 0
N(l) ⋅ ld ∝

lim
l → 0

ld −D = const.     (7) 

 
We may therefore determine the fractal dimension of an object from the slope 
of ln N(l) plotted as a function of ln l  (see e.g. Fig. 5). An object will be called 
fractal if its observed measure depends on the resolution (box-size) over 
several orders of magnitude, and follows a power law behaviour with a 
nontrivial exponent. This dependence can be observed over an infinite range 
of the resolution in the case of fractals generated by mathematical 
constructions. Such fractals have no smallest and no largest scale. In contrast, 
fractals used to model growth processes like aggregation of magnetic 
particles (see paper III) have a smallest scale due to a finite particle size. 
However, such fractals can be made from a mathematical construction. This 
can be made by halting the iteration at a finite level as the snowflake fractal in 
paper II. In real physical systems, there also exists a lower cut-off for the box-
size since the fractal structure is replaced by different patterns when 
approaching the microscopic scales. Therefore a straight line in the plot of ln 
N(l) vs. ln l can be observed only in some range of l. This range must extend 
over several decades in order to imply the existence of a fractal structure. 
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2.2: A one-scaled Cantor set (part 1) 
 

A very simple method to construct fractal sets with a fractal dimension 
in the range 0 < D < 1 is shown in Fig. 3.  

 
n = 0

n = 1

n = 2

n = 3
 

 
 

Figure 3.  The first three steps in the construction of a one-scaled Cantor set. 
At each stage of  construction the central third of each segment is removed 
from the set. For the resulting fractal D = 0.631... 
 
 

One starts out with a unit interval [0,1] and replaces it by N smaller 
intervals. In the example a unit interval is replaced by two new intervals of 
length 1/3. By repeating the procedure on each of the remaining intervals ad 
infinitum one gets a set of remaining points called a one-scaled Cantor set. 
The simple construction of the set makes it easy to calculate the fractal 
dimension, since we know the number of intervals (boxes) on any level of 
construction. Let us use a grid obtained by dividing the unit interval into 3n 
equal intervals (n is a fixed integer). As follows from the construction, the 
number of such pieces (of size 3-n) needed to cover the Cantor set is 2n.  

 
We then have l = 3-n and N(l) = 2n which gives  

 

 Md =
lim

l → 0
N(l) ⋅ l d ∝

lim
l → 0

2n ⋅ 3− d⋅n     (8) 

 
This measure diverges or approaches zero, unless we choose  

d = D = ln 2/ln 3 = 0.6309... From the generalised measure we can then define 
the fractal dimension as 
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 D =
lim

n → ∞
ln N(l)
ln(1 / l)

       (9) 

 
Since the Cantor set is given by a mathematical construction (a recursive 

rule) the scaling behaviour exist over an infinite range of resolution. A fractal 
as the Cantor set is called a deterministic fractal since it can be constructed by a 
deterministic rule. The Cantor set is also a self-similar  object. Such objects can 
be divided into N identical parts, each being a rescaled version, by a factor r, 
of the complete set. Let N1(l) denote the number of boxes on a grid of size l << 
L (L is the size of the fractal) needed to cover one such part. The number of 
boxes needed to cover the complete fractal is then 
 
 N( l) = N ⋅ N1 (l)        (10) 
 
Due to the self similarity, N1(l) equals the number of boxes needed to cover 
the complete set with boxes of size l/r, i.e., 
 
 N1(l) = N(1 / r )        (11) 
 
The fractal dimension is then given by 
 

 D =
ln N

ln(1 / r)
        (12) 

 
which is an exact result for one-scaled fractals [3]. 
 
2.3: Coast lines and the triadic Koch curve 
 

 A common example of fractal objects is coastlines. The length of a 
coastline depends critically on the length of the yardstick used to measure the 
distance between points along the coast. Smaller yardstick gives a larger 
measure of the coast.  
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Figure 4. The coast of the southern part of Norway. The outline was traced 
from an atlas and digitized at about 1800 x 1200 pixels [12].  The shown grids 
has a size l ~ 50 km. 

 
 
Fig. 5 shows how the measured length increases as the yardstick length, 

l, is reduced. This log-log plot shows that the measured coastline shows no 
sign to reaching a fixed value as l is reduced. In fact, the measured length is 
nicely approximated by the formula 
 
 L (l) = a ⋅ l1−D .        (13) 
 

If we suppose the coast to have a well defined length LN we would 
expect it to be LN, at least for small enough l, and the exponent should be 



 12

equal to one. However, for the coastline of Norway, see Fig. 4 the value of D is 
found to be 1.52 [12].  

 
In Fig. 6 we show a reproduction of the data collected by Richardson 

(from Mandelbrot's (1982) book [3]) showing the apparent length of various 
coastlines and boundaries. They all fall on straight lines in the log-log plot 
except for the circle for which the measure converge to a finite value.  

 
 

4.5

4.0

3.5

3.0
-0.5 0.0 0.5 1.0 1.5 2.0

log   [l(km)]10  
 

Figure 5. The measured length of the coast of Norway as function of the 
yardstick l. The straight line in this log-log plot corresponds to the relation 
L(l) = a . l 1 - D, with D ≈  1.52. 
 
 

The slope of the lines in the plot is 1 - D, where D is the fractal 
dimension of the coastline. As model for such a coastline we will study a 
simple set called the triadic Koch curve, (see Fig. 7). The set is constructed 
from a unit interval, which we call the 0-th generation of the Koch curve.  

 
By replacing this interval by the polygon marked n = 1 we get the first 

generation of the set. If we then continue and replace each of the four 
segments with a new polygon and so on, we get in the limit n → ∞ a fractal 
set. Since the set is generated by the polygon marked n = 1 this polygon is 
called the generator  of the Koch curve.  
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South African coast

Circle

1.0 1.5 2.0 2.5 3.0 3.5

3.0

3.5

4.0

log   [l (km)]10  
 
 

Figure 6. The length of coastlines as a function of the yardstick length 
(Mandelbrot, 1982). 
 

 
The Koch curve have in the limit n → ∞ an infinite length, an area A = 0, 

and therefore not a well defined measure in an integer dimension. At a given 
level n the curve consists of 4n segments, each of length 3-n. We then find the 
fractal dimension of the Koch curve to be 
 

 D =
lim

n → ∞
ln 4n

ln3n =
ln 4
ln3

      (14) 

 
The topological dimension of the set must be equal to one since we can 

stretch the curve to a straight line after each step in the construction. We then 
conclude that the Koch curve is a fractal set with dimension 
D = ln 4/ln 3. 
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n = 0

n = 1

n = 2

n = 3

n = 4

 
 
 
Figure 7. The construction of the triadic Koch curve. By replacing each line 
segment with a resized copy of the part marked n = 1 we construct a fractal 
with D = ln 4/ln3. 
 

 
2.4: Some simple fractals in d = 2 
 

In two dimensions it is easy to construct fractal sets by instead of using 
an interval, using a square and removing parts of it recursively. First we 
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prove that we can construct a one-dimensional set by partitioning a unit 
square into nine new squares and removing six of them as shown in Fig. 8. 
Repeating the procedure with the three remaining squares ad infinitum, we 
end up with a straight line. The size of the squares at level n is (1/3)n and the 
number of squares of that size needed to cover the set is 3n. We get D = 1 just 
as we can expect. Since the topological dimension d = 1, the remaining set is 
not a fractal.  

 
 

 
 
 
Figure 8. The construction of a "fractal" set with D = 1. 

 
 
If we instead construct a snowflake by dividing a square into nine parts 

and remove four of them (see Fig. 9) we get in the limit l → 0 ( <=> n → ∞) 5n 

squares of size (1/3)n and then D = (ln 5)/(ln 3).  
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Figure 9. A one-scaled snowflake fractal. 

 
We observe that if we remove six squares we get D = 1. It is possible to 

generate different fractal sets with the same fractal dimension. This is 
illustrated in Fig. 10 and Fig. 11 where we have divided two squares in nine 
pieces and removed five of them recursively. Both have the fractal dimension 
D = ln 4/ln 5. 
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Figure 10.  A fractal measure of dimension D = ln 4/ln 5. Compare this 
fractal with Fig 11. which has the same fractal dimension.  
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Figure 11.  A second fractal measure of dimension D = ln 4/ln 5. Compare this 
set with the set in Fig 10.  
 
 
 
 
 

 3. MULTIFRACTALS 
 
 
We have so far only studied objects that are fully characterized by a single 
value D, the Hausdorff dimension, hence forth denoted by D0. Fractals found in 
nature however, most often need for their characterisation a whole spectrum 
of dimensions called generalized dimensions  Dq. The Hausdorff dimension is 
only one dimension in this continuous spectrum. Such fractals are called 
multifractals. The essential difference between the construction of 
multifractals and (one-scaled) fractals is that the initial set is divided into N 
not identically sized parts. Each sub-set is a reduced version of the original 
object by some factor. The procedure is repeated self-similarly ad infinitum.  
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A starting point in the study of multifractal objects is the construction of 
a partition function Γ [13]. The set is covered with a grid of boxes numbered i 
= 1, 2, ..., N of (for simplicity of equal) size l. N = N(l) is the total number of 
boxes of size l  needed to cover the set. The probability to find some part of 
the fractal in box i,  pi, is then equal to the number of points in the box (= ni) 
divided by the total number of points in the complete set, i.e., the total 
normalized mass, M = ∑ni. The partition function is then given by 
 

 Γ τ, q( ) =
(pi)

q

li
τ

i =1

N( l )

∑ =
1

Mq
(ni )

q

li
τ

i =1

N ( l )

∑ =
1

l τ ⋅ Mq (ni )
q

i=1

N ( l)

∑    (15) 

 
where τ is called the mass exponent ,q the moment order  and li  is the length of 
the i´th box. In Eq. (15)  we assume that all lengths li have the same size l. 
 

Depending on τ and q three things may happen in the calculation of Γ. If 
for fixed q, τ is greater than some τ(q) the partition sum diverges to infinity. 
On the other hand, if τ is less than τ(q) the sum converges to zero. Only if τ is 
exactly equal to τ(q) the sum approaches a finite value different from zero  

 

 
lim

max{li}→ 0
Γ τ,q,{li}( )=

∞ if τ > τ(q)
const. if τ = τ(q)

0 if τ < τ(q)

 
 
 

  
.   (16) 

 
Compare this with the discussion of general measure in section 2.1, Eq. (7). 
Thus, by requiring Γ = constant (not zero) we define the relationship between 
τ and q. If we normalize the probabilities pi  i.e., ∑ pi = 1, give Γ = 1. The 
function τ(q), sometimes called the free energy, is then given by 
 

 τ (q) =
lim

l → 0
1

ln l
⋅ ln ( pi )

q

i =1

N ( l)

∑ 
 
  

 
     (17) 

 
We then define the generalized dimensions Dq  [14 - 17] as 
 
 (q −1)Dq = τ(q)        (18) 
 
i.e., 
 

 Dq =
lim

l → 0
1

(q −1)lnl
⋅ ln (pi)

q

i =1

N( l )

∑
 
 
  

 
     (19) 

 
If we put q = 0 we get the original expression for the Hausdorff dimension 
 

 D0 =
lim

l → 0
ln N(l)
ln(1 / l)

       (20) 
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For a uniform fractal, with all pi equal (not a multifractal), one obtains a 
general dimension Dq that does not vary with q. For a non-uniform fractal, 
(multifractal) however, the variation of Dq with q quantifies the non 
uniformity. For instance 

 

 D∞ =
lim

l → 0

ln max
i

pi( )
lnl

      (21) 

 

 D−∞ =
lim

l → 0

ln min
i

pi( )
ln l

.      (22) 

 
For a multifractal the Dqs are positive numbers which decrease monotonicly 
with q and for simple (one-scaled) fractals all the Dqs coincide.  

 
Now, assume the following scaling relation for the probability of the i'th 

box in the limit l → 0 
 
 pi ∝ lα i         (23) 
 
where αi is position independent. This relation defines the scaling index  αi 
also called the crowding index or the Lipschitz-Hölder exponent. Since α controls 
the singularity of the density, it may also be called the exponent of the 
singularity. The same scaling relation can be found in many boxes (for small l), 
and all boxes with the same scaling index are said to be a sub-fractal with a 
pointwise dimension αi. This sub-fractal is said to have a dimension f(αi). In 
other words, the function f(α) can be interpreted as the Hausdorff dimension 
of the set of points with the same pointwise dimension α. For a simple fractal 
like the one scaled Cantor set the function f(α) is only defined in a single point 
(α, f) = (D0, D0) (see example below). Such a fractal is not a multifractal. In 
contrast, for multifractals α is no longer unique but may take on values in a 
finite range [αmin, αmax], while f(α) turns out to be, in general, a single 
humped function with D0 as its maximum. To find the relationship between 
f(α) and τ(q) we reexpress the partition sum as an integral in α. We then get  
 
 Γ(τ ,q) = d ′ α µ( ′ α ) ⋅ lq ′ α − f ( ′ α )∫      (24) 
 
where d ′ α µ( ′ α ) ⋅lq ′ α − f ( ′ α )  is the number of times α' assumes a value in the 
interval [α',α'+dα']. In the limit l → 0, the dominant contribution to the 
integral is received when the exponent q ′ α − f ( ′ α )  is close to its minimum 
value, so we perform a saddle-point approximation 
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 d
d ′ α 

q ′ α − f ( ′ α )[ ] ′ α = α(q)
= 0       (25) 

 
This leads to the following Legendre transformation [13], which is used to 
determine the f(α) spectrum 
 

 

dτ
dq

= α

τ(q) = αq − f
df
dα

= q

d2 f
dα 2 < 0

 

 

 
 

 

 
 

       (26 a-d) 

 
From these equations we note that the function f(α) is a convex function with 
a slope q in each dense point. As q → ∞ the largest pi (i.e., the most 
concentrated part of the multifractal) dominate the partition function. This 
corresponds to the point where the f(α) curve vanishes with infinite slope, 
which is at the leftmost part for the minimum α. As q → -∞ the smallest pi 
dominate (i.e., the least concentrated part) and the corresponding α-value, the 
rightmost part of the f(α) curve vanishes with negative infinite slope. By 
increasing (decreasing) the exponent q, boxes with higher (lower) 
probabilities, i.e., fractal regions with denser (more ramified) occupation, are 
selected. We then see that the contribution of the partition function of 
different powers of the box probabilities is dominated by a different fractal 
subset. For q = 1 the generalized dimension is of special importance. From the 
relation (q −1)Dq = qαq − f q  and its derivative taken at q = 1 we find D1 = α1 = 
f1 where 
 

 D1 =
lim

l → 0
1

ln l
⋅ pi ⋅ ln pi

i =1

N( l )

∑ =
lim

l → 0
1

ln l
⋅ −S(l)( )   (27) 

 
The quantity D1 thus measures how the information scales with ln l. Therefore 
D1 is called the information dimension [18, 19]. The function S(l) is called the 
entropy of the fractal. Moreover, this concept has been used to give a precise 
definition of a multifractal [19]. A distribution is said to be a multifractal 
measure if its Hausdorff dimension D0 exceeds its information dimension D1. 
In a similar way one can show that the dimension D2 measure the correlation 
between the probabilities pi and is therefore called the correlation dimension  of 
the set.  
 
 
 
3.1: The box-counting method 
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In box-counting we cover the fractal with boxes of different sizes and 
count the number of particles in each box. For simplicity, we use boxes of 
equal size, (1/2)m, m = 1, 2, ..., mp where 1 2( )m p  is the size of the smallest 
particle in the fractal. We never use boxes of size smaller than the smallest 
particles, since this gives no new information. The probability pi  to find a 
particle in a box i is then given by the number of particles in the box, ni, 
divided by the total number of particles in the fractal N. With known 
probabilities and box-size, we can construct the partition function, Γ(τ,q) Eq. 
(15) and calculate the fractal dimensions Dq, Eq. (19). From Eqs. (17) and (26 
a) we get the scaling exponent 
 

 α (q) =
dτ(q)

dq
=

lim
l → 0

1
ln l

⋅
( pi )

q ⋅ ln pi
i =1

N ( l)

∑

(pi )
q

i=1

N (l )

∑
    (28) 

 
which is used with Eq. (18) to find the f(α)-spectrum: 

 
 f (α(q)) = qα (q) − (q −1)Dq .     (29) 

 
In section 3.6 we continue the discussion about box-counting by studying the 
snowflake fractal used in paper I and paper II. This box-counting algorithm is 
called fixed-size box-counting. Another possibility is to use an algorithm 
called the fixed-mass box-counting, which consists in evaluation of the 
required box size to accumulate an amount of measure µ  ∈ [µmin, µmax]. It is 
specially appropriate to the evaluation of multifractal indices with q ≤ 0.  
 
A pattern Fig. 12(a) is discretized and stored in a matrix Fig. 12(b) of pixels 
with unit area (lmin2 = 1, in pixel units). The measure, µ is also discretized by 
assigning a real number pi to each nonempty box. The measure contained in 
each box, centred at random in a real domain with real size l, takes into 
account the fraction of pixels that are embedded in it. For the box-counting 
fixed-size algorithm the procedure consists in covering the pattern with grids, 
randomly located, of several lengths l in order to have several values pi(l). For 
the box-counting fixed-mass algorithm the procedure consists in evaluating 
several lengths li(p), of boxes randomly located in the aggregate which 
contain a measure p. When using box-counting on the snowflake multifractal 
below we will use the fixed-size algorithm for all values of q, and without 
moving the grid. One problem with fixed-size box-counting is that, since the 
boxes will not necessarily be centred on particles on the fractal, some of the 
boxes will contain spuriously small measure (probability), thus creating 
problems for negative q-values. This is a difficult problem when box-counting 
is used to calculate the f(α) spectrum for a general fractal, such as an 
aggregate. 
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(a)      (b) 
 

 
 

(c) 
 

Figure 12. In (a) we see a pattern with 89 particles in a grid of size 1/16. The 
mass of a particle is then normalized to be 1/89. Most of the boxes are empty but 
some contains one two or at most three particles. Figure (b) shows the boxes 
containing mass. The probability pi in each box then vary between ≈ 1/89 to  ≈ 
3/89. At next box-level (c) the most of the boxes contains mass. For an accurate 
calculation the need of moving the original grid becomes of importance. 

 
 
 
3.2: The one-scaled Cantor set (part 2) 
 

To illustrate the difference between a simple fractal and a multifractal 
we begin by studying the one-scaled Cantor set. First we construct the 
partition-function Γ. Since the Cantor set at level n consist of 2n intervals of 
size 3-n the partition function is given by 

 

 Γ(q, τ) =
(pi

n )q

(li
n )τ

i =1

2n

∑ = 2−nq ⋅3nτ

i=1

2n

∑ = 1      (30) 

 



 24

To find the function τ(q) we take the logarithm of Eq. (30). We then get 
 

 −nτ ⋅ ln 3 = ln 2−nq

i =1

2 n

∑
 

 
  

 
 = ln 2n ⋅2− nq( )= (1− q)n ⋅ ln2   (31) 

 
i.e., 

 

 τ (q) = (q −1)
ln 2
ln3

       (32) 

 
The generalized dimensions Dq is then given by Eq. (19), i.e., 
 

 Dq =
ln 2
ln3

        (33) 

 
which is the same as the Hausdorff dimension D0 found in section 2.2. From 
Eqs (26a) and (32) we get the scaling exponent α 
 

 α =
ln 2
ln3

        (34) 

 
and finally from Eq. (26b) we get 
 

 f (α ) =
ln 2
ln3

        (35) 

 
i.e., α = f(α) = Dq = D0  as we expected for a one-scaled fractal. 
 
 
 
3.3: The two-scaled Cantor set  
 

To get a non-trivial f(α) spectrum we will next consider the simplest 
multifractal we can imagine, namely a two-scaled Cantor set as shown in Fig. 
13. The set is constructed by dividing the unit interval in two pieces of 
different lengths, L = 1/2 and l = 1/4, respectively, and repeating the dividings 
self-similarly ad infinitum. The measures (probabilities) of the intervals are 
then P = 2/3 and p = 1/3  (if pi ~ li). 
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Figure 13.  A Cantor set construction with two rescalings L = 1/2 and l = 1/4 
with probabilities P = 2/3 and p = 1/3. The division of the set continues self-
similarly ad infinitum. 
 
 
The partition function Γ at the first level of construction, i.e., for n = 1 is 

given by 
 

 Γ1(L,l, P, p) =
Pq

Lτ +
pq

lτ       (36) 

 
Similarly, at the next level Γ will be 
 

 Γ2 (L, l, P, p) =
Pq

Lτ

 
 
  

 

2

+ 2
Pq pq

Lτlτ +
pq

l τ

 
 
  

 

2

=
Pq

Lτ +
pq

lτ

 
 
  

 

2

  (37) 

 
and at a general level n, the partition function Γ, is given by 
 

 Γn (L, l, P, p) =
Pq

Lτ +
pq

lτ

 
 
  

 

n

      (38) 

 
The simple partition function is due to the recursive constructions of the 

Cantor set. Since we have a normalized measure (P + p = 1) the partition 
function Γn = 1 ∀ n, i.e., Γ is independent of n. Such a partition function is 
called a generator.  To find the f(α) spectrum for this set we first have to find 
the function τ(q) and then use the Legendre transformation Eqs. (26a) and 
(26b). The function τ(q)  can be found by solving the equation 
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 Pq

Lτ +
pq

lτ = 1         (39) 

 
with Newton-iterations. If the probabilities (P and p) are proportional to the 
respective length (L and l) i.e., P = L/(L + l) and p = l/(L + l), equation can be 
reexpressed as a second order polynomal and then we can find an analytical 
expression of τ(q) (see below). If we assume P > p the first term of Eq. (39) 
dominates for large positive q-values. We then have  
 

 τ (q → ∞) = q ⋅
ln P
ln L

       (40) 

 
and 
 

 f (α ) = αq − τ(q) = q ⋅
dτ(q)

dq
− τ(q) ≡ 0     (41) 

 
similarly, for large negative q:s, the second term of Eq. (39) dominates, i.e., 
 

 τ (q → −∞) = − q ⋅
ln p
ln l

      (42) 

 
and f(α) = 0. The generalized dimensions in these limits are given by 
 

 D∞ =
ln P
ln L

        (43) 

 
and 
 

 D−∞ =
ln p
ln l

        (44) 

 
From the analysis above and the fact τ(1) = 0 (see Eq. (17)), we can now plot 
the shape of τ(q), Dq and f(α) (see paper I). In general those curves look like 
the curves in Fig. (14) - (16).  
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slope = D -�

slope = D �

τ (q = 0) = D0
τ (q = 1) = 0

 
 

Figure 14 The general shape of the function τ(q). For large negative q-values 
τ(q) = q . D-∞ - f-∞ and for large positive q:s τ(q) = q . D∞ - f∞. Remark D-∞  
= αmin  and D∞  = αmax. 

 
 

Dq

q

D0

�D

D-�

 
 

Figure 15. The general shape of the function Dq, D0 = fmax. 
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f(α)

α

D 0

α min = D � α max = D- �

slope = �

 
 

Figure 16. The general shape of the function f(α). 
 

In the first step of the Cantor set construction, the set consists of tree parts, 
a large interval L, a hole h and a small interval l. We denote this set by (L, h, l) 
or just (L, l). The next generation can be constructed by a multiplication: 

  
 (L + l)·(L + l) = L2 + Ll + lL + l2.     (45) 
 

This set is denoted by (L2, 2Ll, l2). The length of each interval is given since L 
= 1/2 and l = 1/4. The next generation is given by (L3, 3L2l, 3Ll2, l3) and so on. 
We now observe that the Cantor set at level n only consists of n + 1 different 
scales. We also observe that the number of boxes of size 2-n (= the size of the 
largest interval) is a Fibonacci number and we can calculate the Hausdorff 
dimension by studying two nearby levels m - 1 and m. The Fibonacci numbers 
are defined by 

 
   Fn = Fn−1 + Fn− 2 with F0 = 0, F1 =1.    (46) 

 
The Fibonacci numbers are closely related to the golden mean 

 

 ν =
1
2

(1 + 5) .       (47) 

 
We have in particular 

 

 Fn n→∞ →    
1+ 5

2
 

 
  

 
 

n

      (48) 
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Since the partition functions Γm and Γm-1 have to be equal we can then use 
Fm Fm −1 → 5 +1( ) 2  as m → ∞  to find D0. This gives 

 
 Fm ⋅ 2− m⋅τ (0 ) = Fm −1 ⋅ 2− (m−1)τ (0)      (49) 
 

and 
 

 D0 = −τ (0) =
1

ln 2
⋅ ln

5 +1
2

 
 
 

 
 
 

     (50) 

 
which is the same result as was found in paper I. 

 
 
 

3.4: Exactly solvable recursive sets 
 

There exists a set of recursive multifractal objects which are exactly 
solvable. We will in this section study such sets with two rescalings. The 
partition function for a general two-scaled recursive set is given by  

 

 Γ(L, l, P, p) = N ⋅
Pq

Lτ + n ⋅
pq

lτ       (51) 

 
where N is the number of segments of length L with probability P and n the 
number of segments of length l with probability p on the first level of 
construction. This equation is exactly solvable if l = L2 (< 1) and if the 
probabilities P and p are proportional to their respective length and 
normalized i.e., NP + np = 1. Then Γ = 1 and 
 

 P =
Ld

N ⋅ Ld + n ⋅ L2d        (52) 

 
and 

 p =
L2d

N ⋅ Ld + n ⋅ L2d        (53) 

 
where d is the topological dimension of the set. From the expression (51) for 
the partition function one gets  
 

 N ⋅ Ldq− τ + n ⋅ L2⋅(dq − τ ) − N ⋅ Ld + n ⋅ L2d( )q
= 0    (54) 

 
This equation can be reexpressed as a second order polynomal If we set 
x = Ldq - τ, we get 
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 x2 +
N
n

⋅ x −
N ⋅ Ld + n ⋅ L2 d( )q

n
= 0 .     (55) 

 
Equation (55) has a positive and a negative root. We ignore the negative one 
since a negative length is irrelevant. The positive root is 
 

 x = Ldq −τ =
N 2 + 4n ⋅ (N ⋅ Ld + n ⋅ L2d )q − N

2n
   (56) 

 
Finally, we take the logarithm of Eq. (56). We then get the expression for the 
function τ(q). 
 

 τ (q) = dq −
1

ln L
⋅ ln

N2 + 4n ⋅(N ⋅ Ld + n ⋅ L2 d )q − N
2n

 
 
 

 
 
 

  (57) 

 
The generalized dimensions Dq are given by Eq. (18). Specially for the 
Hausdorff dimension we get 
 

 D0 =
1

ln L
⋅ ln

N2 + 4n − N
2n

 
 
 

 
 
 

     

 (58) 
 

We also get the limits of Dq as 
 

 D−∞ = d −
ln N ⋅ Ld + n ⋅ L2d( )

2 ⋅ ln L
     (59) 

 
and 
 

 D∞ = d −
ln N ⋅ Ld + n ⋅ L2d( )

ln L
      (60) 

 
From the Legendre transformation (Eq. (26)) we also have the f(α)-spectrum 
 

 
α (q) = d −

2n ⋅ N ⋅ Ld + n ⋅ L2 d( )q
⋅ ln N ⋅ Ld + n ⋅ L2d( )

ln L
⋅ N2 +[

+ 4n ⋅ N ⋅ Ld + n ⋅ L2d( )− N ⋅ N2 + 4n ⋅ N ⋅ Ld + n ⋅ L2d( )q  
 

−1
 (61) 

 
and 
 
 f (α(q)) = q ⋅α (q) − τ (q)       (62) 
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If we apply Eqs. (47) - (62) on the two-scaled Cantor set where l = 1/2, 
N = n = 1 and d = 1 we find 

 

 τ (q) = q +
1

ln 2
⋅ ln

1+ 4 ⋅ 3 / 4( )q −1
2

 
 
 

 
 
 

    (63) 

 
The Hausdorff dimension is then given by 
 

 D0 =
1

ln 2
⋅ ln

5 −1
2

 
 
 

 
 
 

      (64) 

 
and the limits of the generalized dimension by 
 

 D−∞ =1 +
ln 3 / 4( )
2 ⋅ ln 2

=
ln 3( )
ln 4

      (65) 

 
 
and 

 D∞ =1 +
ln 3 / 4( )

ln 2
=

ln 3 / 2( )
ln 2

      (66) 

 
Finally, the f(α) spectrum is given by 
 

 α (q) = 1 −
4 ⋅ 3 / 4( )q

1+ 4 ⋅ 3 / 4( )q − 1+ 4 ⋅ 3 / 4( )q
    (67) 

 
and 

 f (α(q)) =
4q ⋅ 3 / 4( )q

1+ 4 ⋅ 3 / 4( )q − 1+ 4 ⋅ 3 / 4( )q
−  

 

    1
ln 2

⋅ ln
1+ 4 ⋅ 3 / 4( )q − 1+ 4 ⋅ 3 / 4( )q

2

 
 
 

 
 
 

   (68) 

 
The generalized dimensions Dq and the f(α) spectrum for this Cantor set 

is shown in paper I. 
 

A general recursive fractal set with a finite number, N of rescalings  
 

 Γ = ni
pi

q

li
τ

i =1

N

∑ = 1        (69) 
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can be solved by Newton iterations. For each value of q we then solve Eq. (69) 
to find the function τ(q). 

 
 
 

3.5: The snowflake fractal 
 
Another solvable multifractal is shown in Fig. 17 a-b We call this 

multifractal a two-scaled snowflake fractal since it reminds of a snowflake. 
This fractal is investigated in paper (II) and can be used in the study of fractal 
aggregates.  

 
 

 
 
 
Figure 17 a. The first level of construction of a two-scaled snowflake fractal 
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Figure 17 b The fourth level of construction of a two-scaled snowflake fractal 
 
 

3.6: Box-counting on the snowflake fractal 
 
In this section the snowflake multifractal will be analysed in more detail. 

From this example we learn a lot about box-counting. In paper II we show 
that it is possible to find analytic expressions for the box-counting solution on 
any level of construction n, and for any level of grids m, i.e., box-sizes l = 2-m. 
Fig. 17a  shows the multifractal at the first level of construction. If we call the 
"particle size" the size of the smallest square in the set, the number of particles 
will increase as 8n. The fractals in Fig. 17a then consists of 8  particles of size 
1/4 (a) and 82 = 64  particles of size (1/4)2 = 1/16  (b) respectively.  

 
The snowflake fractal is covered with boxes of size (1/2)m, m = 1, 2, ..., mn 

where 1 2( )m n ≡ 1 4( )n = ln  is the size of the smallest square in the fractal. The 
largest square (the one in the centre) has the size Ln = (1/2)n. We then calculate 
the probability pi  i.e., the measure of the fractal in each box i. 

 
First we have to find a recursive rule to construct the snowflake fractal 

at any level. In paper II we defined the operator ˆ T  operating on a square x by  
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 ˆ T x = 4xl + xL .       (70) 
 

If we let this operator act on a unit square, i.e., x ≡ 1 we get 4l + L, where l is a 
new square of size 1/4 and L a new square if size 1/2. By repeated operation 
with ˆ T  on the new set (4l + L) we construct any level of the fractal. On the 
fourth level (Fig. 17b) we have 

 
256  squares of size 1/256:  256 l4 
256  squares of size 1/128:  64 l3L, 64 lLl2, 64 Ll3 and 64 L2lL 
96  squares of size 1/64:  16 l2L2, 16 lLlL, 16 Ll2L, 16 lL2l, 
      16 LlLl and 16 L2l2 
16  squares of size 1/32:  4 lL3, 4 LlL2, 4 L2lL and 4 L3l, and 
1  square of size  1/16:  L4. 
 
 

To calculate the fractal dimensions Dq and the f(α) spectrum we need to find 
the function τ(q) 

 

 τ (q) (m) = −
1

m ln 2
ln ai

(m ) pi
(m ){ }q

i =1

N

∑
 
 
 

 
 
 

    (71) 

 
for all n and m, where the coefficients ai

(m)  are the number of boxes with the 
same probability pi

(m) . 
 
 
To find the coefficients we have to study the snowflake for some levels 

and the possible box coverings. In Fig. 18 we show the snowflake on level n = 
2 and box levels m = 4, 3, 2 and 1. On this level the smallest particle have the 
length (1/4)2 = 1/16. In the finest box resolution m = 4 we have 64 boxes all 
with the same probability p = 1/64. The function(q) is then given by 

 

 τ (q)2
4 = −

ln 64 ⋅ (64)− q{ }
4ln 2

= −
6ln 2 − 6q ln 2

4ln 2
=

3
2

q −1( )  

 
which gives  

 

 Dq( )
2

4
=

τ (q)2
4

q −1
=

3
2

, 

 

 α (q)2
4 =

d
dq

τ(q)2
4 =

3
2

 

 
and 
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 f (q)2
4 = q ⋅ α(q)2

4 − τ(q)2
4 =

3
2

 

 
The values of the dimensions above are the first approximation  of the exact 
values which are given in the limit n → ∞ and m → ∞. Due to the small box-
size we only get one value of the probability and then only one value of the 
fractal dimensions, Dq, α and f(α) independent of the momentum q. If we 
increase the box size a factor 1/2 we find the same result for the dimensions 
since we then get 256 filled boxes of size 1/32 with probability 1/256. This 
shows that the smallest box-size of interest is the same as the smallest 
particle. 

 
 

 

 
 

Figure 18. This is the fractal at level n = 2 covered by boxes of level m = 4, 3, 2 
and 1, i.e., the particle sizes is l = (1/4)2 = 1/16 and the box sizes  are  (1/2)4 =  
1/16, (1/2)3 =  1/8, (1/2)2 =  1/4 and (1/2)1 =  1/2 respectively. 
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If we decrease the box size to level, m = 3 we have 16 boxes with probability 
2/64 and 8 boxes with probability 4/64 = 1/16. The function τ(q) then becomes 

 

 τ (q)2
3 = −

1
3ln 2

ln 16 ⋅ 32− q + 8 ⋅16−q{ } 

 
which gives  a continuous function of generalized dimensions with 

 

 D0( )2

3
= −τ(0)2

3 =
ln 24
3ln 2

=1.5283...  

 
and the limits  

 
 D−∞( )2

3
=1.6667...  

 
 D∞( )2

3
= 1.3333...  

 
when q → ± ∞ . The f(α)-spectrum in the same limits are given by 

 

 α (q)2
3

q →− ∞
=

d
dq

τ (q)2
3

q→ − ∞

=
5
3

= 1.6667...  

 
 

 α (q)2
3

q →∞
=

d
dq

τ(q)2
3

q→∞

=
4
3

= 1.3333...  

 
and 

 
 f (q)2

3 = q ⋅ α(q)2
3 − τ(q)2

3  
 

 
The next two levels (m = 2 and m = 1) gives the same results as level 2 and 1 
for the snowflake at level n = 3 below.  

 
 
Let us study one more level of the snowflake fractal, level n = 3. In Fig. 

19 we show the upper left part of the snowflake with box level m = 6. On this 
level the snowflake consists of 512  particles of size 1/64. The function τ(q)  is 
then given by 

 

 τ (q)3
6 =

3
2

q −1( ) . 

 
This gives the generalized dimensions 
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 Dq( )
3

6
=

τ(q)3
6

q −1
=

3
2

, 

 

 
 
Figure 19. This is the upper left part of the snowflake fractal at level  
n = 3, covered by boxes of level m = 6, i.e., the smallest particles have the length l 
= (1/4)3 = 1/64 which is equal to the box size (1/2)6 = 1/64. The largest particle, in 
the middle have the size  L = (1/2)3. 

 
 

and the f(α)-spectrum 
 

 α (q)3
6 =

d
dq

τ(q)3
6 =

3
2

 

 
and 

 

 f (q)3
6 = q ⋅ α(q)3

6 − τ(q)3
6 =

3
2

. 
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When increasing the box size to level m = 5, 4, 3  and 2, Fig. 19 i.e., boxes 
of size l = 1/32, 1/16, 1/8, 1/4 and 1/2 we get the following results 

 

 τ (q)3
5 = −

1
5ln 2

ln 64 ⋅ 256− q + 96 ⋅128−q{ } 

 τ (q)3
4 = −

1
4ln 2

ln 48 ⋅ 64− q + 8 ⋅ 32− q{ } 

 τ (q)3
3 = −

1
3ln2

ln 16 ⋅32−q +8 ⋅16− q{ } 

 τ (q)3
2 =

3
2

q −1( ) 

 
which gives continuous functions of general dimension Dq (except for box-
level m = 2 where all dimensions are the same). The Hausdorff dimension on 
each levels are given by 

 

 D0( )3

5
= −τ(0)3

5 =
ln160
5ln 2

= 1.4644...  

 D0( )3

4
= −τ(0)3

4 =
ln 56
4 ln 2

=1.4518...  

 D0( )3

3
= −τ(0)3

3 =
ln24
3ln 2

=1.5283...  

 Dq( )
3

2
=

τ (q)3
2

q −1
=

3
2

 

 
and the limits by 

 
 D−∞( )3

5
= 1.6  

 D∞( )3

5
=1.4  

 
 D−∞( )3

4
=1.5  

 D∞( )3

4
= 1.25  

 
 D−∞( )3

3
= 1.6667...  

 D∞( )3

3
=1.3333...  

 
as q → ∞ and q → −∞ respectively. The f(α)-spectrum is also a continuous 
functions, with limits 

 

 α (q)3
5

q→ −∞
=

d
dq

τ(q)3
5

q→− ∞

=
8
5

= 1.6  
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 α (q)3
5

q→ ∞
=

d
dq

τ (q)3
5

q→ ∞

=
7
5

= 1.4  

 
 α (q)3

4
q→− ∞

= 1.5  

 α (q)3
4

q→∞
= 1.25  

 
 α (q)3

3
q→ −∞

= 1.6667...  

 α (q)3
3

q→ ∞
=1.3333...  

 

 α (q)3
2 =

d
dq

τ(q)3
2 =

3
2

 

 
The functions f(q) are given by 
 

 f (q)3
m = q ⋅α (q)3

m − τ(q)3
m ,  m = 2, 3, 4, 5, 6. 

 
On level m = 1  i.e., l = 1/2  we have 4  boxes with probability 128/512 = 

1/4. The function(q) is then given by 
 
 τ (q)3

1 = 2 q −1( ) 
 

which gives 
 
 Dq( )

3

1
= α(q)3

1 = f (q)3
1 = 2  

 
In this limit all dimensions are equal to 2 since all boxes are filled and with 
the same probability. 
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Figure 20. This is the upper left part of the fractal at level n = 3 covered by boxes 
of level m = 2, i.e., with boxes of size l = (1/2)2 =  1/4. 

 
 
To illustrate the behaviour of increasing box-size we construct Table 1 - 

3. Table 1 shows the behaviour when increasing the box-size in the fractal on 
level n = 2 Fig. 18 where the first column represent the 64 filled boxes, 16 with 
one l2-particle, 16 boxes with a quarter of a lL-particle, 16 boxes with a quarter 
of a Ll-particle and 16 where a L2-particle cover 16 boxes. The next column 
represent the next box-size where each part of the lL particles lies in the same 
boxes as the l2-particles and all parts of the four Ll particles moves into the 
same box and the L2 particle now cover four boxes. We then have 16 boxes 
containing l2 + (1/ 4)lL  four boxes containing Ll and four boxes of (1 / 4)L2 . At 
the next level we have 4 boxes of 4 l2 + lL  and four with Ll + (1 / 4)L2 . In the 
last level we have four boxes containing 4l2 + lL + Ll + (1 / 4)L2 .  

 
 



 41

l2 16 16 4 4
lL 16
Ll 16 4 4
L2 16 4

 

 
Table 1. This is the behaviour when decreasing the box size on the level n = 2 
snowflake fractal, Fig. 18. The columns shows the contents in the "filled" boxes 
of sizes (1/16), (1/8), (1/4) and (1/2) respectively.  
 
 
Table 2 and 3 show the same decrease of the box size for the snowflake 

fractal at level n = 3 and n = 4 respectively. 
 

l3 64 64 16 16 4 4
l2L 64
lLl 64 16 16
Ll2 64 16 16 4 4
lL2 64 16
LlL 64 16
L2l 64 16 4 4
L3 64 16 4

l3 64 64 16 16 4 4
l2L 64
lLl 64 16 16
Ll2 64 16 16 4 4
lL2 64 16
LlL 64 16
L2l 64 16 4 4
L3 64 16 4

 

 
Table 2. This is the behaviour when decreasing the box size on the level n = 3 
fractal,. The columns shows the contents in the "filled" boxes of sizes (1/64), 
(1/32), (1/16), (1/8), (1/4) and (1/2) respectively.  
 
 
We can see from Table 1 - 3 that the number of boxes containing the 

same set of particles can be written as c ⋅ 4b  see Table 4. A study of the 
contents in the boxes shows that the coefficient ai

(m)   are given by 
 
ai

( j) = ci
( j ) ⋅ 4bi

( j )

        (72) 
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where we can find recursive rules for ci

( j ) and bi
( j ) , see the result in the 

appendix of Paper II.  
 

 

l4 256 256 64 64 16 16 4 4
l3L 256
l2 Ll 256 64 64
lLl2 256 64 64 16 16
Ll3 256 64 64 16 16 4 4

l2L2 256 64
lLlL 256 64
lL2L 256 64
Ll2L 256 64 16 16
LlLl 256 64 16 16
L2l2 256 64 16 16 4 4
lL3 256 64 16

LlL2 256 64 16
L2lL 256 64 16
L3l 256 64 16 4 4
L4 256 64 16 4

 

 
 

Table 3. This is the behaviour when decreasing the box size on the level n = 4 
fractal. The columns show the contents in the "filled" boxes of sizes (1/256), 
(1/128), (1/64), (1/32), (1/16), (1/8), (1/4) and (1/2) respectively.  
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16 16 4 4
2 •16 4 4

16 4
 

 

64 64 16 16 4 4
3• 64 2 •16 2 •16 4 4
3• 64 3•16 4 4

64 16 4

 

 

256 256 64 64 16 16 4 4
4 • 256 4 •256 3• 64 2 •16 2 •16 4 4
6 •256 6 •64 3•16 3 •16 4 4
4 • 256 4 • 64 4 •16 4 4

256 64 16 4

 

 

1024 1024 256 256 64 64 16 16 4 4
5 •1024 4 • 256 4 •256 3 •64 3 •64 2 •16 2 •16 4 4

10 •1024 10 •256 6 •64 6 •64 3•16 3 •16 4 4
10 •1024 10 •256 10 •64 4 •16 4 •16 4 4
5 •1024 5•256 6 •64 5•16 5•16 4

1024 256 64 16 16

 

 
Table 4. This shows the coefficients for the fractal at level n = 2, 3, 4 and 5 with 
the possible box levels m. The coefficients inside the boxes are coefficients with 
the same probability (measure). 
 
 

If we bring the probabilities and the coefficients into the same table, Table 5 
we see that we can find a similar recursive expression for the probabilities. 
The complete solution to the box-counting problem is presented in the 
appendix of paper II. 
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level n = 2 
Coefficients: 
   4  
   4  4  
   16 4  4  
   16 32  16  
Probabilities: 
   4  
   8  8  
   32 16  16  
   64 64  64  
___________________________________________ 
level n = 3 
Coefficients: 
   4  
   4  4  
   16 4  4  
   16 32  4  4  
   64 32  48  16  
   64 192  192  64  
Probabilities: 
   4  
   8  8  
   32 16  16  
   64 64  32  32  
   256 128  128  128  
   512 512  512  512  
___________________________________________ 
level n = 4 
Coefficients: 
   4  
   4  4  
   16 4  4  
   16 32  4  4  
   64 32  48  4  4  
   64 192  48  64  16  
   256 192  384  256  64  
   256 1024 1536 1024  256  
Probabilities: 
   4  
   8  8  
   32 16  16  
   64 64  32  32  
   256 128  128  64  64  
   512 512  256  256  256  
   2048 1024 1024 1024  1024  
   4096 4096 4096 4096  4096  
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Table 5. This shows the coefficients and the probabilities for the fractal at level n 
= 2, 3, and 4. This table is used to find recursive relation for the probabilities of 
the snowflake fractal. 

 
The box-counting solution to the snowflake multifractal consist of two 

families. This is due to the box-sizes compared with the contents in the boxes. 
We call the different families, the odd and the even. The first box-size is odd 
and has the same size as the smallest particles. Next box-size is even, next 
odd, and so on. Each corner of the odd box-sizes consist of a boxes containing 
reduced copies of the whole fractal. This gives, for large negative q-values an 
exact value of α and therefore D-∞. In Fig. 21 - Fig. 28 the black curves are 
solution with box-sizes larger than the largest particle, that in the middle. The 
red curves are solutions with box-sizes smaller than the largest particle. The 
convergence of the solutions is discussed in detail in paper II. All solutions 
below are calculated from the fractal at level n = 90, i.e., the number of 
particles in the fractal is 490 ≈ 1.53·1054. The curves in the even family are for 
box-levels m = 10, 20, ..., 160 and the odd families for levels m = 9, 19, ..., 159. 
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Figure 21. This is the function α(q) for the odd family. The black curves are 
solutions for boxes larger than the largest particle, the red curves are solutions 
for boxes smaller than the largest particle and the green is the exact solution. 
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This sets of solutions are compared with the exact solutions, the green curves, 
calculated from the analytical expressions Eq. (73) - (75) from paper I and II. 

 

 Dq (q) =
1

q −1
⋅ 2q +

1
ln 2

⋅ ln
1 +16 ⋅ 2q −1

8

 
 
 

 
 
 

 

 
  

 

 
     (73) 

 

 α (q) = 2 +
8 ⋅ 2−q

1+ 16 ⋅ 2−q − 1−16 ⋅ 2− q
    (74) 

 
and 

 

 f (α(q)) =
8q ⋅ 2− q

1 +16 ⋅2−q −1−16 ⋅ 2− q
−

1
ln2

ln
1 +16 ⋅2−q −1

8

 
 
 

 
 
 

 (75) 
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Figure 22. This is the function α(q) for the even family. The black curves are 
solutions for boxes larger than the largest particle, the red curves are solutions 
for boxes smaller than the largest particle and the green is the exact solution. 

 
In Fig. 21 and 22 we show the function α(q) for the odd and the even 

family respectively. As we can see, smaller box-sizes give the best result for 
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negative q-values and large box-sizes give solutions which converge fast for 
positive q:s. 

 
 
Figure 23 and 24 shows the function f(q) for the odd and the even family 

respectively. As for α(q), the smaller box-sizes give the best result for negative 
q-values and large box-sizes give solutions which converge fast for positive 
q:s 
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Figure 23. This is the function f(q) for the even family. The black curves are 
solutions for boxes larger than the largest particle, the red curves are solutions 
for boxes smaller than the largest particle and the green is the exact solution. 
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Figure 24. This is the function f(q) for the even family. The black curves are 
solutions for boxes larger than the largest particle, the red curves are solutions 
for boxes smaller than the largest particle and the green is the exact solution. 

 
 

 
If we plot f(q) versus α(q) we get the f(α)-spectrum, Fig. 25 and Fig. 26. 

Figure 25 show the odd family and Figure 26 the even family. Compare this 
figures with those in paper II. The solutions in paper II are calculated from 
the fractal level n = 16 , i.e., 416 ≈ 4.3·109 particles and the solutions below 
from level n = 90. 

 
We observe that the red curves, i.e., solutions for box-sizes smaller than 

the largest particles are closer to the exact solution at the right side of the f(α)-
spectrum. This side correspond to negative values of the momentum q. The 
left part of the f(α)-spectrum, i.e., for positive q-values, boxes of sizes larger 
than the largest particle, that in the middle of the snowflake, lies closer to the 
exact solution, the green curve. 

  
This observation is important in the calculation of the f(α)-spectrum. To 

get a good result in such a calculation it is important to vary the sizes of the 
boxes and then select the left-most value of α for each f both on the right- and 
the left part of the f(α)-spectrum. 
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We also observe that for the odd family all curves ends up at the exact 
value of α , i.e., α  = 1.5. The f(α)-spectrum start at the point (1, 0) and ends up 
in the point (1.5, 1). We can understand this since the first point correspond to 
the limit where q → ∞. This limit is dominated by the largest particles in the 
fractal, since that part gives the largest probability see Eq. (17). Since we only 
have one particle with the largest size the value of f → 0. The value of α is also 
given since the largest particle consist of 4n particles of size 4-n at each level, 
and α → ln(4n)/ln(1/4-n) = 1.  
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Figure 25. This is the f(α)-spectrum for the even family. The black curves are 
solutions for boxes larger than the largest particle, the red curves are solutions 
for boxes smaller than the largest particle and the green is the exact solution. 
 
 
Similarly we can understand the values at the end point of the f(α)-

spectrum since this is dominates by the smallest particles when  
q → -∞. At this point we have 4n particles of size 4-n , i.e., f → ln(4n)/ln(1/4-n) = 
1 and the fractal consists of 8n particles of size 4-n hence α → ln(8n)/ln(1/4-n) = 
ln(8)/ln(4)  = 1.5. 
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Figure 26. This is the f(α)-spectrum for the odd family. The black curves are 
solutions for boxes larger than the largest particle, the red curves are solutions 
for boxes smaller than the largest particle and the green is the exact solution. 

 
 
 
In Fig. 27 and Fig. 28 we show the generalized dimensions Dq(q) for the 

even and odd family respectively. As we can see, smaller boxes is best for 
negative values of q and larger boxes for positive q:s. By varying the box-size 
and select the smallest value of Dq for each value of q, we can extract the 
closest solution to the exact curve. 
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Figure 27. This is the Generalized dimensions Dq for the even family. The black 
curves are solutions for boxes larger than the largest particle, the red curves are 
solutions for boxes smaller than the largest particle and the green is the exact 
solution. 
 
 
We also observe that the odd family converge fastest, special for 

negative values of the momentum q. This is due to the fact that this family 
have a large number of boxes containing reduced copies of the whole 
snowflake fractal. 
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Figure 28. This is the Generalized dimensions Dq for the odd family. The black 
curves are solutions for boxes larger than the largest particle, the red curves are 
solutions for boxes smaller than the largest particle and the green is the exact 
solution. 
 
 
 

3.7: Box-counting on a gas evaporated metal particle aggregate 
 
 
One goal in the calculations of fractal dimensions of aggregates, is to compare 
with the dimensions given by different computer aggregation models. Such 
models have been proven to be useful, in order to understand the processes 
that give rise to fractal structures.  
 

 
3.7.1: Diffusion Limited Aggregations 

 
One common computer model is DLA, Diffusion Limited Aggregation. 

This model has been found to be relevant to a large variety of processes 
including fluid-fluid displacement in porous media, dielectric breakdown, 
electrodeposition and possibly growth processes.  The DLA model illustrates 
that simple growth and aggregation models could lead to valuable insights 
into important physical and chemical processes. 
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r
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Figure 29. The DLA model in two dimensions. Start with a single occupied site 
(the centre). Place a single particle at a random position on a circle outside the 
cluster and use random walk on a lattice. If the particle hits the cluster it grows 
with the lattice size, if it walks outside the outer circle, take a new particle on 
the starting circle. 
 
 

In a DLA model we place a particle from a randomly selected point on a circle 
outside the cluster. This particle can move on a lattice with random walk. If 
the particle hits the cluster it stops and the cluster grows with one cell. On the 
other hand, if the particle moves outside an outer circle, we place a new 
particle at a randomly selected point on the starting circle. The simulation 
starts with a single occupied site, the black one in the middle.  

 
This simple two-dimensional model can be modified (generalized) in 

different ways. A common generalisation is to introduce a sticking 
probability S ≤ 1. The Hausdorff dimension given by the DLA model in two 
dimensions is D0 = 1.70 ± 0.06 for S = 1 and D0 = 1.72 ± 0.06 for S = 0.25 [20]. 

 
 

3.7.2: Ballistic Aggregations 
 
This model was one of the first cluster aggregations models, developed 

by M. J. Vold, more than 25 years ago [20]. In contrast to DLA, with a small 
mean free path compared with the size of the aggregate, the mean free path of 
the ballistic models is large. We begin with a single stationary particle, and 
one free particle in a random ballistic (linear) trajectory in the vicinity of the 
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stationary particle. If the ballistic particle hits the stationary it sticks to that 
point and a stationary cluster is formed. Then we add new ballistic particles, 
one at a time, until a large cluster has formed. 

 
A ballistic aggregate becomes very dense and the fractal dimension is 

very close to the Euclidean dimension of the embedding space. For large 
clusters, up to 250 000 particles, the Hausdorff dimension is larger than 1.95 
in two,  and larger than 2.3 in three dimensional simulations[20]. 

 
 

3.7.3: Cluster-Cluster Aggregations 
 
In this models we consider a squared lattice, L by L with L2 sites. We 

place N particles at random positions on the lattice and let them move 
randomly. On collisions they stick, and form larger and larger clusters that 
can collide with other cluster. In the final state we have one large cluster. 
There are many extensions to cluster-cluster aggregations, the cluster can 
rotate and the lattice can be multidimensional etc. Three common versions of 
cluster-cluster aggregation is DLCA, Diffusion-Limited Cluster-Cluster 
Aggregation where the cluster moves with random walk, Ballistic cluster-
cluster aggregation where each cluster moves along ballistic (linear) 
trajectories and the chemical cluster-cluster aggregation. The last model is the 
same as the ballistic but with vanishing sticking probability. In this limit, the 
clusters have time to investigate all the possible sticking situations before 
choosing one. This model is used to study colloids, where we have a strong 
repulsive barrier that the particles must overcome before being attracted by 
the short range Van der Waals forces. The theoretical results of cluster-cluster 
dimension is 1.44 and 1.78 in a two and three dimensional simulation 
respectively. If ballistic trajectories are used the dimensions are 1.55 and 1.91 
and in a cluster-cluster chemical simulation the result is 1.55 and 2.04 [20]. 

 
 

3.7.4: Aggregate of magnetic particles 
 

In paper III we study a fractal aggregate of magnetic cobalt particles. The 
aggregate were produced by inert-gas evaporation[21] from a heated 
tungsten spiral in a conventional bell-jar system. The evaporation took place 
in 1.3 kPa of argon gas and resulted in particles of about 100 Å radius that 
were clustered into large connected aggregate as seen in Fig. 30.  Particles 
interacting via long-range forces produce aggregate with quite different 
scaling properties [22]. We estimated the Hausdorff dimension of the fractal 
to be 1.703 ± 0.006. 
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Figure 30. A fractal aggregate of gas-evaporated magnetic cobalt particles.. 
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