Problem 1

1)
1. Number of days to delivery (Jan 7 to June 30) = 175
2. Number of days since last coupon payment (November 5 to Jan 6) = 63
3. Number of days to next coupon payment (Jan 7 to May 4) = 118
4. Number of days from coupon payment to delivery (May 5 to June 30) = 57
5. Number of days from delivery to coupon payment (July 1 to Nov 4) = 127

a) The 6.5% coupon is semi-annual, that is, the bond pays 3.25% every six months. Next payment is due on May 4. For a nominal amount of USD 700 000, the coupon will amount to 700 000 0.0325 = 22 750.

b) T-bond prices are quoted in USD and 32nds of a USD for a USD 100 face value. Thus, a quote of 99-16 means a decimal price of USD 99.5 for a USD 100 face value. Accrued interest as of Jan 6 = (3.25) · 63/(63+118) = 1.1312 Therefore, the cash price paid for the T-Note = 99.5 + 1.1375 = 100.6312

c) Future value of cash price = 100.6312 e0.063 · 175/365 = 103.7172 Future value of expected coupon = 3.25 e0.063 · 57/365 = 3.2821 Cash futures price = 103.7172 – 3.2821 = 100.4351 Therefore the quoted futures price:


	

d) The futures has a notional interest rate for coupon. If the coupon of the cheapest to deliver
bond is higher than the coupon of the notional bond, the conversion factor is larger than 1.
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If 1 is to satisfy a Vasicek type of equation also under P we need the kemnel g
to satisfy

wla—r1)—oge=v(B-r),

where f and 7 denote two constants. Thus
1
0= ke 3B+ (7= n)r.

From this we see that the Girsanov kerel has to be affine in 7.

Let A(f) denote the market price of risk and p(t,T) the price at time  of a

zero-coupen bond maturing at time 7. The P-dynamics of p(t,T) are then

given by
dp(t,T

() + v (6, TINOp(E,T)dt + (8, T)p(t, T)AWe,

for some process v(t,T). A moment of thought then reveals that we must have
) = —g(#). The restriction placed on the market price of risk is thus the
same as that placed on the Girsanov kernel, i.e. it should be affine in .
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‘We note that p and o for the model considered satisfy the necessary conditions
derived in (a). The bond prices will thus be on the following form

P T) = ACTI-BETIre

where A and B solve the following ordinary differential equations
AeT) = 0,
A(T.T)

B(t,T) — %B’(t.T) -

0,

and

B(T,T)

The solution of the first ODE is trivially A(1,T) = 0, whereas the sccond can
be solved using the ansatz given in the hint. Use the notation BT(t) = B(t,T)
and set

B =

1
e

Inserting this into the equation for BT gives the following second order ODE
for g

_L
73

The general solution of this ODE is
q(t) = CetVT 4 DetVE,

From this we obtain that
LI K tVE
s

T Ke
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where K = D/C. Using that BT(T) =
This gives

the constant K can be determined.

Thus, the bond prices for this model are given by
o6T) = B

where B is given by

LAVT e B
v Z -
BeT) =2 etIVE 1 eV tIVE
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(¢) For this model we get the following dynamics for the zero-coupon bonds
dp(t,T) = [r(t) + b{t, T)] p(t, T)dt + alt, T)p(t, T)AW,,

where
a(t,T) = —o(T-1),

HtT) = %01071)1T7t]7

Now, form a sclf-financing portfolio in Ti-bonds and T3-bonds with relative
portfolio weights u; and uy, respectively. The dynamics of the value process of
this portfolio are given by
Vi = (r{t) + w (0b( Th) + ua(b(t, T2))Vide + (s ($)a(t, T1) + wa(t)at, T2))VidWi,
where we have used the fact that u; +uz = 1. Choose the portfolio weights so
that noise term disappears, that is let the portfolio weights solve

wi(Ha(t, Ty) +ua(t)a(t, Tz) 0,

w(t) +up(t) = 1

This gives
t=T
wl) = g
T
wlt) = !

T-T
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Inserting these expressions into the dynamics of the portfolio we see that the
local rate of return of this portfolio is

70+ 3001~ )T ~ (T, ~ 1),

Tt is now clear that if o < 1 borrowing money from the bank to buy the above
portfolio will result in an arbitrage. (If o > 1 you do it the other way around.)
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Define a Girsanov transformation by

dQ=L(t)dP,  on Fi,

where

{dL. = LegidWe,

Here W denotes » P-Wiener process. From Girsanov's theorem we have that

AWe = gt +dVi, or dVi=dWi — gudt.

The P-dynamics of r are thus

dr = wla—r)dt+adVe
Ko=)t +o(dW; - gidt)

= [kla—r) — ogdt +odW,.





