Chapter 28

Interest Rate Derivatives: Models of
the Short Rate

SOLUTIONS TO QUESTIQNS AND PROBLEMS
Problem 28.1.

Equilibrium models usually start with assumptions about economic variables and derive the
behavior of interest rates. The initial term structure is an output from the model. In a no-
arbitrage model the initial term structure is an input. The behavior of interest rates in a no-
arbitrage model is designed to be consistent with the initial term structure.

Problem 28.2.

In Vasicek’s model the standard deviation stays at 1%. In the Rendleman and Bartter model the
standard deviation is proportional to the level of the short rate. When the short rate increases
from 4% to 8% the standard deviation increases from 1% to 2%. In the Cox, Ingersoll, and
Ross model the standard deviation of the short rate is proportional to the square root of the

short rate. When the short rate increases from 4% to 8% the standard deviation of the short-
rate increases from 1% to 1.414%.

Problem 28.3.

If the price of a traded security followed a mean-reverting or path-dependent process there
would be a market inefficiency. The short-term interest rate is not the price of a traded security.
In other words we cannot trade something whose price is always the short-term interest rate.
There is therefore no market inefficiency when the short-term interest rate follows a mean-
reverting or path-dependent process. We can trade bonds and other instruments whose prices

do depend on the short rate. The prices of these instruments do not follow mean-reverting or
path-dependent processes.

Problem 28.4.

In a one-factor model there is one source of uncertainty driving all rates. This usually means
that in any short period of time all rates move in the same direction (but not necessarily by the
same amount). In a two-factor model, there are two sources of uncertainty driving all rates.
The first source of uncertainty usually gives rise to a roughly parallel shift in rates. The second
gives rise to a twist where long and short rates moves in opposite directions.
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Problem 28.5.

No. The approach in Section 28.4 relies on the argument that, at any given time, all bond
prices are moving in the same direction. This is not true when there is more than one factor.

Problem 28.6.

In Vasicek’s model, a = 0.1, = 0.1, and ¢ = 0.02 so that
1
B(t,t410) = 57 —e 0110y = 6 32121

(6.32121 —10)(0.1> x 0.1 —0.0002)  0.0004 x 6.32121°
0.01 } 0.4

=0.71587
The bond price is therefore 0.71587¢~6-32121x0.1 — () 38046,

A(r,t+10) = exp

In the Cox, Ingersoll, and Ross model, a =0.1,b=0.1 and 6 = 0.02/+/0.1 =0.0632. Also

Y=+Va?+2062=0.13416
Define
B =(y+a)(e'"~1)+2y=10.92992
(07—
B

2ab/c?
S(a+7)
At,t+10) = (31%—) = 0.69746

The bond price is therefore 0.69746¢~6-07650x0.1 — 37986,

B(1,1+10) = =6.07650

Problem 28.7.

Using the notation in the text, s =3, T =1, L = 100, K = 87, and

0.015 —2x%0.1 l"‘e_ZXO'le
o =7 (1-e N 2x0

From equation (28.6) P(0, 1) = 0.94988, P(0,3) = 0.85092, and » = 1.14277 so that equation
(28.20) gives the call price as call price is : ’

100 x 0.85092 x N(1.14277) — 87 x 0.94988 x N(1.11688) = 2.59

or $2.59.
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Problem 28.8.

As mentioned in the text, equation (28.20) for a call option is essentially the same as Black’s -

model.> By analogy with Black’s formulas corresponding expression for a put option is
KP(0.T)N(—h+ op) — LP(0,s)N(—h)
In this case the put price is

87><O.94988><N(—l.]l688)- ]OOXO.85092XN(—1.]4277) =0.14

Since the underlying bond pays no coupon, put-call parity states that the put price plus the
bond price should equal the call price plus the present value of the strike price. The bond price
is 85.09 and the present value of the strike price is 87 x 0.94988 = 82.64. Put—call parity is

therefore satisfied:
82.64+42.59 = 85.0940.14

Problem 28.9.

As explained in Section 28.4, the first stage is to calculate the value of r at time 2.1 years
which is such that the value of the bond at that time is 99. Denoting this value of r by r*, we

must solve

2.54(2.1,2.5)e7BC129 4 102 54(2.1,3.0)e~B2-13.00 _ g9

where the A and B functions are given by equations (28.7) and (28.8). The solution to this is

r* =0.066. Since
2.5A(2.1,2.5)¢B(2125)x0.066 _ 5 43473

and
102.5A(2.1,3.0)¢=8(21:30)x0.063 _ g¢ 56438

the call option on the coupon-bearing bond can be decomposed into a call option with a strike
price of 2.43473 on a bond that pays off 2.5 at time 2.5 years and a call option with a strike
price of 96.56438 on a bond that pays off 102.5 at time 3.0 years. Equation (28.20) shows that
the value of the first option is 0.009085 and the value of the second optior is 0.806143. The

total value of the option is therefore 0.815238.

Problem 28.10.

Put-call parity shows that:3

c+I1+PV(K)=p+B

or
| p=c+PV(K)—(By—1)
2Problem 28.8 should refer to Problem 28.7 (not 23.7). There is a typo in the first printing of the book.
3Problem 28.10 should refer to Problem 28.9 (not 23.9). There is a typo in the first printing of the book.
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where ¢ is the call price, K is the strike price, I is the present value of the coupons, and
By is the bond price. In this case ¢ = 0.8152, PV(K) = 99 x P(0,2.1) = 87.1222, By — 1 =
2.5 x P(0,2.5)+ 102.5 x P(0,3) = 87.4730 so that the put price is

0.8152+87.1222 — 87.4730 = 0.4644

Problem 28.11.

Using the notation in the text P(0,T) = ¢~0'*! = 0.9048 and P(0,s) = ¢~*!*% = 0.6065.
Also

0.01 1— (,—2x0.08x1
- 1— —4x0.08 =0.0329
= Gogt ¢ )

and h = —0.4192 so that the call price is

100 % 0.6065N (k) — 68 x 0.9048N (h — Gp) = 0.439

Problem 28.12.

The relevant parameters for the Hull-White model are a = 0.05 and ¢ = 0.015. Setting
Ar=04 B(2.1,3) '
B(2.1,3) = ——2_ x 0.4 = 0.88888
21.3)= 50125 <°
Also from equation (28.26), A(2.1,3) = 0.99925 The first stage is to calculate the value of R

“at time 2.1 years which is such that the value of the bond at that time is 99. Denoting this value
of R by R*, we must solve

2.5¢F 04 4 102.54(2.1,3)e B2 13K — 99

The solution to this for R* turns out to be 6.626%. The option on the coupon bond is decom-
posed into an option with a strike price of 96.565 on a zero-coupon bond with a principal of
102.5 and an option with a strike price of 2.435 on a zero-coupon bond with a principal of 2.5.

The first option is worth 0.0105 and the second option is worth 0.9341. The total value of the
option is therefore 0.9446.

Problem 28.13.

We will consider instantaneous forward and futures rates. (A more general result involving the

forward and futures rate applying to a period of time between T; and T is proved in Technical
Note 1 on the author’s site.)

Because P(t,T) = A(t, T)e~"T~") the process for P(t,T) is from Itd’s lemma
dP(t,T)=...—o(T —t)P(t,T)dz

Define F(f,T) as the instantaneous forward rate for maturity T. The process for F(0,T) is
from Itd’s lemma

dF(0,T)=...+0dz
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The instantaneous forward rate with maturity 7 has a drift of zero in a world that is forward
risk neutral with respect to P(z, T'). This is a world where the market price of risk is —o(T —1).
When we move to a world where the market price of risk is zero the drift of the forward rate
increases to 62 (T —1). Integrating this between r = Q and t = T wee see that the forward rate
grows by a total of 62T /2 between time 0 and time T in a world where the market price of
risk is zero. The futures price has zero growth rate in this world. At time T the forward price
equals the futures price. It follows that the futures price must exceed the forward price by
62T?/2 at time zero. This is consistent with the formula in Section 6.4.

Define F(0,t) and G(0,) as the instantaneous forward and futures rate for maturity 7 so that
G(0,1) = F(0,1) = 6% )2

and
G:(0,t) — F,(0,r) = 6%t

In the traditional risk-neutral world the expected value of r at time 1 is the futures rate, G(0,1).
This means that the expected growth in r at time r must be G,(0,1) so that 8(r) = G,(0,1). It
follows that

8(t) = F,(0,1) + 6>t
This is equation (28.11).

Problem 28.14.

In this case we have P(1,T) = A(t,T)e™B-T)r g0 that from 1t&’s lemma

dP(t,T)=...— oB(t,T)P(t,T)dz

Define F(t,T) as the instantaneous forward rate for maturity 7. The process for F(0,T) is
from It6’s lemma

dF(0,T) = ...+ ce~ 2Ty,

This has drift of zero in a world that is forward risk neutral with respect to P(t,T). This
is a world where the market price of risk is —0B(t,T). When we move to a world where the
market price of risk is zero the drift of F(0,T) increases to 62e=2T-1B(1, T). Integrating this
between t =0 and r = T wee see that the forward rate grows by a total of

2
__2(1 _ e—aT)’Z

between time 0 and time T in a world where the market price of risk is zero. The futures pﬁce
has zero growth rate in this world. At time T the forward price equals the futures price. It
follows that the futures price must exceed the forward price by

2
_2%(1 _ e—aT)Z
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at time zero.*

Define F(0,t) and G(0.t) as the instantaneous forward and futures rate for maturity  so that

G(0,t) = F(0,r) =

and
(o)
G,(0,r) — F(0,1) = 7(1 —e e

In the traditional risk-neutral world the expected value of r at time  is the futures rate, G(0,1).
This means that the expected growth in r at time ¢ must be G,(0,7) — a[r — G(0,1)] so that
0(t) —ar = G,(0,r) —a[r — G(0,1)]. It follows that

6(r) = G,(0,1) +aG(0,1)]

2 . 2

c
=F(0,1)+aF(0,) + %-(1 —e™ )4 4 ﬁ(l — )2

&

")

= F(0,t) +aF(0, r)+ (l—e 2at)

This proves equation (28.14).

Problem 28.15.

The time step, A, is 1 so that Ar = 0.015v/3 = 0.02598. Also jyax = 4 showing that the
branching method should change four steps from the center of the tree. With only three steps
we never reach the point where the branching changes. The tree is shown in Figure S28.1.

*To produce a result relating the futures rate for the period between times Ty and T> to the forward rate between this
period we can proceed as in Technical Note 1 on the author’s web site. The drift of the forward rate is

0’B(1,T;)> — 6?B(1,T})*
2(h—-1)

‘)

2a~(Tv 1)
Integrating between time 0 and time T; we get

[eal( ze—-aTv + 2P—aT1) +e2at [e—ZaTg _ e—..aT,]

2

W(;—_*,m[(e‘lr' —1)(=2¢7 42677 ) [ 4 (2T — 1)(e~ 2T — ¢~2T1) /(24)]
_c B(TI’T’) e~y _ (1 _ =2 a(T,—T))
m_—)ﬂ( h-qa )(1+e )]
= BT<2T’_’ ;1 [B(T1, T2)(1 = ™M) +2aB(0, Ty )| -

This is the amount by which the futures price exceeds the forward price at time zero.
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Chapter 28. Interest Rate Derivatives

: Models of the Short Rate

Figure S28.1: Tree for Problem 28.15.

Node A B C D E F G H I
r 10.00% 12.61% 1001% 7.41% 1524% 12.64% 10.04% 7.44% 4.84%
Pu 0.1667 0.1429 0.1667 0.1929 0.1217 0.1429  0.1667 0.1929 0.2217
Pm 0.6666 0.6642 0.6666 0.6642 0.6567 0.6642 0.6666 0.6642  0.6567
Pd 0.1667 0.1929 0.1667 0.1429 0.2217 0.1929 0.1667 0.1429 0.1217

Problem 28.16.

A two-year zero-coupon bond pays off $100 at the ends of the final branches. At node B it is
worth 100e=012%1 = 88.69. At node C it is worth 100e=%19%1 = 90.48. At node D it is worth
100¢=0-08x1 = 92 31 It follows that at node A the bond is worth

(88.69 x 0.25+90.48 x 0.5+ 92.31 x 0.25)e™ ! *1 = 81.88

or $81.88.

Problem 28.17.

A two-year zero-coupon bond pays off $100 at time two years. At node B it is worth 100e~006%3x1 =
93.30. At node C it is worth 100e=0-9520x1 — 94 93, At node D it is worth 100e~0-0347x1 =
96.59. It follows that at node A the bond is worth

(93.30 x 0.167 +94.93 x 0.666 + 96.59 x 0.167)e~0-0382x! = 91.37

or $91.37. Because 91.37 = 100e~094312%2_ the price of the two-year bond agrees with the

initial term structure.

Problem 28.18.

An 18-month zero-coupon bond pays off $100 at the final nodes of the tree. At node E it is
worth 100¢~0-088%05 = 95.70. At node F it is worth 100e~0-0648x0-5 = 96 81. At node G it is
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worth 100¢=00477x0.5 — 97 64. At node H it is worth 100¢~00331x05 = 98.26. At node L it is.
worth 100¢%0239%03 — 98 71 At node B it is worth

(0.118 x 95.70+0.654 x 96.81 +0.228 x 97.64)e 06405 = 94,17
Similarly at nodes C and D it is worth 95.60 and 96.68. The value at node A is therefore
(0.167 x 94.17 +0.666 x 95.60+0.167 x 96.68)e 034305 = 93.92

The 18-month zero rate is 0.08 —0.05¢~%18%15 = 0.0418. This gives the price of the 18-month

zero-coupon bond as 100¢~0-0418%15 — 93 92 showing that the tree agrees with the initial term
structure.

Problem 28.19.

The calibration of a one-factor interest rate model involves determining its volatility param-

eters so that it matches the market prices of actively traded interest rate options as closely as
possible. '

Problem 28.20.

The option prices are 0.1302, 0.0814, 0.0580, and 0.0274. The implied Black volatilities are
14.28%, 13.64%, 13.24%, and 12.81%.

Problem 28.21.

From equation (28.15)

P(t,t+Ar) = A(r,t + A,)e—r(r)B(r,t+Ar)

Also
P(t,t +Ar) = e RN
so that
e—R(l)At — A(I’T+At)e—r(t)8(t,t+AI)
or

o~ ROB(.T)A/Blt1+A1)

A(t,t + AI)B(t,T)/B(t,H-Al)

o~TOB(LT) —

Hence equation (28.25) is true with

. B(t,T)At
tT)= ———
BT) B(t,t+ At
and A( T)
. Ly
A(I,T) = A(t’t+At)B(tJ‘)/B(,t,I+AI)
or '

A B(t, T
InA(r,T) =InA(t,T) — Rt—(t’;z?) InA(r,t +At)

Substituting for InA(f,T) and InA(7,7 + Ar) we obtain equation (28.26).
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Interest Rate Derivatives:
HJM and LMM

SOLUTIONS TO QUESTIONS AND PROBLEMS
Problem 29.1.

In a Markov model the expected change and volatility of the short rate at time  depend only
on the value of the short rate at time ¢. In a non-Markov model they depend on the history of
the short rate prior to time f.

Problem 29.2.

Equation (29.1) becomes

dP(t,T) = r()P(t,T)dt + Y vi(t,T,Q)P(t,T) dz(t)
P

so that

dIn[P(1,T1)] = [r(r) -y 35—(’—2—9’)7] de+ Y vi(t,Th, Q) dz(t)
k k

and

dIn[P(t,T5)] = [r(t) -y Y‘—(t’—%-’—%ﬁ} dt + v (t,T»,9) dz (1)
k

re

From equation (29.2)

_ Zk[Vk([,T_),Q,)Z —Vk(t,T],Q,)z] Vk(t’TlaQI) —vk(t7T2aQt)

h,h)=
af(t, T To) 2(B-Th) dr+2 -1

dz(t)
Putting 73 = T and 7> = T + At and taking limits as Ar tends to zero this becomes

dr—Y

dF(t,T) =Y [vk(t,ﬂ Q)
k

k

aVk(t, T,Q[)
oT

BVk(t,T:Qt)
2l |t
Using vi(t,2,€,) =0

T Ovi(t,7,8)
vk(ta ) 1) /’ 317 dt



213

The result in equation (29.6) follows by substituting

avk(t._ T,Ql)

S/\'([,T,Q]) = aT

Problem 29.3.
Using the notation in Section 29.1, when s is constant,’
vr(t,T)=s vrr(t,T)=0
Integrating vy (t,T)
v(t,T) = sT +afr)

for some function a. Using the fact that v(T,T) = 0, we must have
v(t,T)=s(T —t)

Using the notation from Chapter 28, in Ho-Lee P(r,T) = A(t, T)e~"T~), The standard devi-
ation of the short rate is constant. It follows from Itd’s lemma that the standard deviation of
the bond price is a constant times the bond price times T —¢. The volatility of the bond price
is therefore a constant times T — . This shows that Ho-Lee is consistent with a constant s.

Problem 29.4.
Using the notation in Section 29.1, when vr(¢,T) = s(t,T) = ce—aT—1 4

VTT(I,T) = —a()'e’“(r-’)

Integrating vr (1, T)
1
v(t,T) = —;oe-a"*” +a(t)

for some function a. Using the fact that v(T,T) = 0, we must have
v(t,T) = Z[1 - e=aT=] = 6B(1,T) i
a

Using the notation from Chapter 28, in Hull-White P(t,T) = A(t, T)e "B®T). The standard
deviation of the short rate is constant, ¢. It follows from It6’s lemma that the standard devia-
tion of the bond price is GP(t, T)B(t,T). The volatility of the bond price is therefore 6B(t,T).
This shows that Hull-White is consistent with s(t, T) = ce~%7 ).

Problem 29.5.

LMM is a similar model to HIM.S It has the advantage over HIM that it involves forward rates
that are readily observable. HIM involves instantaneous forward rates.

SIn the first printing of this book the references to LMM should be to HIM.
S1n the first printing of this book the references to BGM should be to HIM.
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Problem 29.6.

A ratchet cap tends to provide relatively low payoffs if a high (low) interest rate at one reset
date is followed by a high (low) interest rate at the next reset date. High payofts occur when
a low interest rate is followed by a high interest rate. As the number of factors increase, the
correlation between successive forward rates declines and there is a greater chance that a low
interest rate will be followed by a high interest rate.

Problem 29.7.

Equation (29.10) can be written

dF(1) = GORD) Y TSR0

i=m(!

dt+ G (1)F(t)dz

As & tends to zero, §;(t)F;(t) becomes the standard deviation of the instantaneous fi-maturity
forward rate at time . Using the notation of Section 29.1 this is s(¢, %, Q,). As §; tends to zero

& SF()G()
2 1+ §Fi(t)

i=m(t)

tends to .
.
/ s(t,7,Q)dt

=t
Equation (29.10) therefore becomes

I
dF (1) = [s(t,rk,Q,)/ s(t, ’L’,Q,)d't] dt + s(t,tx, ) dz
=t
This is the HIM result.

Problem 29.8.

In a ratchet cap, the cap rate equals the previous reset rate, R, plus a spread. In the notation of
the text it is R; +s. In a sticky cap the cap rate equal the previous capped rate plus a spread.
In the notation of the text it is min(R;, K;) +s. The cap rate in a ratchet cap is always at least
a great as that in a sticky cap. Since the-value of a cap is a decreasing function of the cap rate,
it follows that a sticky cap is more expensive.

Problem 29.9.

When prepayments increase, the principal is received sooner. This increases the value of a PO.
When prepayments increase, less interest is received. This decreases the value of an 10.
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Problem 29.10.

A bond yield is the discount rate that causes the bond’s price to equal the market price. The
same discount rate is used for all maturities. An OAS is the parallel shift to the Treasury zero

curve that causes the price of an instrument such as a mortgage-backed security to equal its
market price.

‘Problem 29.11.

When there are p factors equation (29.7) becomes

dF(r) Z g (t)Fie(1)
q=

Equation (29.8) becomes

dF/\ Z Ck q [vm(l ~Vik+lyg FA d’ + Z Cl\ q Fl\(t)
— 4=

Equation coefficients of dz, in
InP(t,t;) — InP(t,ti11) = In[l + §;F(1)]
Equation (29.9) therefore becomes

51‘E'(’)€Lq

Vig(7) —Vit14(1) = 14 §F(t)

Equation (29.15) follows.

Problem 29.12.

From the equations on page 688

P(t To) P(I,TN)

s(t) =
Z-—o T (taT;'-H)
and
I;I +TJG (1)
so that
H —1 1
S(t) = i) 17,G;(1)

i 1
zi:O Wllj=o 56w

(We employ the convention that empty sums equal zero and empty products equal one.)
Equivalently,
N"'[1+erj(t)] —1

Zi "4l —z+1[1 +7;G;(1)]

s(t) =
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o N-1 N=1  N=I
Ins(t) = In{H[l +1,Gj(1)] - I} ——ln{ >u Il +’CjGj(f)]}
=0 =0 j=it]
so that
Loas(r)  un)
s(t) 9G(t) 14+ wGi(r)
where

_ N_‘[I+Tj ( )} Zl OT' j I+|[1+TJ (t)]
1'1’,"0[1+‘L'j (1)) -1 2, el | N+ 1G]
From It6’s lemma the gth component of the volatility of s( 1) is

1 9s(r)
s(t) G (1)

%(t) =

N—1
ﬁk.q(r)Gk(t)

or

Nil TBrq (DGi (1) 1 (r)
S0 1+ wG(t)

The variance rate of s(t) is therefore

&N By (1) Gr() 3 (0) i
V(’)‘q; Lé) 14+ 3Gy (1) }

Problem 29.13.
M
1 +TjGj(I) = H[] +TjmGjm(t))
m=1
so that

M
In[1+7;Gj()] = Y, [1 +7j,uG} m(r)]
m=1
Equating coefficients of dz,

%Big(1G,(t) _ i TjmBjmg(1)Gjm(t)
1+17;Gj(r) 147G jm(t)

m=1

If we assume that G (1) = G, (0) for the purposes of calculating the swap volatility we see
from equation (29.17) that the volatility becomes

12 [ 8 B 06 OR )]
(R[5S § mteticionol,

k=nm

This is equation (29.19).



Chapter 30
Swaps Revisited

SOLUTIONS TO QUESTIONS AND PROBLEMS
Problem 30.1.

The target payment dates are July 11, 2004; January 11, 2005; July 11, 2005; January 11,
2006; July 11, 2006; January 11, 2007; July 11, 2007; January 11, 2008; July 11, 2008;
January 11, 2009. These occur on Sunday, Tuesday, Monday, Wednesday, Tuesday, Thursday,
Wednesday, Friday, Friday, and Sunday respectively with no holidays. The actual payment
dates are therefore July 12, 2004; January 11, 2005; July 11, 2005; January 11, 2006; July 11,
2006; January 11, 2007; July 11, 2007; January 11, 2008; July 11, 2008; January 12, 2009.
The fixed rate day count convention is Actual/365. There are 182 days between January 11,
2004 and July 11, 2004. This means that the fixed payments on July 11, 2004 is

2
;—?5 % 0.06 x 100,000,000 = $2,991,781

Similarly subsequent fixed cash flows are: $3,024,658, $2,975,342, $3,024,658, $2,975,342,
$3,024,658, $2,975,342 $3,024,658, $2,991,781 $3,024.658.

Problem 30.2.

Yes. The swap is the same as one on twice the principal where half the fixed rate is exchanged
for the LIBOR rate.

Problem 30.3.

The final fixed payment is in millions of dollars:
[(4x1.0415+4) x 1.0415+4] x 1.0415+4 = 17.0238
The final floating payment assuming forward rates are realized is
[(4.05 x 1.041 +4.05) x 1.041 +4.05] x 1.041 4+ 4.05 =17.2238
The value of the swap is therefore —0.2000/(1.04*) = —0.1710 or -$171,000.

Problem 30.4.

The value is zero. The receive side is the same as the pay side with the cash flows compounded
forward at LIBOR. Compounding cash flows forward at LIBOR does not change their value.
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Problem 30.5.

In theory, a new floating-for-floating swap should involve exchanging LIBOR in one currency
for LIBOR in another currency (with no spreads added). In practice, macroeconomic effects
give rise to spreads. Financial institutions often adjust the discount rates they use to allow for
this. Suppose that USD LIBOR is always exchanged Swiss franc LIBOR plus 15 basis points.
Financial institutions would discount USD cash flows at USD LIBOR and Swiss franc cash

flows at LIBOR plus 15 basis points. This would ensure that the floating-for-floating swap is
valued consistently with the market.

Problem 30.6.

In this case y; = 0.05, 0yi =0.13, 7, = 0.5, F; = 0.05, o7, = 0.18, and pi = 0.7 for all i. It
is still true that Gi(y;) = —437.603 and G} (vi) = 2261.23. Equation (30.2) gives the total
convexity/timing adjustment as 0.00008927; or 0.892 basis points per year until the swap rate

is observed. The swap rate in three years should be assumed to be 5.0268%. The value of the
swap is $119,069.

Problem 30.7.

In a plain vanilla Swap we can enter into a series of FRAs to exchange the floating cash
flows for their values if the “assume forward rates are realized rule” is used. In the case of
a compounding swap Section 30.2 shows that we are able to enter into a series of FRAs that
exchange the final floating rate cash flow for its value when the “assume forward rates are
realized rule” is used. There is no way of entering into FRAs so that the floating-rate cash

flows in a LIBOR-in-arrears swap are exchanged for their values when the “assume forward
rates are realized rule” is used.

Problem 30.8.

Suppose that the fixed rate accrues only when the floating reference rate is below Ry and
above Ry where Ry < Ry. In this case the swap is a regular swap plus two series of binary
options, one for each day of the life of the swap. Using the notation in the text, the risk-neutral
probability that LIBOR will be above Rx on day i is N(d») where

4, = 0(Fi/Rx) — o1 /2
: oVt
The probability that it will be below Ry where Ry < Ry is N(—d}) where
2, = In(Fi/Ry) — o717 /2
- oV
From the viewpoint of the party paying fixed, the swap is a regular swap plus binary options.
The binary options corresponding to day i have a total value of

oL

nz

(This ignores the small timing adjustment mentioned in Section 30.6.)

P(0,s:)[N(d2) + N(—d5)]



