Answers to Interest Rate‘Theory

(a) Consider the Vasiek model

i

ii.

iii.

iv.

dr = (b — ar)dt + odV.
The explicit solution to the stochastic differential equation above is
given by
r(t) = e %rg +/ a(t=s)pgs +/ —a(t=5) gV (s).

We see that r € N(Q + e %(rg — -3), %(1 — e~2at)),
The limiting distribution is N(&, 22)
The explicit solution found in (i) gives that
ry = e %rg + Z,
where 79 € N(& @) 2a) has been assumed and it can be seen that Z €
N(E(1-e9t), & (1 e~29t)). Since r is independent of the Wiener

a
process by assumption, it follows that 7o and Z are independent. We

thus have that

r(t) €N (e“”s +

b o?
It is easily checked that
f(z) = =22

2 2
- —2at 0 o -
(1 —e at),e 2at§; + o (1 —e 2at)) ,

Q|

1.e.

\/2#02
satisfies
0 1 62
- 55l — a2 (@) + 5 50 (@)] =0,

(b) Itd’s formula applied to Z(t) = /Y (t) gives

1 1 1 )
= 2aZdt + 20dW.

The solution of this SDE is

t
Zy = e®¥z + / e2a(t=s) 20dW;.

We see that Z € N(e2%z, 2 (eet — 1)).



3 We have II[t; X] = p(t, T)ET [r(T)| F;]. The Girsanov kernel for the transition
from Q to QT is given by g(¢) = v(t, T) where v(¢, T') is the bond price volatility.
In our case we have an affine term structure

p(t, T) = eAGT)-BT)r(t)

where B is given by B;(¢,T) = -1, B(T) = 0. Thus B(¢,T) = T —t. From
the affine formula above we also have

dp(t,T) = r(t)p(t,T)dt — p(t,T)B(t, T)odV (¢),
so v(t,T) = —o(T — t). The QT-dynamics of r are thus given by
dr(t) = (a+ d2(t — T))ds + odW (t), (0) = ro.

where W is a QT-Wiener process. Thus we have

2
ET[r(T)] = ro + (¢ — 0*T)T + %—Tz = ro + o — Lo*T2.

4 (a) The Ho-Lee model possesses an affine term structure, i.e. the bond prices
in this model can be written on the form

p(t,T) = F(t,r(t),T) = eAGT)-BETIr(),

The deterministic functions A and B solve the following ordinary differ-
ential equations

Bi(t,T) = -1,
{B(T,T) = 0,
and
A, T) = ¢(t)B(t,T)—~;-a2B2(t,T),
AT, T) = 0.

In order for the model to fit the initial term structure ¢ should be chosen
as (see the textbook for details)

¢(t) = f7(0,8) + o*t.
The solutions for the two ordinary differential equations are thus
B(t,T)=T-t,

and
T 2 (m _ 13
A, T) = /t [f»}(O, s)+ 023] (s —T)ds+ %—(L?—)—t—)—

From the relation

_ Olnp(t,T) _ pr(t,T)
f(t’T)"_ oT _—p(t,T) )




we obtain that
f@t,T) = Br(t, T)r(t) — Ar(¢,T).
After inserting the expressions for A and B this becomes
F(t,T) =r(t) + f7(0,T) — £*(0,t) + *¢(T — t).
(b) o%t(T — t) is obviously linear in T for every fixed ¢.
5 See the textbook.

6 Heuristically we have
o
dC@t) = —plt,t)dt+ / dp(t, s)ds
t
o0
= —1-dt+ / [(r(©)p(t, 5)dt + v (¢, s)p(t, 5)dW (£)] ds
t

= —dt+r(®) [ /t i, s)ds] dt + [ /t % o(t, s)p(t, s)ds| AW (t)
— [CH)r(t) - Udt + oe(®)dW (2),

where
oc(t) = /too p(t, s)v(t, s)ds.

7 (a) The net payments to you at time T;, are given by

Tn
Xn =K (exp {/ T(S)dS} _ eR(Tn_Tn—l)) .
Tn—l

The value at time £t = 0 of X, is

X, = KE° —exp{-—/;Tn r(s)ds} X

(exp {/TTn r(s)ds} - eR(T,.—Tn_1))]
= KE° — X {— Tn.—lrsds}-l
o)~ | T (5)ds |
~KE© {exp{—/o nr(s)ds} R(Tn=Tn-1)

= K [p(O,T —-1) - p(o, Tn)eR(Tn"Tn_l)] )

The swap rate is thus given as the solution to the following equation

M
Z{p(oan—l) - p(0, Tn)eR(Tﬂ_Tn—l)} =0.
n=1

If in particular T, = nA, then

M-1 M
> p(0,Ty) = 2 3" p(0, T),
n=1

n=0



ie.
A 211:,/{:1 p (07 Tn)
(b) The net payments to you at time T}, are given by

Xn = K (eRﬂ—l(Tn"Tn—l) — eR(Tn"Tn-—l)) ,

where
1 ’ '
Ry = T oT, In{p(Th-1,Tn)}-
Thus we have that |
1
o= ¢ (s o),
" p(T -1, T’n)

and the value at time ¢t = 0 of X, is

(X, = KE° -exp{—-/OTn T‘(s)ds} x
3 o
Gy )]
- .
- 00 oo [ )

Tn
-KE° [exp{—/ r(s)ds ] efTn=Tn-1)
0
E

exp {—— foT"“’ r(s)ds} 0

Tn
o G ARY

Tn
—KE? |exp —/ r(s’)ds}:l BT =Tn-1)
0

Tn-1
o | &P {— Jo r(s)ds}
KE [ p(Tn—l, Tn)

Th
~KE° [exp{——/ r(s)ds }eR(T“"T"“)
0

= K [p(0,Tn-1) - p(0, Ty)eR(T=Tn-1)]

p(Tn—h Tn)

This coincides with the value found in (a) and we obtain the same swap
rate as in (a).

(c) In a continuous model the net payments to you in the interval t,t + di]
are given by

Kr(t)dt — KRdt.




The value of the total payment stream is
T t :
I = KE° / exp {—/ 'r'(s)ds} [r(@) - R]dt]
0 0
[rT t
= KE° / exp {—-/ r(s)ds} r(t)dt
0 0o

_KRE® [ /0 Texp{— /0 tr(s)ds} dt
= K/OT—%EQ [exp{— /Otr(s)ds}] dt

~KR[J B9 [exp {-1s r(s)ds}] dt

_ K{l - fQ [exp{—/oT;r(s)dsH}
_KR /0 fo [exp{-— /0 r(s)ds}] dt

T
= K1 -p(0,7) - KR [ p(0, )t
We see that
- [1 - p(07 T)]
S p(0,t)dt

Answers to Change of Numeraire

t,T)
1 (a) LTt = ———’L—— see the textbook for details).
@ L0 = 20,1180 ¢ )

(b) Itd’s formula applied to the expression for LT(t) derived in (a) gives
dLT(t) = v(t, T)LT (£)dV ().

(c) The model possesses an affine term structure, i.e. the bond prices in this
model can be written on the form

p(t,T) = F(t,r(t),T) = GAT)-BET)r(?),

The deterministic functions A and B solve the following ordinary differ-
ential equations

Bi(t,T) = -1,
B(T,T) = 0,

I

and
AT) = aB(T) - 50*BX(LT),
AT, T) = 0.

The solution of the ODE for B is B(t,T) = T —t. 1t6’s formula applied to
p(t, T) = exp{A(t,T) — B(t,T)r(t)} gives us the diffusion term we need
in order to write down the Q-dynamics of p(t,T) (we already know that
the drift should be equal to the short rate) '

dp(t, T) = r()p(t, T)dt — o(T — )p(t, T)dV.



(a)

This means that
v(t,T) = —o(T - t).

Via Girsanov’s Theorem we now have that the dynamics of r under QT
are given by :

dr(t) = [a — o(T = t)]dt + odV7(2),
where V7T is a QT-Wiener process. Given that r(t) = r, it follows that

(under Q7)

r(T)=r+ /tT[a —o(T - s)|ds + /tT adV7T(s).

We see that 7(T) € N[r + o(T —t) + §(T — t)%,0/T — t]. The price of
the contract X = r2(T) is given by

I(t) = p(t, T) BT [r4(T)| 7]

Since E[X?] = Var[X] + E?[X], the expectation is easily found to be
ET [r2(T)| Fe| = oX(T 1) + m?,

where m =1+ o(T — t) + §(T - t)2.

Since II(t)/ Y (¢) is a @*-martingale we have

oG X] . [H[T;X] ] _ [ X
v = v 17 =7 v 7]
le
[t; X] = Y () B* [—X— f]
) - Y(T) it
With X = ZY(T) and T = 0 we get, using (a) and known results, that
_ ZY(T)]
T Q — . — *
e TEQ[ZY (T)] = I[0; X] = Y(0) E [ o
=Y(0)E*[Z],
that is
Y(T)
* — 9 o\
FiA =5 |75y
Our guess would then be that the Radon-Nikodym derivative is given by
__Y(@
M= 5@y

The likelihood process is then

_ B Y (T) _ Y@
L(t) = E°[L(T)| ] = E? [B(T)Y(O) “7:‘] ~ B()Y(0)’

since, by definition, Y (T")/B(T) is a Q-martingale.



Tt remains to show that S(t)/Y () is a Q*-martingale. We have that

LR B [ 7| 7]

Y(T)I"' T EQ[L(T)| F]

R ori | it 7
L(t) 70

_ 5w _

s Y(t)'

BOY )

(c) The Q-dynamics of ¥ are
dY =rYdt+oYdV.
From (b) and It6’s formula it follows that

<B<t)(t)( )) =75 C;Eg)

) =
1Y)
= Yo)°B ()dV() oL(t)dV ().

(d) Under Q we have the following dynamics, using Girsanov’s Theorem

dY = rYdt+oYdV,
dS = rSdt+4Sdv?*,

where V and V* are independent Q-Wiener processes. Girsanov’s Theo-
rem gives that the Q*-dynamics are ‘

dY = (r+o0)Ydt+aYdV*™,

dL(t

dS = rSdt+4Sdv*,

where V* (the same process as above) and V™ are independent Q*-
Wiener processes. From this and (a) we obtain

170 [l -roe (22501

(a) We start by going through the steps in the hint.
i. Itos formula applied to FT t,7¢ /So gives

FT 0 T _
) = —= —dF
d ( S()) 52 dS Sod
FT 1 1o
= —-rTS,-O—dt + g (FT +aFT + zb%Fﬂ; + 5b%F,.,) dt
1 1
+—by FTAW' + —by FTdW?
o g, oo fr AW
Since FT(t,r;)/So(t) is a martingale, the drift term has to be zero,
which gives
1 1
FT 4 oFT + Zb3FL + -03FE - rFT = 0.

5 15 T g
The boundary value is of course F(T,r,T) = 1.



ii. Just insert the proposed term structure into the equation and check
that things equates. e

Now that we know that p(t,T) = exp{A(t,T) — B(t,T)r(t)}, 1td’s
formula gives

dp(t,T) = rep(t, T)dt — by (t)B(t, T)p(t, T)dW}
~ba(8) B(t, T)p(t, T)AWE.

(b) Note that the bond issued by the firm can be seen as a contingent T-claim,
which, at time 7', pays

. Vr
mm{l,—I—{-}.

By using the pricing formula in Proposition XXII.2 we obtain

p(0,T) —u(0,T) = | 2(0,T) — p(0, T)ET [min {1, YKE}]
= p(0,T)ET [1 — min {1, %T—}]

= MET [max{K — Vr,0}]

K
- PO [ - o]

Since V(t)/p(t,T) is a QT-martingale the drift and thereby the interest
rate must equal zero. Since the change of measure is a Girsanov trans- -
formation it does not affect the volatility, and It6’s formula applied to
- V(t)/p(t,T) under Q gives
|4 | %4 |4
d (—T) = ...t + (0BT + o) dW} + (b, BT + 03) - dW?.

p p p
The price of the bond issued by the firm can thus be computed as the price
of a European put option on V'(t)/p(t,T), with strike price K, interest
rate zero and volatilities according to the above.

Remark: If one prefers, one can use the following equality in distribu-
tion, when computing the expectation

1 1 v
d (F) = ...dt+ (BT +d)) Fthl + (b2 BT + o) FthZ

14
= ...dt+1/(0BT +ob)? + (5BT + a%,)2FdW3,
“where W3 is a Wiener process.

4 From +he Lecturenofes we have that

o0
c(t, T, K, S) = p(t, T)/ max {eA(T’S)'B(T'S)z - K, 0} o(z)dz.
-0



Here ¢ denotes the density function of the N (f(¢t,T),0%(T - t)) distribution,
and A and B solve the following ordinary differential equations

._1,
0,

Bt(ta T)
| 5t

and

I

AWT) = $0BET) - 50°B(ET),
A(T,T) = 0.

The solutions are given by

T —t,

B(t,T)
T 2 _ )3
{A(t,T) - /t ¢(s)(s—T)ds+%(T3t).

Take a closer look at the integral

o0 .
p(t, T) / max {eA(T’S)"B(T’S)Z - K, 0} p(z)dz =
)

Mﬁﬂ@wf(z>—m§&é?£»+

—nK+A(T.S)
4 / B(T.5) ( ATS)-B(T,S)z _ K) (p(z)dz} =
—00
—ln K+A(T.5)

) I e G
_oo ,

—mK+A@£W.

—p(t, T)KQT (Z < —5T.5)

The probability in the last term can be written as

—-InK + A(T,S)\ _
B(T, S) )” ‘
o (Z —f(t,T) _ K+ ATS) - {EDBT,S) ) _
o /T —1) ~ o/(T — t)B(T, S) -
N(—mK+mﬂ$—fmﬂB@§)
o/ (T —t)B(T\, S) )

QT (Zs




The argument of the cumulative distribution function can be rewritten as

~nK + A(T,S) - f(, T)B(T,S) _
o+/(T —t)B(T, S)
~InK + AT, S) - [Br(t, T)r(t) — Ar(t, T)]B(T,S) _
a/(T —t)B(T,S)
- —InK + A(T,S) + Ar(t, T)B(T, S) — Br(t, T)B(T, S)r(t) _
‘, o/(T —t)B(T, S) a
—InK + A(t,S) — A(t,T) — 36(T — t)B%(T, S) - [B(t, S) — B(t, T)]r(¢)

o/(T - t)B(T, S)

In the first equality we have used that

f@&T) = Br(t,T)r(t) — Ar(¢, T).
In the last equality we have used that

B(t,S) — B(t,T) = BT(i, T)B(T,S), (1)
which is easy to check, and that

A(t, S) — A(t,T) = A(T, S) + Ar(t, T)B(T, S) + %az(T _9)B(T, 9),(2)
which we now show.

rS S
/ #(s)(s — S)ds +/ -1—02(5 —5)2%ds — /tT é(s)(s — T)ds+

T
+/ 12 2ds—

+/ { s)(T-S)+ [(3—3)2—(T—s)2]}ds=

A(T, 5) + B(T, 5) / (6(s) + oX(T —s)}ds+——/ (S — T)2ds =
A(T, S) + B(T, S)Ar(t,T) + 302B%(T, S).
The argument can thus be written as

~nK + At, S) — A(t, T) — Lo*(T - t)B¥(T, S) — [B(t, S) — B(¢, T)}r(t)
o /(T = DB(T, S)
1

p(t, S) 1 ~
o/(T — t)B(T, S) o { p(t,T) K} =50y (T -t)B(T,5) =

d— op.




Now to the integral

—In K+A(T,S)

pe,1) [T AT BN (),
-0

By completing the square in the exponent, the integral can be written as

=1In K+A(T,S)
p(t,T)eA(T,S)—f(t,T)B(T,SH%a’BZ(T,S) / BESY () dz =
—00

eAT)=BtT)r(t)+A(T,S)- F(&T)B(T,S)+50*BX(T,S)

—InK + A(T, S)
xQ" <Z ST BT S) ) =

eA(t,T)—B(t,T)T(t)+A(T,S)—f(t,T)B(T,S)+ 150-232 (T,S) X

N <— InK + A(T, S) — f(t, T)B(T, S) + o*(T — t) B*(T, S)>

o/(T - 1)B(T, S)

where 9 denotes the density function of N (f (¢, T) — o*(T — t) B(T, S), o?(T —t)).
It is easy to see that the argument of the distribution function is given by the
same argument studied earlier plus o+/(T — t)B(T, S) = 0p, i.e. the argument

is given by

d—op+op=d.

By using the relations (1) and (2) and f(¢,T) = Br(t, T)r(t) — Ar(t, T) you
can also see that ‘

cAT)=BT)r(t)+A(T,S)- f@.T)B(T,S)+30?B*(T,S) —

= ALS)-BESr(®) = p(, S).

We are done!

5 We obtain

I

II[0; X] EQ[B~![Sr — K)I{Sr = K}]
T
= E° [exp {—/(; r(s)ds} StI{St > K}}

T
-KE® [exp {—/0 r(s)ds} I{St > K}] .

Now change to Q° in the first term and Q7 in the second and you will obtain
the formula from the exercise.



