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MÄLARDALENS HÖGSKOLA
Instituitionen för Matematik och fysik, IMa

Examination in MMA707 & MT1410 Analytical Finance I

Wednesday 7 of January 2009, 14:30 – 18:30



Examiner: Jan Röman, phone 070-3059 306

You may use: Pencil, ruler, rubber gum and calculator.
General direction: The solution should be well motivated and readable. All notations must be explained.

Remark: Write your national registration number (personnummer) and the number of pages on the first page. Write only one solution on per sheet. Use page numbers and write your name on all pages.

Good Luck!!


1. You have just discovered a new type of financial product called the "Special Range" contract. Here are some details taken from the information material that you have just received: "The contract is based on the SP500 index and matures exactly 8 month after issuance. The amount of cash payable to each contract depends on the level of the S&P 500 index at maturity (hereafter IT), and is given by the following table:
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‘The index is below 900

The index is between 900 and 1000
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The index is between 1100 and 1300
‘The index is above 1300





a) Draw the payoff to the holder of a contract as a function of the SP500 index level at maturity. Clearly label the graph with the necessary values.

b) Which types of views on the underlying asset are consistent with buying this product?

c) What is the composition of a portfolio of call options on the SP500 that would replicate the final payoff to the holder of a contract? Be specific about the number (possibly fractions) of options, the strike prices and whether you are long or short.
d) Assume you are given the following prices of eight- month European call options on the SP 500 index: c(K=900) = USD 181.1836; c(K=1000) = USD 108.8097; c(K=1100) = USD 54.4109 and c(K=1300) = USD 7.5781. Given this information and your answer in (b), what should be the value of the contract?
………...………………………………………………..…………………. (3p)
2. You are given the following information:

USD/CHF spot price: 
1.72 CHF (1 USD = 1.72 CHF)

Strike price: 

1.75 CHF

Simple interest rate: 
2% per period

Up factor: 

1.10 per period

a) Calculate the price of an American put with the two-period binomial approach.

b) Explain why it could be optimal to exercise prematurely an American put on a foreign currency.
c) Explain what would be the effect on an American put if the « up factor » gets smaller and why. Detail your answer.
…………………………………………………………………..………….(3p)

3. Consider a stock priced at CHF 50 with a standard deviation of 30%. The continuously compounded risk-free rate is 3% p.a. and there are no expected dividends on the stock.

a) What is the theoretical price of a six-month European “at the money” call option?
b) What would be your profit if you buy an “at the money” six-month European call at its theoretical value and hold it till maturity if the stock price at maturity is CHF 57? Assume that the whole transaction consists of 100 shares or one option contract (contract size = 100).
c) What is the delta of this “at the money” call option? What does this number represent?
d) What should be the price of an “at the money” six-month put option?
e) If the risk-free rate increases from 3% to 4%, will the price of the call and put option increase or decrease (no calculations required)? Why?
……………………………………………………………………………..(4p)


4. The price of the stock of ABC corporation satisfies the SDE
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where Bt is a Brownian motion. The corporation enters into a contract with its CEO, worth 
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at time T. Note that if the stock price ST is greater than K, the CEO receives a payment, but if ST < K then she has to pay the corporation. In other words, this is an incentive for her to see that the stock price goes up. In order to neutralize the contract, she decides to hedge. Ignoring transaction costs, how much does it cost her at time t = 0 to implement a hedge that will exactly balance this contract at time t = T? You should obtain your answer by

(a)    Expressing the hedging cost in terms of risk neutral expectations,

(b)    evaluating these expectations.

(c)    Finally, work out an actual cost, where T corresponds to 2 years, r = 3% per 

year, (  = 6% per year, ( = 30% per year, K = 10, the initial price of the 
stock is S0 = 12, and  A = 100,000.

…………………….…………………………………………….……………(10p)

5. Consider a financial market in which the Black-Scholes formula for a European call option holds. The risk-free interest rate (cont. compounding) is r. The underlying stock has value S with volatility (. For a European call with strike K and maturity T, show that the following relations hold:
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Show that the call satisfies the partial differential equation
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HINT! First, show that 
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………………………………………………………………….…………….(10p)


6.  (a) Compute the price of a European call option with strike price K = 125 kr and 
      exercise time T = 2 years, using a binomial tree with two trading dates t1 = 0 and 
       t2 = 1 (your portfolio at time t3 = 2 is the same as your portfolio at time t2 = 1) and 
       parameters s0 = 100, u = 1.5, d = 0.5, r = 0, and p = 0,75…………….……….(3p)

(b) i. Consider a discrete time financial model with dates t = 0, 1,…, T, a risk free 
         asset with price process B, and a stock with price process S, i.e.
B(t) = price at time t of the risk free asset;

S(t) = price at time t of the stock:

       Now let ht = (xt, yt) denote the portfolio which is held from t - 1 until t, i.e.
xt = number of risk free assets held in the time interval (t - 1; t]

yt = number of stocks held in the time interval (t - 1; t]
What does it mean that a portfolio is self-financing in this model? ……………… (2p)

ii. Consider a standard Black-Scholes market, i.e. a market consisting of a risk free asset, B, with P-dynamics given by

dBt = rBtdt
B0 = 1
and a stock, S, with P-dynamics given by
dSt = µStdt + (StdWt
S0 = s0
Here W denotes a P-Wiener process and r, µ and ( are assumed to be constants. Now let ht = (ht(0); ht(1)) denote the portfolio held at time t in this model, i.e.
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What does the self-financing condition look like for this model? ………………... (1p)

(c) Consider the standard Black-Scholes model described in exercise 1 (b). For a given portfolio h the relative portfolio u = (u0, u1) is given by
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at time t. Here V(t) denotes the value process associated with the portfolio h. 
i. What does the self-financing condition look like in terms of the relative portfolio?
…………………………………………………………………………………….. (1p)

ii. Regard the constant relative portfolio u = (½, ½) as self-financing and determine the value process associated with it, given that the initial wealth invested in it is V0 = v
……………………………………………………………………………………...(3p)
7. Consider a standard Black-Scholes market, i.e. a market consisting of a risk free asset, B, with P-dynamics given by: 
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and a stock, S, with P-dynamics given by
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Here W denotes a P-Wiener process and r, α and σ are assumed to be constants. 

(a)
Check whether the portfolio defined by
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is self-financing or not.

(b)
By a digital or binary option we mean a contract whose payoff depends in a discontinuous way on the terminal price of the underlying asset. The simplest examples of binary options are cash-or-nothing options and asset-or-nothing options. The payoffs at maturity of a cash-or-nothing call and a cash-or-nothing put option are, respectively



BCCT = KI{s(T) > K} and BCPT = KI{s(T) < K},

where in both cases K denotes a pre specified amount of cash. Similarly, for the asset-or-nothing options we have



BACT = STI{S(T) > K} and BAPT = STI{S(T) < K}

for a call and put, respectively.
Your task is to determine the arbitrage free price of a binary asset-or-nothing call. If you find pricing the binary asset-or-nothing call too hard you may price a cash-or-nothing call, but then you will lose 2 points.
……………………………………………………………………………(10)

Formulas:

Suppose that there exist processes X(., T) for every T ≥ 0 and suppose that Y is a process defined by:
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Then we have the following version of Itô's formula



[image: image15.wmf]0

(,)(,)

T

t

t

dYXttdtdXtsds

=-+

ò


The standard Black-Scholes formula for the price (t) of a European call option with strike price K and time of maturity T is (t) = F(t, S(t)), where
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Here N is the cumulative distribution function for the N(0, 1) distribution and
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If N denotes the cumulative distribution function for the N(0; 1) distribution, then


N(-x) = 1 - N(x).


A linear SDE of the form
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where a is a constant and bt and σt are deterministic functions, has the solution
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“Probability that a normal random variable is smaller than x
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