
Definitive Guide
to Excel VBA,
Second Edition

MICHAEL KOFLER
TRANSLATED BY DAVID KRAMER

*1038_ch00_CMP3 6/21/03 12:59 PM Page i

Definitive Guide to Excel VBA, Second Edition
Copyright ©2003 by Michael Kofler

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-103-8

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Translator and Editor: David Kramer

Editorial Board: Dan Appleman, Craig Berry, Gary Cornell, Tony Davis, Steven Rycroft,
Julian Skinner, Martin Streicher, Jim Sumser, Karen Watterson, Gavin Wright, John Zukowski

Assistant Publisher and Project Manager: Grace Wong

Copy Editor: Rebecca Rider

Production Manager: Kari Brooks

Production Editor: Janet Vail

Proofreader: Lori Bring

Compositor: Diana Van Winkle, vwdesign.com

Indexer: Kevin Broccoli

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

*1038_ch00_CMP3 6/21/03 12:59 PM Page ii

CHAPTER 10

Charts and Drawing
Objects (Shapes)

CHARTS CONSTITUTE THE central feature of many Excel applications. This chapter
gives a brief overview of the charts supported by Excel and also shows how you
can create and print out your own charts under program control. A lengthy exam-
ple on the subject of data recording demonstrates various programming tech-
niques.

A further topic of this chapter is that of drawing objects (Shapes), available since
Excel 97, with which both charts and ordinary worksheets can be ornamented.

Chapter Overview

10.1 Charts ...528
10.2 Programming Charts ..535
10.3 Example: Automatic Data Reporting ..544
10.4 Syntax Summary for Charts ...558
10.5 Drawing Objects (Shapes) ...560
10.6 Diagrams ..565

527

*1038_ch10_CMP3 6/21/03 10:55 AM Page 527

10.1 Charts

Fear not! You are not about to be subjected to an extensive introduction to the use
of charts. This topic is exhaustively (in the literal sense of the word) dealt with in
countless books on Excel. The goal of this section is rather to describe, without
much concern about the details of how they are used, the possibilities for design-
ing charts, and to name the various elements of charts and explain their functions.
This information will provide you with the requisite knowledge for entering the
world of programming charts, a world swarming with various ChartXxx objects.

Fundamentals

Chart Sheets Versus Charts Embedded in Worksheets

In Excel you can either embed charts in worksheets or present them in their own
chart sheets. The first variant has the advantage that the chart can be printed out
with its associated data. Furthermore, very small charts can be created that take
up only part of a page.

The Chart Wizard

Usually, the path to a new chart goes by way of the chart wizard. This wizard is
automatically summoned when you create a new chart (with INSERT|CHART or click
on the chart wizard tool.)

In the first step of the chart wizard you select the desired chart type. In the
second step you choose the data range. Here there is no problem with indicating a
range of cells that is the union of other cell ranges. In further steps you can deter-
mine various options for the format of the chart. The chart wizard can also be
called up to help with preexisting charts if you wish to change certain formatting
details.

Further Processing of Charts

Charts that have been created with the chart wizard frequently do not quite meet
your requirements. Therefore, the fine details of layout often begin after the chart
wizard has been terminated.

In order for you to be able to edit the chart, you have to activate it with a
mouse click. As soon as the chart is active, you can click on most of the chart ele-
ments within the region of the chart: the legend, the axes, individual data series

Chapter 10

528

*1038_ch10_CMP3 6/21/03 10:55 AM Page 528

(which are represented in the form of lines, bars, etc.), the background of the
chart, and so on. For each of these chart elements there exists a pop-up menu that
usually offers an extensive array of formatting options. You can access the most
important setting dialogs with a double click on the corresponding chart element.

If you are working with charts for the first time, you will often encounter the
problem that you do not know which element to click on to carry out a specific
change. You have two alternatives: Suffering through the user’s guide and experi-
mentation.

Chart Types

There are over seventy types of chart in Excel (though many of them are similar to
one another). A complete list can be found in the chart wizard (where the charts
are organized by group) or in VBA help under the keyword ChartType.

Combination Charts

Combination charts are charts in which several chart types are combined (for
example, a line chart and column chart). Combination charts can be created
either with the help of a user-defined chart (see below) or by changing the chart
type of a single data series (not the entire chart).

Charts can be combined only if they are based on the same coordinate
system. Therefore, the range of combination possibilities is relatively narrow.
Three-dimensional charts cannot be combined at all.

Pivot Charts

Pivot charts are new in Excel 2000. These are not actually a new chart type, but a
new way of linking data between a chart and a pivot table. What is special about
pivot charts is that categories for structuring data can be created dynamically (that
is, by means of listboxes in charts). The chart is immediately revised. For the chart
itself almost all the chart types listed above can be used. Pivot charts will be
described within the framework of pivot tables in Chapter 13.

User-Defined Chart Types (Autoformat)

There are two ways to format a chart: You can select one of the standard types, or
you can employ a so-called user-defined type (formerly autoformat). Among these

Charts and Drawing Objects (Shapes)

529

*1038_ch10_CMP3 6/21/03 10:55 AM Page 529

types are stored numerous formatting details, so that you can very quickly create a
wide variety of different charts. The name “user-defined” is somewhat confusing,
since Excel recognizes an entire palette of predefined (integrated) types.

The user-defined formats in Excel give a very good overview as to what is avail-
able. The formats are located in Officedirectory\Office\n\Xl8galry.xls, where n
is a language code (for example, 1033 is the number of the American version).

More important is the possibility of adding your own user-defined formats
and using them in the future. For this you format a chart to your specifications,
open the “Chart Type” dialog with the right mouse button, switch into the page
“Custom Types,” and click on the option button “User-defined.” Then click the Add
button and save your format as a new chart type. New (personal) chart types are
saved in the file Userprofile\Application Data\Microsoft\Excel\Xlusrgal.xls.

Chart Elements (Chart Objects) and Formatting Options

For the detailed layout of charts as well as for programming charts it is necessary
to know the distinctions made by Excel among various chart objects. Assistance in
your experimentation is offered by the chart toolbar. There, in the left listbox is
shown the object that was just clicked on, such as “axis n,” “gridlines n,” “Series n,”
and so on.

• Chart Area: This is the object ChartArea, which is responsible for the back-
ground of the entire chart (that is, the region that is visible behind the plot
area, the legend, and so on). The type style that is input here holds for all
text of the chart that is not otherwise specially set.

• Plot Area: The plot area (PlotArea) represents a rectangle around the graphic
region of the chart. The plot area contains the actual chart, but not the title,
legend, etc. With most two-dimensional charts even the axes are not part of
the plot area. If, for example, you specify the background color green for the
plot area and red for the chart area, the labels for the axes will be underlaid
with red.

• Floor, Walls: These two objects exist only for three-dimensional charts and
describe the appearance of the floor and walls of the two vertical border
surfaces of the chart. The plot area in this case is considered to be only the
rectangular region outside of the chart itself.

• Corners: Even the corners exist as an independent object in three-dimen-
sional charts. Corners cannot be formatted. But they can be grabbed with
the mouse and turned in three dimensions. This is often more convenient
than setting the viewpoint and perspective via the dialog CHART|3D-VIEW.

Chapter 10

530

*1038_ch10_CMP3 6/21/03 10:55 AM Page 530

• Data Series: A data series describes a related unit of data (usually the values
of a column from the underlying table; only if you select “Series in Rows” in
step 2 of the chart wizard will data series be organized by rows). For exam-
ple, a data series is reprenseted by a line. The formatting data of data series
affect the graphic representation of this data series, that is, color, markers,
line style, etc.

• Data Points: The individual values of a data series are represented by data
points. Normally, the format properties of all data points are the same and
are preset by the properties of the data series. However, you can set the
properties of each data point separately and thereby thrust individual
points of a series into prominence, or label points individually, for example.
In a pie chart you can shove individual pie slices out from the pie and dis-
tinguish them in this way—that, too, affects the property of the data point.
Caution: The vertical position of data points in two-dimensional charts can
be changed with the mouse, and this changes the underlying value in the
data table!

• Trend Lines: Data series of two-dimensional charts can be associated with
trend lines. The trend lines are drawn in addition to the normal representa-
tion of the data. Excel recognizes types of trend lines: best-fit curves (five
different types) and averaging curves.

• Error Bars: Error bars are another subelement of a data series in two-dimen-
sional charts. They indicate potential error amounts relative to each data
marker.

• Coordinate Axes: The coordinate axes have a large number of formatting
details, which begin with scaling (minimum, maximum, linear or logarith-
mic) and end with the precise arrangement of the axis labeling (which data
points are labeled, which are indicated by a tick marks, whether the tick
mark is inside or outside, and so on). New since Excel 97 is the possibility of
labeling the coordinate axes with text in any orientation (horizontal, verti-
cal, or slant; FORMAT AXIS|FONT|ALIGNMENT).

There is also the option to equip a two-dimensional chart with two inde-
pendent Y-axes, where one is valid for some of the data series and the other
for the remaining data series. This is useful when you wish to represent on
the same chart two related quantities that have different scales (for exam-
ple, a voltage and current). In order to employ two Y-axes it is necessary to
separate the data series into two groups. The easiest way to accomplish this
is by selecting the custom chart type “Lines on 2 Axes.”

• Grid Lines: The plot area of a two-dimensional chart or the walls and floor of
a three-dimensional chart can be combined with grid lines. The position of

Charts and Drawing Objects (Shapes)

531

*1038_ch10_CMP3 6/21/03 10:55 AM Page 531

grid lines is determined by the tick marks on the coordinate axes. The
appearance (color, line style) of principal and secondary grid lines can be
set separately (but only for normal charts, not composite charts).

• Title: A chart can be equipped with several titles (for the chart, the axes,
etc.). The position, type style, and alignment can be set independently.

• Legend: The legend makes possible a link between the colors used in the
chart and the patterns of the data series. The labeling of the legend is taken
from the first column or row of the data series. The legend can be placed
anywhere in the chart (even beneath the data).

Chart Options in Tools|Options

With TOOLS|OPTIONS|CHART you have access to a few further chart options. These
settings concern only the current chart (and can be changed only when the chart
is active).

The option “Plot empty cells as” determines how Excel responds to empty
cells in the data series. In the setting “not plotted (leave gaps)” there appears a
hole in the chart (that is, bars are missing, a line is broken, etc.). The alternatives
to this setting are “zero” (then Excel treats empty cells as if they contained the
value 0) and “interpolated” (then Excel attempts to interpolate suitable data val-
ues for the empty cells).

The check box “Plot visible cells only” determines how Excel deals with hid-
den rows and columns: If the box is activated, then data in invisible rows or
columns are not displayed. In the chart the data are simply ignored (rather than
a hole appearing). This setting is of interest primarily when the chart data come
from a filtered database.

The check box “Chart sizes with window frame” is of interest only for chart
sheets. When the box is activated the chart is fit to the current size of the window.
Otherwise, only one print page is shown. To make the entire chart visible, the
zoom factor may have to be changed (VIEW|ZOOM).

Trend Lines, Data Smoothing

With line charts you can select the option “Smoothed line” in the formatting set-
tings for the data series. This has the effect of rounding the edges of an otherwise
angular course.

Other possibilities for providing a best-fit curve or averaging curve are offered
by the command CHART|ADD TRENDLINE. Excel can approximate a data set with five
different types of best-fit curves: straight line, polynomial curve (up to sixth

Chapter 10

532

*1038_ch10_CMP3 6/21/03 10:55 AM Page 532

degree), logarithmic curve, exponential curve, power curve. With the options in
the dialog FORMAT TRENDLINE you can specify whether and to what extent the curve
should be extended beyond the current data and whether the formula for the
curve should be given.

A sixth type of curve can be specified in the TREND LINE dialog: an averaging
curve based on a running average. Here every point on the curve is calculated
from the average of the n preceding points. This has the effect of smoothing statis-
tical errors of measurement. Averaging curves, in contrast to best-fit curves, can-
not be extended beyond the range of the data.

Some examples of the application of the trend line function are indicated in
Figure 10-1. The associated example file Trend.xls is included with the sample
files for this book.

Figure 10-1. Three examples of trend lines

Charts and Drawing Objects (Shapes)

533

*1038_ch10_CMP3 6/21/03 10:55 AM Page 533

Error Indication

Data series in two-dimensional charts can be provided with error indicators (error
bars). These are small lines that specify the range in which the actual value of a
data point is to be found if statistical error of measurement is taken into account.

Printing

When it comes to printing a chart two variants must be considered: If the chart is
embedded in a worksheet, then printing is accomplished by way of printing the
worksheet. Here the only problem is that Excel does not give much thought to
where page breaks are inserted, and even a small chart might find itself broken
into four pieces. It does not hurt to check the page preview before printing. You
may find yourself compelled to insert some hard page breaks to optimize printing
(INSERT|PAGE BREAK).

On the other hand, if the chart is located in a chart sheet, or if you wish to
print an embedded chart that has been selected with a mouse click, then there are
some options available in the dialog PAGE SETUP. The most important of these is
“Printed chart size” on the CHART page of this dialog. In the standard setting Excel
uses the entire page. If the chart does not happen to have the same format as the
page, the chart can become completely distorted. Therefore, it is usually better to
select the option “Scale to fit page.” Excel enlarges the chart only to the extent that
the relationship between the length and width does not change (that is, the aspect
ratio is preserved). The third variant, “Custom,” leaves the size of the chart
unchanged.

The option “Print in black and white” allows color charts to be printed on a
black and white printer. (Most printers can handle this without the use of this
option.) Whether with or without this option, you will achieve usable results on
a black and white printer only if you refrain from using color in your chart. Use
instead differing line widths and types to distinguish among several data series.

Since the standard and custom chart types are generally extremely color
friendly, the creation of a satisfactory black and white substitute usually requires
considerable effort (say, about 100 mouse clicks for a typical chart). Therefore, if
this is a common situation for you, then save black and white charts as a custom
chart type.

Chapter 10

534

*1038_ch10_CMP3 6/21/03 10:55 AM Page 534

10.2 Programming Charts

First attempts at programming charts are often very difficult. The reason is that it
is not easy to acquire an orientation among the multitude of Chart objects, and
the association of properties and methods is not always clear.

Here is an example: The method ClearContents of the ChartArea object clears
the data of a chart, but not its formatting. This is strange, in that the ChartArea
object is actually not responsible for the chart itself, but only for its background. It
would have been more logical if chart data were deleted via the Delete method of
the Chart object, but this method returns nothing but an error message in the case
of an embedded chart. Apparently, Delete is suitable only for deleting chart sheets,
while the two related methods ClearContents and ClearFormats of the ChartArea
object are responsible for the internal affairs of charts.

In constrast to the ChartArea object we have the PlotArea object. This object
also describes the background of the chart, though in this case the area immedi-
ately behind the chart lines, bars, and so on.

REMARK Though at the outset you may feel overwhelmed by the surfeit of
objects and their properties, there are positive aspects to the situation: You
can truly run almost the entire chart business with program code. Alas, space
does permit a full description of this plenitude. For many details you will be
referred to the on-line help after finishing this chapter.

Instead of Searching Fruitlessly, Use the Macro Recorder!

If you would like to know how you can achieve a particular formatting result in
program code, then use the macro recorder as your trusted adviser (the examples
from the on-line help are practically useless).

The shorter the recording session, the easier it will be for you to interpret the
results. Therefore, you should start recording in a chart that already exists, change
only a single detail, and then stop recording at once. If you arrange on your moni-
tor one window with program code and a second one with the chart, you can even
observe during recording when each line of code is generated.

The code that results from the macro recording usually works (at least no
counterexamples appeared during the preparation of this chapter), but it is sel-
dom optimal. In part, the instructions are unnecessarily convoluted, and in part
they are completely superfluous. Therefore, the code must be edited after the fact.

Charts and Drawing Objects (Shapes)

535

*1038_ch10_CMP3 6/21/03 10:55 AM Page 535

Object Hierarchy

The following compilation provides an overview of the object hierarchy for charts.
To make the structure clearer, only the most important objects have been included
and only the case considered that the chart is embedded in a worksheet (no chart
sheets). A complete listing of all chart objects can be found in Chapter 15.

Charts enumeration of charts

Chart chart

ChartArea background of the entire chart

PlotArea background of the plot area

Floor floor of a 3-D chart

Walls side walls of a 3-D chart

Corners corners of a 3-D chart

ChartTitle title of the chart

Legend legend of the data series

Axes axes

Axis

TickLabels marking of points on the axes

DisplayUnitLabel label of the scaling unit

Gridlines grid lines

SeriesCollection data series

Series

Points individual data points

Point

Trendlines Trend lines

Trendline

PivotLayout control of pivot elements in pivot charts

A Brief Glossary of Chart Objects

There is enormous confusion surrounding the numerous and often like-named
Chart and Plot objects. Figure 10-2 provides a first overview.

Chapter 10

536

*1038_ch10_CMP3 6/21/03 10:55 AM Page 536

Figure 10-2. The most important objects of a chart

Chart: This is the actual chart; it consists of several data series that are graphi-
cally represented, the background, the coordinate axes, the legend, the title, and
so on. Access to Chart objects is achieved either through the enumeration Charts,
if the chart is located in a chart sheet, or via ChartObjects(…).Chart, if the chart is
embedded in a worksheet.

The chart type is set, since Excel 97, with the property ChartType (formerly
Type and SubType). Over seventy constants have been defined as possible settings
(see the on-line help or the object browser).

ChartObject: This is the outer frame (container) of a chart. The ChartObject
object is necessary only with charts that are embedded in worksheets. It stands
between the worksheet and the Chart object and determines the position and
dimensions of the chart within the worksheet. With the Worksheet method
ChartObjects you can access the list of all chart objects of a worksheet.

You access the associated chart with the Chart property of the ChartObject
object. (Note: In addition to charts a host of other objects can be embedded in
worksheets, such as controls, lines, and rectangles. You can access the totality of
these objects, including charts, with the method DrawingObjects).

Charts and Drawing Objects (Shapes)

537

*1038_ch10_CMP3 6/21/03 10:55 AM Page 537

ChartArea: This is the background of the chart. With the properties of this
object you can set color, borders, and so on. However, this object has a greater sig-
nificance insofar as its methods Copy, Clear, ClearContents, and ClearFormats
relate to the actual subordinate Chart object (Microsoft alone knows why). In the
case of embedded charts the method Select can be used only if first the associated
ChartObject object has beed activated with Activate.

ChartGroup: This object groups various chart types within a chart. Normally,
a chart possesses only a single chart group. In this case the ChartGroup object is
irrelevant. This object, then, has significance only when in a composite chart two
or more chart types are united (for example, a bar chart and line chart). In this
case the chart is managed by several groups with differing chart types (Type
property).

Charts: The chart object contains the enumeration of all chart sheets of a
workbook. The like-named method immediately returns the Chart object. There
is, then, no separate chart sheet object comparable to a worksheet. For chart
sheets, no intermediate ChartObject is necessary.

Some additional objects do not, in fact, begin with “Chart,” but they are
nonetheless of interest.

PlotArea: This is the “graphical” area within a chart. The plot area contains the
coordinate axes and the actual chart graphic. The main task of this object consists
in determining the size and position of this region within the total area of the
chart. Other regions in the chart are the legend (Legend object) and the title
(ChartTitle object). In the case of three-dimensional charts the objects Floor and
Walls (as subobjects of Chart) are managed independently of PlotArea. These two
objects are responsible for the visual appearance of the boundary surfaces of a
three-dimensional chart.

NOTE When you execute PlotArea.Width=n: m=PlotArea.Width, then m is
distinctly larger than n. The reason is that PlotArea.Width actually changes
the write-protected property InsideWidth introduced in Excel 97, that is, the
inside region of PlotArea. In addition to this inside region there is an outside
region, in which the labeling of the coordinate axes appears. (The same prob-
lems occur also with Height/InsideHeight, of course). To set the size of the
outside region you can usually rely on the following code:

delta = PlotArea.Width - PlotArea.InsideWidth
PlotArea.Width = n + delta

This method is not quite exact either, since the size of the label area is not
constant. For example, if a chart is greatly reduced in size, Excel simply does
without axis labels, and the label area is reduced to size 0.

Chapter 10

538

*1038_ch10_CMP3 6/21/03 10:55 AM Page 538

Series, Point: The Series object refers to the data of a data series belonging to a
chart. The actual numerical values can be taken from the Values property of the
Series object, which can also be used to change these values. Series is a subobject
of the Chart object. Formatting data that affect not the entire series but only an
individual data point are controlled by Point objects. These are again a subobject
of the Series objects.

Axis, Gridlines: The Axis object is also a subobject of the Chart object. It
describes the details of a coordinate axis. The Gridlines object is a subobject of the
Axis object and is addressed via the properties MajorGridlines and MinorGridlines.

New in Excel 2000 is the ability to specify scaling units for the coordinate axes
(for example, “millions”). In this case Axis.DisplayUnit must be set with a prede-
fined constant (for example, xlMillions). The DisplayUnitLabel object specifies
how and where this scale unit (that is, in this example “Millions”) is displayed in
the chart. The property HasDisplayUnitLabel specifies whether the axis is scaled.

In addition to the predefined scaling units (10, 100, 1000, up to 1,000,000,000)
any other factor can be used. For this, DisplayUnitCustom is assigned the desired
value (which can also be less than 1, for example, 0.001 to represent thousandths).
See Figure 10-3, in which the Y-axis is displayed in units of thousandths.

ActiveChart.Axes(xlValue).DisplayUnitCustom = 0.001

ActiveChart.Axes(xlValue).DisplayUnitLabel.Text = "thousandth part"

Figure 10-3. The Y-axis uses thousandths as scaling unit.

Trendline, ErrorBars: Trendline and ErrorBars are subobjects of the Series
object. They describe the details of a trend line of a data series and, respectively,
the appearance of the error bars.

Charts and Drawing Objects (Shapes)

539

*1038_ch10_CMP3 6/21/03 10:55 AM Page 539

TIP The keywords Gridlines and ErrorBars appear in the plural, and in
contrast to other pluralized Excel objects, they do not refer to enumeration
objects.

TIP If you do not know the name of a particular object in a chart, you
can click on that object (for example, a coordinate axis) and execute
?TypeName(Selection) in the immediate window. As result you obtain
the object name (in this example, Axis).

Programming Techniques

The Chart Wizard

The method ChartWizard offers, in general, the fastest route to creating a chart. In
order to use this method, you must first generate a ChartObject object. You can read
all about the infinitude of parameters associated to this method in the on-line help.

ActiveSheet.ChartObjects.Add(30, 150, 400, 185).Name = _

"new chart"

ActiveSheet.ChartObjects("new chart").Activate

ActiveChart.ChartWizard sheet1 .[A3:D99], xlLine, 4, xlColumns, 1, 1

Chart Objects: Activate or Select?

With the methods Activate and Select Microsoft has blessed us with a certain
amount of confusion: Sometimes one method must be used (windows), some-
times the other (worksheets), and sometimes both are allowed (ranges of cells).
In the case of ChartObject objects not only are both methods allowed, but they
lead to different results!

Activate corresponds to a single click on a chart. Selection now refers to the
object PlotArea (thus not to Chart)!

Select seemingly also corresponds to a single click on a chart. However, the
Selection property now refers to a ChartObject object. Therefore, use Select when
you wish to change the position or size of a chart in a worksheet but you do not
wish to change features of the actual chart.

Sheets(1).ChartObjects(1).Select

Chapter 10

540

*1038_ch10_CMP3 6/21/03 10:55 AM Page 540

The two methods have in common that the Chart object can then be accessed
via ActiveChart.

CAUTION In Excel 97 access to a chart via ActiveChart led at times to serious
problems. Access the object in question directly instead of first activating it
and then altering it via ActiveChart.

Deactivating Chart Objects

The best way to deactivate a chart is by activating some other object. For example,

Sheets(n).[A1].Select

Deleting, Copying, and Inserting Charts

ChartObject objects can be directly copied together with the chart contained
therein with Copy and then again inserted into the worksheet. After the insertion,
the Selection property refers to the new ChartObject object, so that this can then
be named. If you simply wish to duplicate a ChartObject object, you can use the
method Duplicate directly instead of Copy and Paste. With Delete you can delete a
ChartObject object together with all the data contained therein.

ActiveSheet.ChartObjects(1).Copy

ActiveSheet.Paste

Selection.Name = "new chart"

' …

ActiveSheet.ChartObjects("new chart").Delete

The situation is somewhat different if you wish to delete, copy, or insert only
the chart data without altering the ChartObject object. In this case the ChartArea
object takes center stage (since there is no Copy method defined for the Chart
object). Upon insertion into another chart object you must then refer to that
Chart object.

ActiveSheet.ChartObjects(1).Chart.ChartArea.Copy

ActiveSheet.ChartObjects(2).Chart.Paste

Charts and Drawing Objects (Shapes)

541

*1038_ch10_CMP3 6/21/03 10:56 AM Page 541

With deleting chart data, too, you have to access the ChartArea object. Clear
deletes all the chart data, ClearContents only the chart’s contents (here is meant
primarily the data series), and ClearFormats only the formatting information.

If you wish to insert an empty ChartObject into a worksheet (that is, an empty
chart framework), you apply the Add method to ChartObjects. To this method are
passed the position and size specifications (in points: 1 point = 1/72 inch = 0.35
mm). A name can be given at once to the new object:

ActiveSheet.ChartObjects.Add(0,0,200,100).Name = "new chart"

Aligning Several Charts

When you place two or more charts in a worksheet with the mouse, you will soon
find out that it is relatively difficult to create two charts of exactly the same size
lying one precisely above the other. A very good assistant in this enterprise is the
menu of the DRAWING toolbar. With its menu items you can align previously
selected objects (including charts). Another variant consists in simply accessing
the Left, Top, Width, and Height properties of the ChartObject object.

The following instructions in the immediate window were used to align the
five charts of a monthly report (see the next section) horizontally corresponding
to the position and size of the first chart.

set wb = Worksheets("MonthlyReport")

For i=2 To 5: wb.ChartObjects(i).Left = _

wb.ChartObjects(1).Left: Next i

For i=2 To 5: wb.ChartObjects(i).Width = _

wb.ChartObjects(1).Width: Next i

Using Ready-Made Charts or Custom Formats

The complete setting up of a chart with all its formatting details is possible via
program code, but this is a laborious and complex programming endeavor. If the
appearance of a chart is in any case predetermined (and independent of the data
to be processed) it makes more sense to save the completed chart in a worksheet or
chart sheet and use program code only to change the data used to draw the chart.
The actual formatting of the chart can be carried out directly with the mouse and
without programming effort. (The procedure MonthlyProtocol in the next section
provides an example.)

The use of autoformat requires more than minimal programming, but is still
better than programming a chart from scratch. With autoformats, which in turn

Chapter 10

542

*1038_ch10_CMP3 6/21/03 10:56 AM Page 542

are derived from charts that you have formatted in the traditional way, you can
change practically all the formatting data of a chart generated by program code
with a single instruction. Then you need to carry out at most a few instructions for
the optimal sizing of individual chart elements. The application of an autoformat
to an existing chart is carried out, since Excel 97, with the method ApplyCustom-
Type (formerly AutoFormat).

ActiveChart.ApplyCustomType ChartType:=xlUserDefined, _

TypeName:="DailyReport"

The deployment of autoformats is problematic when you wish to install a
complete Excel application on another computer. Personal autoformats are stored
in the file Userprofile\Application Data\Microsoft\Excel\Xlusrgal.xls. This
file cannot be copied to another computer, because you would thereby overwrite
the autoformats of another user. Thus the transmission of autoformats in a file is
impossible.

However, there is a way around this restriction. You should include in your
application a worksheet in which you have embedded a simple example chart for
each autoformat used. When the program is launched, activate these example
charts one after the other and save their format information as autoformats on
the computer on which the application is being run.

Application.AddChartAutoFormat Chart:=ActiveChart, _

Name:= "new autoformat", Description:=""

Unfortunately, there is no way to determine which autoformats have already
been defined. An object such as AutoFormats does not exist in the current version
of Excel.

Printing and Exporting Charts

Printing a chart is carried out with the method PrintOut, which can be applied to
both Chart and Workbook objects. Since Excel 97 charts can also be exported into
a graphics file in various formats with Export.

ActiveChart.Export "test.gif", "GIF"

According to the on-line documentation, in the second parameter you can
provide all of the graphics formats for which export filters have been installed.
What filters exists, what they are called, and how the program can determine
whether a particular filter is installed are not revealed in the documentation.

Charts and Drawing Objects (Shapes)

543

*1038_ch10_CMP3 6/21/03 10:56 AM Page 543

Therefore, protect your procedures for exporting with On Error. Experiments with
Export have succeeded with the following formatting character strings:

“GIF”, “JPEG”, “TIF”, “TIFF”, “PNG”
On the other hand, “BMP” and “WMF”, that is, the two standard Microsoft for-

mats for bitmaps and for simple vector graphics, are not supported. If you require
charts in these formats, you can use the method CopyPicture, which copies the
chart to the clipboard. Unfortunately, the exportation ends there. That is, Excel
provides no method to save the contents of the clipboard to a file.

10.3 Example: Automatic Data Reporting

The file Chart.xls demonstrates the application of Excel to the reporting of meas-
urement data. Data reporting is necessary whenever relatively large data sets need
to be documented and perhaps analyzed over an extended period of time. The data
source can be just about anything, from the automatically measured amounts of
hazardous chemicals in a waste treatment plant to the results of quality control in a
factory.

The task of data reporting is to generate informative and readable printouts
from the trash heap of numbers consisting of many small, or one large, file or
database. It should be clear that charts for data visualization can play an impor-
tant role in this operation.

Since in the sample files we cannot provide a technological method of
data production, the application Chart.xls has available the menu command
REPORT|CREATE TEST DATA, which creates Excel files with simulated measurement
data. In practice, you would need such a command only during the test phase of
the program. In general, you would have more genuine measurement data at your
disposal than you probably want, and you would not need to increase your data
supply with a data simulation program.

Using the Example Program

When the file is opened, a custom menu appears. If you wish to try out the pro-
gram quickly, execute the following commands in sequence: REPORT|CREATE TEST

DATA, |CREATE DAILY REPORT, and |CREATE MONTHLY REPORT. Simply approve with “OK”
the forms (such as that shown in Figure 10-4) that appear for data input.

The program then produces for each day of the current month a data file
(requiring about 900 kilobytes of storage and half a minute to create on a reason-
ably modern computer). Then the daily report for the current day and the monthly
report for the current month are presented in page view.

Chapter 10

544

*1038_ch10_CMP3 6/21/03 10:56 AM Page 544

Figure 10-4. The form for input of the data range

Test Data

The menu command REPORT|CREATE TEST DATA leads to the creation, for each day, of
files with the names D_yyyymmdd.xls (such as D_19991231.xls for 12/31/1999). In
addition to the actual measurement data (96 values in each of the data series A1,
A2, A3, B, C) these files contain six-hour average and maximum values as well as
the daily average and maximum (see Figure 10-5). The files D_yyyymmdd.xls can be
deleted after the program has been tested, of course.

Figure 10-5. The construction of the daily files for the measurement data

Charts and Drawing Objects (Shapes)

545

*1038_ch10_CMP3 6/21/03 10:56 AM Page 545

In the reporting of the data it is assumed that the dataseries A1, A2, A3 are
related. Therefore, these series are presented in a single chart (see Figure 10-6). In
the monthly report this was no longer possible due to the complexity of the data,
since in the charts for each data series the daily average as well as the daily maxi-
mum are presented in their own graph (see Figure 10-7).

Figure 10-6. A daily report

Chapter 10

546

*1038_ch10_CMP3 6/21/03 10:56 AM Page 546

Figure 10-7. A page from the three-page monthly report

Program Code

Overview of the Components of Chart.xls

The Excel file Chart.xls consists of the following worksheets:

“Intro”: Worksheet with information about the use of the application.

“DailyReport”: Worksheet in which the daily report is constructed. The charts

contained in it are deleted for each new report and constructed

anew.

“MonthlyReport”: Worksheet in which the monthly report is constructed. The

charts contained in it are final; they are not changed further in

program code. In program code only the content of cells

B9:M39 is changed.

“DataTemplate”: Worksheet that serves as template for the files with simulated

data.

Charts and Drawing Objects (Shapes)

547

*1038_ch10_CMP3 6/21/03 10:56 AM Page 547

The construction of the worksheets must not be altered, since access to par-
ticular cells is carried out directly in program code.

The program code is divided into the following modules:

“ThisWorkbook”: display menu on opening; delete it on closing.

“FormDateInput”: form for input of date range.

“MenuEvents”: event procedures for the menu commands.

“CreateDateFiles”: procedures for generating the test data.

“CreateReports”: procedures for building and printing the daily and monthly

reports.

On the following pages the most interesting details of the program code are
described. The same order is observed as that for using the program (generate test
data, daily report, monthly report). The code not only demonstrates the various
possibilities for chart programming, it also shows how you can consolidate data
from several Excel files when the Excel function DATA|CONSOLIDATE is too inflexible
for your requirements.

Creating the Test Data

The program segment for creating the test data is of little interest to the extent
that it would not exist in a real-world application (in which one has genuine
data!). In our example GenerateDailyWorksheet creates a new Excel file based on
the template worksheet in the sheet “DataTemplate.” This template contains not
only various formatting data, but also some formulas for calculating the six-hour
average and maximum values as well as the daily average and maximum values.

The simulated test data are calculated on the basis of six superposed sine
curves of various frequencies. The parameters of these functions (amplitude,
frequency, and phase) are stored in the global field rndmat. The global variable
rndInit determines whether this field already contains valid values. This avoids the
necessity of providing new random numbers for each day. (Random numbers are
generated only the first time this procedure is called.)

The random numbers are initialized in the procedure InitRandomnumbers
(not presented here). Here the attempt is made to choose similar values for the
three data series A1, A2, A3. For each day the procedure DailyRandomnumbers is
called anew. This procedure changes the existing values of the zfmat field by a
small amount, so that the data do not appear to be too regular.

Chapter 10

548

*1038_ch10_CMP3 6/21/03 10:56 AM Page 548

' Chart.xls, Module CreateDataFiles

Dim rndInit As Boolean 'tests whether random matrix is already initialized

Dim rndmat#(5, 18) 'matrix with random numbers

Const Pi = 3.1415927

' create workbook with (random) measurement data for one day

Function GenerateDailyWorksheet(dat As Date) As Boolean
Dim filename$ 'name of the new workbook

Dim wb As Workbook 'new workbook

Dim ws As Worksheet 'sheet in this book

Dim cell As Range 'first data cell on the sheet

Dim i%, j%, k% 'loop variables

Dim x#, z As Date

filename = ThisWorkbook.Path + "\d_" + _

Format(dat, "yyyymmdd") + ".xls"

Application.DisplayAlerts = False

' creates new workbook; copies sheet "DataTemplate" from

' this workbook into new workbook; deletes all other sheets

Set wb = Workbooks.Add

ThisWorkbook.Sheets("DataTemplate").Copy Before:=wb.Sheets(1)

For i = wb.Sheets.Count To 2 Step -1

wb.Sheets(i).Delete

Next i

wb.Sheets(1).Name = "Sheet1"

' insert random numbers into sheet

Set ws = wb.Worksheets(1)

Set cell = ws.[A4]

ws.[a1] = "Data for " & dat

If Not rndInit Then InitRandomnumbers

DailyRandomnumbers

Application.Calculation = xlManual

For i = 1 To 96 '00:00 through 23:45

z = dat + CDbl(#12:15:00 AM#) * (i - 1)

cell.Cells(i, 1) = z

cell.Cells(i, 1).NumberFormat = "hh:mm"

For j = 1 To 5 'five series of data

x = rndmat(j, 0)

For k = 1 To 18 Step 3

x = x + rndmat(j, k) * (1 + Sin(rndmat(j, k + 1) * z + _

rndmat(j, k + 2)))

Next k

cell.Cells(i, j + 1) = x

Next j

Charts and Drawing Objects (Shapes)

549

*1038_ch10_CMP3 6/21/03 10:56 AM Page 549

Next i

Application.Calculation = xlAutomatic

Application.DisplayAlerts = True

On Error Resume Next

' delete existing file

If Dir(filename)<>"" Then Kill filename

wb.SaveAs filename

wb.Close False

If Err = 0 Then

GenerateDailyWorksheet = True

Else

MsgBox "An error has occured: " & Error

GenerateDailyWorksheet = False

End If

End Function

NOTE It happens again and again with automated measuring processes that
due to some error, data are missing for a period of time (hours, or even days).
In the procedure above, error simulation was not implemented. However, the
reporting in DailyReport and MonthlyReport will continue to function if you
simply delete some of the data from the generated files. But be careful in the
calculation of average values. Missing measurements must not be taken to be
zero values. The Excel worksheet function AVERAGE behaves admirably in
this case and considers only those cells in the given range that are not empty.
Only when all of the measurements of an averaging range are missing does it
return the error result “division by 0.”

Daily Report

The daily report contains three charts, in which the exact course of the measure-
ments is presented. Here the curves A1, A2, A3 are united in a single chart. So that
charts from several days can be compared easily, a uniform scaling is required.
For this reason the Y range is set with a fixed range of 0 to 300. (Normally, Excel
changes the scaling automatically and fits it to the values that actually occur.)
Integrated into the daily report are a tabular overview of the daily average values
and the daily maximum of the five curves.

The daily report for a given date is created by the procedure DailyProtocol.
The charts are created completely in program code and inserted into the work-
sheet “DailyReport.” Any existing charts in this worksheet (from the previous
report) are first deleted.

Chapter 10

550

*1038_ch10_CMP3 6/21/03 10:56 AM Page 550

The procedure opens the file with the daily data and copies some basic infor-
mation (daily average and maximum) from it into the worksheet “DailyReport.”
Furthermore, the title of the report is extended to include the relevant date.

To generate a new chart, first three empty ChartObject frames are placed in
the worksheet. Then ChartWizard is used to create charts within them correspon-
ding for the most part to the actual requirements. (Some details that are not within
control of ChartWizard have to be changed later on.) The three ChartWizard
instructions differ only in that the charts are associated to differing ranges of cells
from those of the daily data table.

Then begins the actual detail work of formatting the chart. The three charts
can be worked on as a unit in a loop. The procedure ends with the daily data file
being closed and the daily report being printed. (On account of the option
Preview:=True printing takes the form of a page view.)

' Chart.xls, Module CreateReports

Sub DailyProtocol(dat As Date)

Dim filename$ 'report file name

Dim protWBook As Workbook 'workbook of this file

Dim protWSheet As Worksheet 'sheet of this book

Dim protRange As Range 'first data cell in this sheet

Dim chartWSheet As Worksheet 'reference to sheet with daily data

Dim i%, chobj As ChartObject 'loop variables

Application.ScreenUpdating = False

filename = ThisWorkbook.Path + "\d_" + _

Format(dat, "yyyymmdd") + ".xls"

If Dir(filename) = "" Then

MsgBox "The file " & filename & " does not exist. " & _

"Please create test data."

Exit Sub

End If

Set protWBook = Workbooks.Open(filename)

Set protWSheet = protWBook.Worksheets(1)

Set protRange = protWSheet.[A4]

Set chartWSheet = ThisWorkbook.Worksheets("DailyReport")

' delete all existing charts on this sheet

For Each chobj In chartWSheet.ChartObjects

chobj.Delete

Next chobj

' copy caption, daily averages and daily maximum values in table

chartWSheet.[ReportLabel] = "Daily report " & dat

protWSheet.[I19:M19].Copy

chartWSheet.[DailyAverage].PasteSpecial xlValues

protWSheet.[I21:M21].Copy

Charts and Drawing Objects (Shapes)

551

*1038_ch10_CMP3 6/21/03 10:56 AM Page 551

chartWSheet.[DailyMax].PasteSpecial xlValues

' create three charts

For i = 1 To 3

chartWSheet.ChartObjects.Add(30, 150 + 200 * (i - 1), 400, 185). _

Name = "Daily data " & i

chartWSheet.ChartObjects("Daily data " & i).Activate

If i = 1 Then

ActiveChart.ChartWizard protWSheet.[A3:D99], _

xlLine, 4, xlColumns, 1, 1

ElseIf i = 2 Then

ActiveChart.ChartWizard protWSheet.[A3:A99,E3:E99], _

xlLine, 4, xlColumns, 1, 1

ElseIf i = 3 Then

ActiveChart.ChartWizard protWSheet.[A3:A99,F3:F99], _

xlLine, 4, xlColumns, 1, 1

End If

Next i

' format charts

For Each chobj In chartWSheet.ChartObjects

chobj.Border.LineStyle = xlNone 'no border for entire chart

With chobj.Chart

.HasTitle = False 'no title

.PlotArea.Border.LineStyle = xlAutomatic 'border

.PlotArea.Interior.ColorIndex = xlNone 'no pattern/fill

.Axes(xlCategory).TickLabelSpacing = 8

.Axes(xlCategory).TickMarkSpacing = 4 'x axis

.Axes(xlValue).MinimumScale = 0 'y axis

.Axes(xlValue).MaximumScale = 300

.Axes(xlCategory).TickLabels.Orientation = 45 '45 degrees

.Axes(xlCategory).TickLabels.NumberFormat = "h:mm AM/PM"

For i = 1 To .SeriesCollection.Count 'format data

.SeriesCollection(i).Border.ColorIndex = 1 ' series

.SeriesCollection(i).Border.Weight = xlThin

.SeriesCollection(i).Border.LineStyle = xlContinuous

.SeriesCollection(i).MarkerStyle = xlNone

Next i

If .SeriesCollection.Count > 2 Then 'distinguish

.SeriesCollection(2).Border.LineStyle = xlDot ' 2nd and 3rd

.SeriesCollection(3).Border.LineStyle = xlDash ' series

End If

' diagram size, legend size

.PlotArea.Left = 5: .PlotArea.Top = 5

.PlotArea.Width = 290

Chapter 10

552

*1038_ch10_CMP3 6/21/03 10:56 AM Page 552

.PlotArea.Height = 140

.Legend.Left = 340

.Legend.Width = 50

.Legend.Border.LineStyle = xlNone

End With

Next chobj

ActiveWindow.Visible = False 'deactivate chart

protWBook.Close

chartWSheet.PrintOut Preview:=True

End Sub

Monthly Report

The monthly reports are somewhat more lavishly decked out than the daily
reports, taking three pages in all. The first side consists of an overview of all daily
average and maximum values as well as the resulting monthly averages and
maxima. The next page contains three charts, and the last page sports two charts.
These show the progression of the average and maximum values. The curves for
the averages have been smoothed (click on the curve, open the pop-up menu
FORMAT DATA SERIES|PATTERNS, option SMOOTHED LINE). Figure 10-7 shows the sec-
ond page of the monthly report with the curves for the measurement values A1
through A3.

For generating the monthly report we have chosen a method completely differ-
ent from that used for the daily report. The charts were inserted (with the mouse)
into the worksheet “MonthlyReport” and are not touched at all by the procedure
MonthlyProtocol. MonthlyProtocol merely changes those data cells that the finished
chart accesses.

This way of proceeding has advantages and disadvantages. The advantage is
that the programming effort is greatly reduced. Thus you can achieve good results
with minimal experience in programming charts. The disadvantages become evi-
dent when you attempt to generate five identical charts by mouse click. This is
almost as much effort as the programming (even if you first create a chart, and
then copy it and change only the ranges of cells of the data series). Furthermore,
this way of proceeding is possible only if the chart, as in this example, is to a great
extent independent of the data. However, if such items as the number of data
series, the number of data points, and the range of values of the data series can
vary, then there is no avoiding “real” programming.

Charts and Drawing Objects (Shapes)

553

*1038_ch10_CMP3 6/21/03 10:56 AM Page 553

REMARKS The charts assume a month of 31 days. In the case of months with
fewer days there are one to three empty data points. Thus the space available
for the chart is not used to full capacity, but in exchange there is a distinct
advantage: The scaling of the X-axis is independent of the number of days in
the month. The charts are thereby more comparable.

Onward to the program code, which for the reasons cited above contains not a
single line of instructions that typically apply to charts. The procedure is rather an
example of how data from up to 31 files can be consolidated in a single table. The
individual files are not opened, but rather direct access to individual cells of other
worksheets is made via formulas of type =’C:\Test\[D_20000101.XLS]Sheet1’!L19.
This form of data access proceeds surprisingly quickly. The creation of the
monthly report takes only a little longer than that of the daily report.

The most complicated part of the procedure relates to the creation of these
formulas, which are inserted into the worksheet by changing the FormulaR1C1
property of the affected cells. The formulas must be created relatively laboriously
as character strings. The R1C1 format is better suited for such tasks, because at
least there is no transformation from column numbers into letters.

Sub MonthlyProtocol(dat As Date)

Dim sdat As Date, edat As Date 'start and end date

Dim nrdays As Integer 'number of days

Dim filename$ 'name of report file

Dim chartWSheet As Worksheet 'sheet of report file

Dim chartRange As Range 'first data cell

Dim z As Date, i%, j% 'loop variables

sdat = DateSerial(Year(dat), Month(dat), 1)

nrdays = DateSerial(Year(dat), Month(dat) + 1, 1) - _

DateSerial(Year(dat), Month(dat), 1)

edat = dat + nrdays - 1

ThisWorkbook.Activate

Set chartWSheet = ThisWorkbook.Worksheets("MonthlyReport")

chartWSheet.Activate

chartWSheet.[a1].Select

Set chartRange = chartWSheet.[B9]

' build monthly table

Application.Calculation = xlManual

chartWSheet.[B1] = "Monthly report " & Format(dat, "mmmm yyyy")

For i = 1 To nrdays

z = dat + i - 1

Chapter 10

554

*1038_ch10_CMP3 6/21/03 10:56 AM Page 554

chartRange.Cells(i, 1) = z

filename = ThisWorkbook.Path + "\d_" + _

Format(z, "yyyymmdd") & ".xls"

If Dir(filename) = "" Then

For j = 1 To 5

chartRange.Cells(i, 1 + j).FormulaR1C1 = ""

chartRange.Cells(i, 7 + j).FormulaR1C1 = ""

Next j

Else

filename = "='" & ThisWorkbook.Path + "\[d_" + _

Format(z, "yyyymmdd") & ".xls]Sheet1'"

For j = 1 To 5

chartRange.Cells(i, 1 + j).FormulaR1C1 = _

filename & "!R19C" & 8 + j

chartRange.Cells(i, 7 + j).FormulaR1C1 = _

filename & "!R21C" & 8 + j

Next j

End If

Next i

If nrdays < 31 Then

For i = nrdays + 1 To 31

For j = 1 To 12

chartRange.Cells(i, j).ClearContents

Next j

Next i

End If

Application.Calculate

chartWSheet.Range("B9:M39").Copy

chartWSheet.Range("B9:M39").PasteSpecial Paste:=xlValues

Application.CutCopyMode = False

chartWSheet.PrintOut Preview:=True

Application.Calculation = xlAutomatic

End Sub

After all references have been inserted into the worksheet and the worksheet
recalculated, the entire range of cells is copied to the clipboard. Then, with
PasteSpecial only the numerical values (instead of the formulas) are pasted. This
process saves memory and increases the speed of further processing. Further-
more, it does not occur to Excel to ask at the next opportunity whether it should
update the existing references.

Charts and Drawing Objects (Shapes)

555

*1038_ch10_CMP3 6/21/03 10:56 AM Page 555

The procedure ends, like DailyProtocol, with printing the worksheet together
with the five charts contained therein. Furthermore, in the page layout of the
worksheet (FILE|PAGE SETUP) “none” is selected for the header, and for the footer
the page number is inserted (since the report always contains three pages).

Menu Management

The management of the menus has nothing new about it in comparison to what
has been discussed in earlier chapters, for this reason we have not included
the code here for the event procedures. The menu is realized as an independent
CommandBar object. It is made visible in Workbook_Open when Chart.xls is
opened, and is hidden again in Workbook_BeforeClose.

Dialog Management

The form FormDateInput is used universally for the three commands
REPORT|CREATE TEST DATA, …|DAILY REPORT, and …|MONTHLY REPORT. The text in the
text box lblInfo is changed according to the purpose for which it is to be used.
With the procedures ProtocolMenu_GenerateNewFiles, _DailyProtocol, and
_MonthlyProtocol, of which only one is reproduced here, the text in the text
boxes txtFrom and txtTo is preset.

The two dates can be increased or decreased with spin buttons. The values are
preset to 0, and the permissible range is from –1000 to 1000. Therefore, you can
theoretically change the date by ±1000 days. (Theoretically, because you would
not have the patience to keep pushing the button. Much quicker is simply to input
the date via the keyboard.)

' Chart.xls, Module MenuEvents

Sub ChartSampleMenu_MonthlyProtocol()
Dim dat As Date, lastmonth As Integer

lastmonth = -1

With FormDateInput

.dat1 = DateSerial(Year(Now), Month(Now), 1)

.dat2 = DateSerial(Year(Now), Month(Now), _

DateSerial(Year(Now), Month(Now) + 1, 1) - _

DateSerial(Year(Now), Month(Now), 1))

.txtFrom = CStr(.dat1)

.txtTo = CStr(.dat2)

.spinTo = 0

.spinFrom = 0

Chapter 10

556

*1038_ch10_CMP3 6/21/03 10:56 AM Page 556

.lblInfo = "Date range for which monthly reports will be " & _

"created and printed."

.Show

If .result = False Then Exit Sub

' create report

Application.ScreenUpdating = False

Application.DisplayStatusBar = True

For dat = CDate(.txtFrom) To CDate(.txtTo)

If lastmonth <> Month(dat) Then

Application.StatusBar = "Create monthly report for " & _

Format(dat, "mmmm yyyy")

MonthlyProtocol CDate(dat)

lastmonth = Month(dat)

End If

Next dat

Application.StatusBar = False

Application.DisplayStatusBar = False

End With

End Sub

If the input is terminated with OK and if in btnOK_Click no input error is dis-
covered, then a loop runs through all the days of the date range. Each time the
month changes, MonthlyProtocol is called. Admittedly, the algorithm has not been
overly carefully programmed, but it is surely the simplest solution that functions
for arbitrary time intervals (even for more than twelve months). A calculation of
the first day of each new month would probably require more time than simply
running through all the days. In any case, it would have required more thought in
the programming, and programmers are known not always to be in the mood for
heavy-duty thinking.

The actual form event procedures turn out to be comparatively short and triv-
ial. Note that the spin button is not synchronized when a new date is input via the
keyboard. For this reason it is impossible to input a date via the keyboard and then
change it with the spin button.

' event procedure for the form for date input

Option Explicit

Public result As Boolean, dat1 As Date, dat2 As Date

Private Sub btnCancel_Click()
result = False

Hide

End Sub

Private Sub btnOK_Click()
If IsDate(txtFrom) And IsDate(txtTo) Then

Charts and Drawing Objects (Shapes)

557

*1038_ch10_CMP3 6/21/03 10:56 AM Page 557

result = True

Hide

Else

MsgBox "Invalid date!!"

End If

End Sub

Private Sub spinFrom_Change()
txtFrom = CStr(dat1 + spinFrom)

End Sub

Private Sub spinTo_Change()
txtTo = CStr(dat2 + spinTo)

End Sub

10.4 Syntax Summary for Charts

This section collects almost all the truly important chart objects, methods, and
properties. A summary of the object hierarchy of all chart objects appears in
Chapter 15. There, all objects are also briefly described. In the following syntax
boxes we have used the following abbreviations: wb for a Workbook object, ws
for a Worksheet object, chobj for a ChartObject object, and ch for a Chart object.

CHART OBJECTS

ws.ChartObjects(..) select embedded chart object

ws.ChartObjects.Add .. new (empty) chart frame

chobj.Select corresponds to a single mouse click

chobj.Activate corresponds to a single mouse click

ActiveWindow.Visible = False deactivate

chobj.Chart refers to a chart object

chobj.Copy copy chart object together with chart

ws.Paste: Selection.Name = “..” insert chart object together with chart

chobj.Duplicate.Name = “..” duplicate existing chart object

chobj.Delete delete chart object together with chart

Chapter 10

558

*1038_ch10_CMP3 6/21/03 10:56 AM Page 558

CHARTS

ActiveChart refers to the active chart

wb.Charts(..).Select selects chart sheet

ch.ChartArea.Copy copies chart contents

ch.Paste inserts chart contents

ch.ChartArea.Clear deletes entire chart

ch.ChartArea.ClearContents deletes only the data

ch.ChartArea.ClearFormats deletes only the format

ch.ChartWizard ... create chart with chart wizard

ch.ApplyCustomType ... use custom format

Application.AddChartAutoFormat ... save new custom format

ch.CopyPicture copies chart as graphic or bitmap to the

clipboard

ch.Export saves chart in a graphics file

ch.PrintOut prints the chart

ch.ChartArea refers to entire background

ch.PlotArea refers to background of the graphic

ch.Floor, ch.Walls refers to floor and walls (3-D chart)

ch.ChartTitle refers to chart title

ch.Legend refers to legend

ch.Axes(..) refers to axes

ch.SeriesCollection(..) refers to data series

Charts and Drawing Objects (Shapes)

559

*1038_ch10_CMP3 6/21/03 10:56 AM Page 559

10.5 Drawing Objects (Shapes)

Overview

The Shape object serves primarily to represent autoshapes (lines, rectangles,
arrows, stars, etc.; see the “Drawing” toolbar).

These objects take the place of the various drawing objects in Excel 5/7.
However, the large number of related objects can be a source of confusion.

HIERARCHY OF SHAPE OBJECTS

Worksheet/Chart

Shapes all Shape objects within a sheet

Shape a Shape object

ConnectorFormat connection to other objects

ControlFormat additional properties for controls

FillFormat background pattern (via Fill property)

GroupShapes single object (via GroupItems, if Type=msoGroup)

Shape

HyperLink cross link and internet links

LineFormat line properties (via Line)

LinkFormat additional properties for OLE objects

OLEFormat yet more properties for OLE objects

PictureFormat properties of picture objects

Range anchor cells (via TopLeft-/BottomRightCell)

Shadow properties for shadow

ShapeNodes line segment (via Nodes, if Type=msoFreeform)

ShapeNode

ShapeRange single ojbects with multiple editing (via Range)

Shape

TextEffectFormat properties for WordArt object

TextFrame Text box within an autoshape object

ThreeDFormat 3-D effects (via ThreeD)

Chapter 10

560

*1038_ch10_CMP3 6/21/03 10:56 AM Page 560

The Shapes enumeration enables access to all Shape objects of a worksheet or
chart sheet. For the insertion of new drawing objects there is a long list of methods
available, such as AddShape for autoshapes and AddLine for lines.

ShapeRange enables the simultaneous editing of several Shape objects (as if
these objects were selected with Shift and the mouse).

Freehand shapes (that is, freely drawn line segments) represent a particular
form of Shape objects. In this case, the property ShapeNodes refers to a like-named
enumeration of ShapeNode objects. These objects contain, among other attrib-
utes, coordinate points of the individual line segments.

A Shape object is also used for managing a so-called group (in interactive
mode: pop-up menu command GROUPING). In this case the property GroupItems
leads to a GroupShape object, which, in turn, takes over the management of the
group elements. Group elements can include not only Shape objects, but also
charts and OLE objects, among others.

Finally, Shape is used to manage completely foreign objects, such as for MS
Forms control objects (Type=msoOLEControlObject). In this case, Shape stands
between the worksheet or chart sheet and the actual object. Shape is then con-
cerned, among other things, with the positioning of the control. For communica-
tion between the sheet and the control the ControlFormat object is employed,
which is addressed via the like-named property of Shape. ControlFormat is gener-
ally transparent, because its properties appear in the properties window of the
control and can be used like control properties.

Shape Properties

AutoShapeType: The two most important properties are surely Type and
AutoShapeType. If Type=msoAutoShape is set, then with AutoShapeType one of
countless autoshape types can be specified (there are more than 130). On the
other hand, if no autoshape is represented by the Shape object, then the object
type is specified by the msoShapeType constants. Elements such as msoChart,
msoComment, msoEmbeddedOLEObject, msoFreeForm, msoGroup,
msoOLEControlObject, and msoTextBox prove that internally to Excel
every object that is located outside of a cell is controlled by Shape objects.

Positioning: For each object is saved the upper left corner (Left and Top) as
well as the width and height (Width and Height). These coordinates are figured
from the upper left-hand corner of the form or worksheet. TopLeftCell and
BottomRightCell specify the cells under the upper left-hand corner and lower
right-hand corner. Placement determines how the control should behave when
the worksheet is changed (xlMoveAndSize, xlMove, or xlFreeFloating).

Charts and Drawing Objects (Shapes)

561

*1038_ch10_CMP3 6/21/03 10:56 AM Page 561

Format: The possibilities for visual appearance are practically without bound.
Each of the following properties leads to a particular object (whose name is given
in parentheses if it is different from that of the property): Adjustments, Callout
(CalloutFormat), Fill (FillFormat), Hyperlink, Line (LineFormat), PictureFormat,
Shadow (ShadowFormat), TextEffect (TextEffectFormat), TextFrame, and ThreeD
(ThreeDFormat). Perhaps this superfluity of objects is too much of a good thing.

Other: Depending on which objects are represented by Shape, there are
further properties available: ConnectorFormat (if the object is bound to other
objects), ControlFormat (for controls), GroupItems (for object groups), Nodes
(for freehand objects), as well as LinkFormat and OLEFormat (for OLE objects).

POINTER Note that the Shape objects are defined in the Excel library, but the
associated constants in the Office library. When old Excel 5/7 files are opened,
the Office library is not activated under normal circumstances. This must be
accomplished with TOOLS|REFERENCES.

Example

The drawing objects in Figure 10-8 were created with the loop in
btnShowAllAutoShapes_Click. And now a word about the syntax of AddShape:
The first parameter specifies the autoshape type (1 through 37), while the follow-
ing four parameters determine the location (Left/Top) and size (Width/Height) of
the object. The coordinate system begins in the upper left-hand corner of the
worksheet.

' Shapes.xls, Sheet1

Private Sub btnShowAllAutoShapes_Click()
Dim i&

For i = 0 To 136

ActiveSheet.Shapes.AddShape i + 1, _

40 + 50 * (i Mod 12), 50 + 50 * (i \ 12), 40, 40

Next

End Sub

Chapter 10

562

*1038_ch10_CMP3 6/21/03 10:56 AM Page 562

Figure 10-8. Some of the predefined autoshapes

To delete the drawing objects the following procedure can be used. The cru-
cial step is the Type test: Without it the buttons in the worksheet would be deleted
as well!

Private Sub btnDeleteShapes_Click()
Dim s As Shape

For Each s In ActiveSheet.Shapes

If s.Type = msoAutoShape Or s.Type = msoLine Then s.Delete

Next

End Sub

The procedure btnStar_Click draws a star made up of colored arrows
(Figure 10-9). Note that arrows are not among the autoshapes, but form their own
category of Shape. For this reason AddLine must be used instead of AddShape.
ForeColor refers to a ColorFormat object, with which the color of an object can
be set.

Charts and Drawing Objects (Shapes)

563

*1038_ch10_CMP3 6/21/03 10:56 AM Page 563

Figure 10-9. A star of colored arrows

POINTER The program code may lead you to believe that Excel offers infinitely
many colors for your use. Unfortunately, that is not the case. Rather, there is
available a palette of only 56 colors (apparently a relic of earlier versions of
Excel). Therefore, a reference to an RGB color means only that the closest
matching color from this palette is used.

Private Sub btnStar_Click()

Dim degree#

Dim s As Shape

Const Pi = 3.1415927

Randomize

For degree = 0 To 2 * Pi Step Pi / 12

Set s = ActiveSheet.Shapes.AddLine(200, 200, _

200 + 100 * Sin(degree), 200 + 100 * Cos(degree))

s.Line.EndArrowheadStyle = msoArrowheadTriangle

s.Line.EndArrowheadLength = msoArrowheadLengthMedium

s.Line.EndArrowheadWidth = msoArrowheadWidthMedium

s.Line.ForeColor.RGB = RGB(Rnd * 255, Rnd * 255, Rnd * 255)

Next

End Sub

Chapter 10

564

*1038_ch10_CMP3 6/21/03 10:56 AM Page 564

10.6 Diagrams

Beginning with Excel 2002 you can use INSERT|DIAGRAM to insert an organization
chart or one of five additional types of diagram into an Excel worksheet (cycle dia-
gram, radial diagram, pyramid diagram, Venn diagram, and target diagram). These
diagrams appear in a basic format and can be enhanced with your own text, for-
matting, and additional subobjects. In working with diagrams the ORGANIZATION

CHART toolbars are helpful (only for organization charts), as well as the DIAGRAM

toolbar (for the other five diagram types).
To create or edit a diagram in VBA code, you must use the new DiagramXxx

objects, which are the focus of this section: Diagram describes an entire diagram,
while DiagramNode refers to one of the diagram’s elements. The enumerations
DiagramNodes and DiagramNodeChildren help in the management of diagram
elements.

TIP Before you set out on the great adventure of programming diagrams,
here are a few tips:

• Macro recording does not work either in creating or in editing a diagram.
This makes the creation of Diagram objects a labor-intensive process.

• The Diagram objects themselves do not seem to be quite mature. As a partic-
ularly obvious example, diagrams that you create yourself cannot be given
titles, and the title of an existing diagram cannot be changed.

• Save your project often! In the course of my experimentation I have suffered
numerous crashes.

Creating Diagrams

To create a new diagram, use the method AddDiagram of the Shapes object. You
must specify the desired diagram type (msoDiagramXxx constant) as well as the
size and location. As a result you receive a Shape object whose property Diagram
refers to a like-named Diagram object.

Dim s As Shape

Dim d As Diagram

Dim ws As Worksheet

Set ws = Worksheets(1)

Set s = ws.Shapes.AddDiagram(msoDiagramRadial, 10, 10, 200, 100)

Set d = s.Diagram

Charts and Drawing Objects (Shapes)

565

*1038_ch10_CMP3 6/21/03 10:56 AM Page 565

Inserting Diagram Elements

A new diagram, regardless of type, is originally empty. The next step consists in fill-
ing the diagram with elements (with DiagramNode objects). It is annoying that the
Diagram object refers, with the property Nodes, to a DiagramNodes enumeration,
yet this enumeration does not, as is otherwise usual, have use of an Add method.

Finally, the example programs in the Help section show the only effective
(yet completely illogical) way of proceeding: When you generate a new diagram
with AddDiagram, you receive a Shape object (as described earlier). For this object
one has the property DiagramNode, which refers to an object of this type. Appar-
ently, together with each Diagram object an invisible and in some sense virtual
diagramNode object is generated that serves as the starting point for the addition
of additional elements. (But note that DiagramNodes.Count returns 0.)

How one proceeds next depends on the type of diagram: In the case of organi-
zation charts a root object must be created. All further objects are added as sub-
objects (Children) of this root object. The following lines of code generate a radial
diagram with a circle in the middle (root) and three associated circles around it
(child1 through child3).

' ws refers to a Worksheet object

' for msoDiagramRadial and msoDiagramOrgChart

Dim s As Shape

Dim root As DiagramNode, child1 As DiagramNode, _

child2 As DiagramNode, child3 As DiagramNode

Set s = ws.Shapes.AddDiagram(msoDiagramRadial, 10, 10, 200, 100)

Set startnode = s.DiagramNode

Set root = startnode.Children.AddNode

Set child1 = root.Children.AddNode

Set child2 = root.Children.AddNode

Set child3 = root.Children.AddNode

With the other diagram types, however, all diagram objects are at the same
level. The next example shows how a four-part pyramid diagram is generated:

' msoDiagramPyramid, msoDiagramCycle, msoDiagramTarget, msoDiagramVenn

Dim s As Shape

Dim child1 As DiagramNode, child2 As DiagramNode, _

child3 As DiagramNode, child4 As DiagramNode

Set s = ws.Shapes.AddDiagram(msoDiagramPyramid, 10, 10, 200, 100)

Set startnode = s.DiagramNode

Set child1 = startnode.Children.AddNode

Set child2 = child1.AddNode

Set child3 = child1.AddNode

Set child4 = child1.AddNode

Chapter 10

566

*1038_ch10_CMP3 6/21/03 10:56 AM Page 566

Providing Labels for Diagram Elements

The text of a diagram element is managed via a TextFrame object (see the previous
section). Beginning with a DiagramNode object, the following list of properties
results in the text property: child1.TextShape.TextFrame.Characters.Text.

The great problem is that a change in Text in Excel 2002 is not easily achiev-
able. (Even the use of the alternative property Caption or the method Insert does
not help.) That this error has not even been documented (let alone fixed) three-
quarters of a year after the release of Excel 2002 leads one to believe that the new
DiagramXxx objects have not caught the imagination of programmers.

Without the possibility of attaching labels to diagram elements, further pro-
gramming makes no sense at all. One may hope that the many inconsistencies
plaguing the Diagram objects will be corrected in future versions of Excel.

Deleting Diagrams

There is no Delete method for Diagram objects. Instead, the underlying Shape
object must be deleted. With the property HasShape you can test whether the
Shape object is being used to represent a diagram or for some other purpose.
The following loop deletes the diagram in the first worksheet of a file:

Dim s As Shape

Dim ws As Worksheet

Set ws = Worksheets(1)

For Each s In ws.Shapes

If s.HasDiagram Then s.Delete

Next

Charts and Drawing Objects (Shapes)

567

*1038_ch10_CMP3 6/21/03 10:56 AM Page 567

